
z/VM
7.2

CMS Application Development Guide

IBM

SC24-6256-02

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
625.

This edition applies to version 7, release 2 of IBM z/VM (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-24
© Copyright International Business Machines Corporation 1990, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. xvii

Tables...xxiii

About This Document... xxvii
Intended Audience... xxvii
Where to Find More Information.. xxvii

Links to Other Documents and Websites..xxvii

How to Send Your Comments to IBM.. xxix

Summary of Changes for z/VM: CMS Application Development Guide................. xxxi
SC24-6256-02, z/VM 7.2 (September 2022)...xxxi
SC24-6256-02, z/VM 7.2 (September 2021)...xxxi
SC24-6256-02, z/VM 7.2 (March 2021)... xxxi
SC24-6256-01, z/VM 7.2 (September 2020)...xxxi
SC24-6256-00, z/VM 7.1 (September 2018)...xxxi

Part 1. Introduction.. 1

Chapter 1. Introduction to the CMS Programming Environment..3
What is CMS?.. 3

Structure of CMS... 3
CMS Virtual Machine Environments... 4
CMS Programming Interface.. 6
Common Programming Interface (CPI) Communications... 7
Resource Recovery Interface... 8
REXX Sockets.. 8

CMS Operating Characteristics.. 8
CMS Command Search Order... 8

Preferred File Types..9
Programming Language Environments..10

Chapter 2. Introduction to OpenExtensions... 11
Overview... 11
Setting Up OpenExtensions... 12
OpenExtensions Byte File System... 12
Compiling and Building OpenExtensions Applications... 14

Using c89.. 14
Using cxx... 16
Using make..16

Running OpenExtensions Applications..17
POSIX Processes.. 18

Converting fork() and exec() Usage to spawn()..18
POSIX Terminal Interactions... 19
Additional Considerations..19

Part 2. Developing Your Program... 21

 iii

Chapter 3. Planning and Designing Your Program.. 23
Planning Objectives..23

CMS Environment Considerations..23
Application Processing Considerations..29

Chapter 4. Coding Your Program... 39
CSL Routines...39

Getting Extended Error Information...39
Extracting System Information.. 40
Opening and Closing Files.. 40

OpenExtensions Callable Services.. 40
REXX Sockets... 40
CPI Communications Routines.. 41
Macros and Functions.. 41
DB2 Server for VM Statements.. 41

Chapter 5. Compiling Your Program.. 43
Invoking the Compiler.. 43
Identifying Source Files... 44

Source Files Located on Tape...45
Source Files Located in Your Virtual Reader.. 45

Identifying Libraries to Be Searched... 45
Specifying Compiler Options..46

Chapter 6. Loading and Running Your Program.. 47
Defining Input and Output Files...47

Using the FILEDEF Command.. 47
Identifying VSAM Files Using the DLBL Command.. 49
Using the CREATE NAMEDEF Command..49

Loading Your Application... 49
Where Are TEXT Files Loaded?...49
How Long Does Your Program Stay in Storage?...51
Resolving External References by Identifying Libraries.. 52
LOAD and INCLUDE Options...54
Loader Control Statements...54
Determining Program Entry Points...55

Running Your Application...55
Using the START Command.. 55
Using the GENMOD Command... 56
Using the BIND Command..58
Using the LKED and OSRUN Commands.. 58
Using the OPENVM RUN Command..61

Displaying Information about Programs In Storage..62
PROGMAP Command..62

Chapter 7. Debugging and Testing Your Program... 65
Commands Used for Debugging.. 65

CP Commands for Debugging...65
CMS Commands for Debugging.. 66

Interactive Debug Tools for Specific Languages... 66
Debugging Your COBOL Application...67
Debugging Your FORTRAN Application.. 67
Debugging Your Pascal Application..67

Dialog Testing Using ISPF.. 67
Database Testing Using SQL.. 70

Using ISQL...71
Testing Your Complete Application Package in a Virtual Machine..71

iv

Chapter 8. Updating Your Source Program... 73
Making Updates to a Source File..73

Step 1 - Using the XEDIT Command to Make Changes to a Source File....................................... 73
Step 2 - Using the UPDATE Command to Add Changes to a Source File...................................... 75

UPDATE File.. 76
UPDATE Control Statements.. 76

Making Multiple Updates to a Source File Using the UPDATE Command...77
Using a Control File...78
Alternate Ways of Naming a Control File... 79
Using an Auxiliary Control File (AUX File).. 79

Making Multiple Updates to a Source File Using the XEDIT Command..81
Using a Control File...81
Using an Auxiliary Control File (AUX File).. 81

Preferred Level Updating... 81
VMFASM EXEC Procedure.. 82
Making Updates to Execs and Macros Using the EXECUPDT Command.. 83
Writing Your Own Exec to Invoke the UPDATE Command (The STK Option)..................................... 83
Example of Updating a FORTRAN Source File...84

Chapter 9. Building and Using Dynamic Link Libraries (DLLs)..87
DLL Concepts and Terms..87

DLLs and DLL Applications... 87
Imported and Exported Functions and Variables.. 87
DLL Code and Non-DLL Code..87
Function and Variable Descriptors... 88
Definition Side-Deck... 88

Building a DLL or a DLL Application... 88
Building a Simple C DLL.. 88
Building a Simple C DLL Application.. 89
Building a Complex DLL or DLL Application... 90

Rules for Compiling DLL Code Versus Non-DLL Code... 90
Rules for Modifying DLL Source..91
Summary Example: Creating and Using DLLs.. 91

Managing the Use of DLLs when Running DLL Applications... 94
Loading DLLs... 94
Sharing DLLs..94
Freeing DLLs..94

DLL Restrictions..95
Performance Considerations... 95
Compatibility Issues between DLL and Non-DLL Code...96

Referencing Functions and External Variables.. 96
Pointer Assignment...98
DLL Function Pointer Call in Non-DLL Code... 100
Non-DLL Function Pointer Call in DLL Code... 103
Function Pointer Comparison in Non-DLL Code.. 104
Function Pointer Comparison in DLL Code...106

Explicitly Calling a DLL... 107

Part 3. Using CMS Services...111

Chapter 10. Handling Input and Output... 113
File I/O..113
Directory I/O...114
Console and Terminal I/O.. 114
Program Stack I/O..115
Unit Record I/O...116

 v

Tape I/O..117
General Tape I/O Services... 117

Chapter 11. Understanding the CMS File System...119
File System Architectures Supported by CMS...119

Enhanced Disk Format (EDF) Architecture.. 119
Shared File System (SFS) Architecture.. 119
OpenExtensions Byte File System (BFS)... 120

What File Information Does CMS Maintain?..120
File Name, File Type, and File Mode.. 121
Record Formats.. 122
Logical Record Length.. 122
Record Number and Number of Records... 122
File Origin Pointer, Number of Data Blocks and Pointer Levels...122
Date and Time of Last Update.. 123
Recoverability... 123
Overwrite.. 123
Date of Last Reference... 124
Creation Date and Time..124
Date and Time of Last Change..125

Using the Date of Last Reference Attribute... 125
How SFS Maintains the Date of Last Reference...125
How to Retrieve the Date of Last Reference.. 126
How to Inhibit the Updating of the Date of Last Reference...126

Application Interfaces..126

Chapter 12. Manipulating SFS and Minidisk Files and Directories...129
CMS Record File System Programming Interface... 129
DFSMS/VM and SFS File Management.. 130

Movement of SFS Files by DFSMS/VM... 130
Automatic File Movement and Erasure by DFSMS/VM..131

Determining the File Pool Server Level..131
Design Considerations... 131

Using a Namedef...131
Additional Considerations for Directory ID..133
Using Work Units in Application Programs.. 133
Committing and Rolling Back Changes in Application Programs.. 141
Handling Unexpected Conditions in SFS..147

File I/O..149
Using CSL Routines and Existing FS Macros.. 150
Handling Files and Directories Opened Using File Mode.. 151
Determining If a File Exists.. 151
Creating Empty SFS Files... 152
Opening Files.. 152
Reading and Writing Files...154
Closing Files..161
Truncating Files.. 162
Erasing Files..162
Committing Your Changes.. 163
Data Block I/O...163

Directory I/O...165
Determining If an SFS Directory Exists.. 167
Opening and Reading SFS Directories... 167
Creating a Directory in SFS...171
Erasing a Directory in SFS...172
Committing Your Changes.. 172

SFS File Sharing..172
Granting Authority for Files and Directories.. 173

vi

Creating Aliases to Files... 174
External Objects... 174
Accessing Directories... 175
Direct File Reference.. 175
Removing Authority for Shared Files and Directories..176

Locking SFS Files and Directories..176
Locking.. 177

Performance Tips... 184
SFS Performance Tips.. 184
SFS and Minidisk Performance Tips...185

Using SFS File Space..185
Threshold Warning..185
Temporary Space..185

Accessing Multiple SFS File Pools... 186
SFS Restart Recovery...186
SFS User Synchronization.. 186

Synchronization for NOTINPLACE Files... 186
Synchronization for INPLACE Files.. 187
Lock Collisions.. 187

Asynchronous Requests.. 187
Issuing Asynchronous SFS Requests from CMS Multitasking Applications............................... 188

Sharing SFS Files Across Systems...189
Use of APPC/VM Paths by SFS...190

Use of APPC/VM Paths with the Default Work Unit ID.. 191
Use of APPC/VM Paths with Acquired Work Unit IDs.. 191
Severed APPC/VM Paths in SFS... 191

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines.....193
Programming Interfaces.. 193
Required Authority... 194
DFSMS/VM and BFS File Management..194

Migration and Recall... 194
Automatic File Movement and Erasure..194

Application Design Considerations..194
Using a Namedef...195
Additional Considerations for Directory ID..196
Using Work Units in Application Programs.. 196
Committing and Rolling Back Changes in Application Programs.. 196
Handling Unexpected Conditions...196

BFS File I/O.. 197
Determining If a BFS File Exists... 198
Opening BFS Files...198
Reading and Writing BFS Files... 199
Closing BFS Files.. 199
Erasing BFS Files.. 199
Data Block I/O...200

BFS Directory I/O... 200
Opening BFS Directories.. 200
Reading BFS Directories...202
Closing BFS Directories.. 202
Erasing BFS Directories.. 202

Locking BFS Files... 202
Implicit Locking.. 203
Explicit Locking... 203
Relationships between Locks...204
Deleting Locks...205
Waiting for Locks...206
Deadlocks... 206

 vii

Using File Pool Space for BFS Files... 206
File Pool Restart Recovery... 207
File Pool User Synchronization.. 207
Asynchronous Requests.. 207

Chapter 14. Extracting and Replacing System Information... 209
Using the Extract/Replace Routine..209

Using a Protected Environment..209
Extracting System Information.. 210
Ways of Searching for Data.. 210
Changing System Information..212

Calling the Extract/Replace Routine from a REXX Program..214

Chapter 15. Using Data Spaces...217
Introduction... 217

Terminology.. 217
Outline of VM Data Space Support...218
Data Space Support for CMS Virtual Machine Environments.. 219
Uses for Data Spaces..219
Summary of Data Space Operations.. 219

Using Data Spaces in Your Applications.. 221
Creating and Using Data Spaces.. 221
Using VM Data Space Services from ESA or XA Virtual Machines...230
Protecting Data Space Storage...231
Other Considerations When Using VM Data Spaces..232
Virtual Machine Event Handler...234
Page-Fault Notification for Access-Register-Specified References..234

Overview of CMS Service Call Support in AR mode...234
Effect of Data Space Support on Preferred Programming Interfaces...235
Effect of Data Space Support on Compatibility Programming Interface.................................... 238
Effect of Data Space Support on Simulated Programming Interfaces..238
Effect of Data Space Support on Existing Programs..238

AR Mode Execution Considerations...239

Chapter 16. Your Applications and Data Integrity..241
Introduction to Coordinated Resource Recovery Services... 241

How CRR Works.. 241
Designing Your Application for Data Integrity... 242

Setting Up to Ensure Data Integrity... 243
Setting Synchronization Point Options...244
Committing (or Rolling Back) Changes.. 245
Tracking Down Errors... 247
Notes for Distributed Application Programs..248

Chapter 17. Writing a CRR Wait Routine for Multiuser Server Applications.. 251
Asynchronous Processing in CRR.. 251
Multitasking Scenario...251
Replacing DMSCWAIT.. 253

Exit Routine Parameters...253
Making Your Exit Routine Available..254

Chapter 18. Getting a Resource Manager to Participate in CRR.. 255
What Is CRR Participation?.. 255
CRR Participation Requirements... 255

Logging..256
Resource Adapter Interface with the SPM.. 256
Registering a Resource for CRR... 257

Getting Information about the Resource Manager..258

viii

Getting Information about the CRR Recovery Server..259
Setting the Registration Flags.. 259
Changing Registration Values...260
Unregistering the Resource..260

CRR Exits to Registered Resource Adapters... 261
Synchronous and Asynchronous Exit Processing.. 261
CRR's Multitasking Dispatcher Exit.. 263

Writing Resource Adapter Exit Routines... 263
Exit Routine Parameters...264
Exit Routine Processing.. 266

Backout Indications... 285
Detailed Error Passback Support...285
Resource Manager Interface with the CRR Recovery Server..286

Resource Manager Resynchronization Facilities... 286
Exchanging Log Names...287
Comparing States... 289
How the Recovery Token and Session Instance ID Are Used... 291

Resynchronization Initialization.. 292
Resynchronization Initialization Data Flow... 292

Resynchronization Recovery..296
Resynchronization Recovery Data Flow...297

Forward Recovery.. 301
Using Protected Conversations..301

Chapter 19. Creating and Manipulating the CMS Libraries...305
Creating and Manipulating Macro Libraries...306

Using System MACLIBs.. 307
Creating a MACLIB..307
Examining Contents of a MACLIB...308
Adding MACLIB Members...310
Replacing MACLIB Members..311
Deleting MACLIB Members.. 311
Compressing a MACLIB.. 312
Editing MACLIB Members...313
Printing and Displaying MACLIB Members.. 313
Extracting MACLIB Members... 314
Setting MACLIST Defaults.. 315

Creating and Manipulating Text Libraries.. 315
Using MVS/XA Linkage Editor Control Statements.. 316
Creating a TXTLIB...317
Examining the Contents of a TXTLIB... 317
Adding TXTLIB Members..318
Deleting TXTLIB Members... 318
Replacing TXTLIB Members... 318
Printing and Displaying TXTLIB Members... 319
Extracting TXTLIB Members...319

Creating and Manipulating Load Libraries... 319
Creating LOADLIBs Using the LKED Command... 320
Manipulating LOADLIBs Using the LOADLIB Command..320

Creating Callable Services Libraries.. 320
Using Callable Services Libraries...320

Making CSLs Available for Use... 321
Loading or Dropping a CSL Routine..322
Getting Information about Routines in a Library... 322
Programming Language Binding Files..322
Invoking a CSL Routine...323
Invoking CSL Routines Frequently from Assembler Programs... 326

Using ISPF/PDF Libraries... 328

 ix

Specifying ISPF/PDF Libraries and Their Members...329
Guidelines for Library Specifications... 329
ISPF/PDF Library Record Format and Length.. 330
Location of ISPF/PDF Libraries...330
Concatenating ISPF/PDF Libraries...330
ISPF/PDF Library Statistics.. 331

Chapter 20. Using Execs..333
Restructured Extended Executor Language..333

Sample REXX Language Program...333
Issuing z/VM Commands..334

EXEC 2 Processor and CMS EXEC Processor...335
Sample EXEC 2 Language Program..335
Sample CMS EXEC Language Program...336

Alternate Format Exec... 337
Naming Conventions for Alternate Format Execs..337
Header Record Format of Alternate Format Execs..337
Calling the Alternate Exec Processor... 338
CMS Services Available to the Alternate Exec Processor..338

Creating an XEDIT Macro... 339
PROFILE EXEC File...340
CMS EXEC File.. 340
Using the FILEDEF Command in Execs... 341
Using MACLIBs and TXTLIBs in Execs...341
Prototyping with REXX... 342
Prototyping Interactive Applications...343
Using Execs with ISQL... 345

Chapter 21. Passing Commands and Data..347
Stacks... 347

Using the Program Stack to Pass Data Between Programs...347
Using the Program Stack to Pass Data to CMS.. 349
Manipulating the Program Stack.. 350
Using Program Stacks...351

Chapter 22. Using CMS Pipelines..353
Basic Concepts and Functions of CMS Pipelines.. 353
Using CMS Pipelines in Execs.. 354
Calling CMS Pipelines from Assembler Programs...354

Programming Tips When Using CMS Pipelines..355
Writing Your Own Stage Commands..355

Chapter 23. Using the Batch Facility...357
Submitting Jobs to the CMS Batch Facility..357

Input to the Batch Machine..357
Batch Considerations for Shared File System (SFS) Files... 358
Submitting Virtual Card Input to the CMS Batch Facility...358
Other Input Records... 360

How the Batch Facility Works.. 361
Preparing Jobs for Batch Execution.. 361

Restrictions on CP and CMS Commands in Batch Jobs...362
Batch Facility Output.. 363

Using Exec Files for Input to the Batch Facility...363
Sample System Procedures for Batch Execution.. 364
Batch Exec for a Non-CMS User... 366

Purging and Reordering Batch Jobs.. 366

Chapter 24. Creating an Interactive Program...369

x

Using ISPF for Dialogs..369
Developing an ISPF Dialog... 370
How to Begin Using ISPF..370
ISPF Dialog Organization..373
Controlling Dialog Flow with the SELECT Service..373
ISPF Panel Definition..374
ISPF Message Definition...376
ISPF Variable Definition..376
ISPF Panel Services..377
ISPF Variable Pools.. 377
ISPF Variable Services..378
Other ISPF Services..378

Using DMS/CMS for Dialogs... 379
DMS/CMS Users.. 380
System Support Functions... 381
Panel Size Considerations.. 382

Chapter 25. Developing Commands Using the Parsing Facility... 383
Using the Parsing Facility... 383

Step 1. Creating a DLCS File... 384
Step 2. Checking for DLCS Coding Errors...385
Step 3. Converting Your DLCS File..385
Step 4. Setting Command Name Synonyms and Translations.. 385
Step 5. Invoking the Parsing Facility..385

Coding Your Command Definitions..386
Rules to Remember.. 386
Defining the Command Name Using the :CMD Statement.. 386
Defining Synonyms Using the :SYN Statement..387
Defining Modifiers Using the :KW.n Statement..388
Defining Operands Using the :OPR Statement.. 388
Defining Options Using the :OPT Statement..389
Writing Comments Using the :* Statement..393
Defining Routines and Keywords Using the :RTN and :KWD Statements................................... 393

What the Parser Does Not Flag..394
DBCS and the Parsing Facility..394

In DLCS and GENCMD...394
From CMS..395

Examples: Using the Parsing Facility...395
Creating the TEST DLCS File...395
Creating the TEST DLCS File with Language Translations... 396
Processing the TEST DLCS File...397

Creating and Distributing Your Own CMS Commands...403
Using DLCS..403
Defining Translations, Synonyms, and Abbreviations... 403
Defining HELP Files...404

Chapter 26. Using Message Repository Files..405
Creating and Using Message Repositories.. 405

Step 1. Creating a Message File... 406
Step 2. Checking and Compiling Message Repository File..409
Step 3. Making Message File Available.. 410
Step 4. Accessing Messages.. 410

Using Substitution in a Message Repository... 410
Example of Using Substitution in a Message Repository.. 411

Using Dictionary Substitution in a Message Repository..413
Example of Using Dictionary Substitution in a Message Repository...413

Creating Your Own CMS Messages.. 414
Creating Your Own HELP Files... 415

 xi

Making Your Messages Available to Others...415
Loading a User Message Repository into a CMS Logical Saved Segment................................... 415

Chapter 27. Using Saved Segments..419
Physical and Logical Saved Segments...419
Using the SEGMENT Command... 419

Reserving Storage Space for Saved Segments.. 420
Loading Saved Segments... 420
Purging Saved Segments from Your Virtual Machine.. 421
Releasing Segment Storage Spaces...421
Assigning Logical Saved Segments to Physical Saved Segments... 422
Displaying Information about Saved Segments.. 422

Chapter 28. Using DB2 Server for VM... 425
How SQL Handles Data.. 425
SQL Commands.. 426
Coding SQL Commands..427

Declaring Host Variables to SQL...427
Declaring an SQL Communication Area... 428
Connecting to DB2 Server for VM...429
Manipulating Data...429
Ending Your Logical Unit of Work... 429
Releasing the Connection to DB2 Server for VM... 429
SQL Command Layout.. 430

Creating DB2 Server for VM Tables..430
Retrieving Data from a Table..431
Defining Search Conditions..431

Comparison Operators... 432
Arithmetic Operators..432
Logical Operators..433
Defining Additional Predicates...433

Using Built-In SQL Functions... 434
Excluding Duplicates..434
Manipulating Data in a DB2 Server for VM Table...434
Creating Views in DB2 Server for VM...435
Preprocessing Your DB2 Server for VM Application..435
Using SQL Interactively..438

Chapter 29. Using Data Compression Services.. 439
Compression and Expansion Services...439
Compression and Expansion Dictionaries... 439
Using Compression and Expansion Services...440
Compression Processing..440
Expansion Processing.. 441
Dictionary Entries...441

Compression Dictionary Entries...441
Expansion Dictionary Entries... 444
Dictionary Restrictions... 444
Other Considerations..445
Compression Dictionary Examples.. 445
Expansion Dictionary Example...449

Building the CSRYCMPS Area...450
Compression and Expansion Examples... 451

Determining if the CSRCMPSC Macro Can Be Issued on a System.. 453
High-Level Language Call... 454

Compressing CMS Data..454

xii

Part 4. Connectivity Programming in CMS...457

Chapter 30. Introduction to Connectivity Programming in CMS.. 459
Types of Communications Programs...459
How the Programming Interfaces Work Together...460
Understanding the Scope of APPC/VM Communications... 461

Communication within a Single z/VM System... 461
Communication within a TSAF Collection of z/VM Systems..462
Communication Outside Your z/VM System, TSAF, or CS Collection.. 462
Summarizing z/VM Program-to-Program Communication..464

Chapter 31. Understanding Communications Programming Terminology.. 467
Systems Network Architecture Terminology...467

What Is an SNA Network?.. 467
What Is a Logical Unit?... 467
What Is a Session?..467
What Is a Transaction Program?.. 468
What Is a Conversation?...468
What Is a Mode Name?...468
What Is a Session Limit?...468
What Is Contention?... 469
What Is Session Security?.. 469
What Is Conversation Security?... 469
What Is Negotiation?.. 470

VM Terminology..470
What Is a TSAF Collection?.. 471
What Is a CS Collection?...471
What Is a VM Resource?...472
What Are Communications Partners?.. 474
What Is an AVS Gateway?...475
What Is a System Gateway?...476

Chapter 32. Program-to-Program Communications.. 479
Basic Concepts...479

Communications Partners..479
Paths... 479
States.. 479

Using Basic Communications Functions... 480
Step 1: Starting Communications with Another Program... 480
Step 2: Sending and Receiving Data.. 482
Step 3: Ending Communications with Another Program... 482

Using Advanced Communications Functions.. 482
Requesting Confirmation..482
Signaling an Error..483
Requesting to Send Data.. 483
Establishing a Protected Conversation.. 483

Identifying Your Communications Partner.. 483
Using a CMS Communications Directory..483

Resource Manager Programs...485
Local Resource Manager Programs..485
Global Resource Manager Programs..486
System Resource Manager Programs.. 486
Private Resource Manager Programs... 486

Intermediate Servers... 488
Writing Versatile Programs.. 488
Summary of Connections...488

 xiii

Which Programming Interface Do You Want to Use?..491

Chapter 33. Understanding CPI Communications..493
Basics of CPI Communications..493
Invoking CPI Communications Routines...494

Invocation Errors.. 494
Using Basic CPI Communications Functions...494

Starting a Conversation.. 494
Sending and Receiving Data on the Conversation... 495
Ending a Conversation..495

Using Advanced CPI Communications Functions... 495
Requesting Confirmation..496
Signaling an Error..496
Requesting to Send Data.. 496
Establishing a Protected Conversation.. 496

Using VM Extensions to CPI Communications.. 497
Security... 497
Resource Manager Programs... 497
Considerations for TP-Model Applications in z/VM... 498
Considerations for Intermediate Servers.. 500
CMS Work Units.. 502
z/VM Resource Recovery..502
Managing CPI Communications Events in a Virtual Machine.. 503

Writing Multitasking Programs...503
Summary of Common Routines... 504
Summary of z/VM Extension Routines.. 506
Scenario 1: Request for a Global Resource... 507

Virtual Machine Preparation...508
Program Functions..508

Scenario 2: Request for a Private Resource.. 509
Virtual Machine Preparation...509
Program Functions..510

Scenario 3: Synchronizing Multiple Updates...511
Virtual Machine Preparation...511
Overview for Synchronizing Multiple Updates... 512
Program Functions..513
Source Program for Synchronizing Multiple Updates..514

Scenario 4: Signaling a User Event.. 515
Virtual Machine Preparation...515
SUESAMP1 EXEC Listing...516
SUESAMP2 EXEC Listing...519
SUESAMP3 ASSEMBLE Listing... 521
Execution Results... 522

Scenario 5: Using the VMCPIC Event...523

Appendix A. Assembler Examples.. 527
Example 1: Assembler Application Using the CSL Extract/Replace Routine...527
Example 2: Assembler Application Using CSL Routines to Open, Read, and Close Files......................529

Appendix B. C Example..531

Appendix C. COBOL Examples..533
Example 1: Simple COBOL Application...533
Example 2: Complete COBOL Application.. 533
Example 3: COBOL Application Using a CSL Routine Call.. 535

Appendix D. FORTRAN Examples... 537

xiv

Example 1: Simple FORTRAN Application.. 537
Example 2: Complete FORTRAN Application..537
Example 3: FORTRAN Application Using a CSL Routine Call..539

Appendix E. PL/I Example... 543

Appendix F. REXX Examples.. 545
Example 1: REXX Application Using the CSL Extract/Replace Routine... 545
Example 2: REXX Application Using Namedefs..545

Appendix G. VS Pascal Example... 549

Appendix H. CPI Communications Examples.. 553
Example 1: CPI Communications User Program in z/VM... 553
Example 2: CPI Communications Resource Manager Program in z/VM.. 561
Example 3: Synchronizing Multiple Updates Using CRR and CPI Communications..............................569

User Application, CRREXMP1 EXEC...569
Target Application, CRREXMP2 EXEC..575

Appendix I. CRR Communications Examples.. 583
Single Processor Case... 583
TSAF Collection Case...588
SNA Network Case...593

Appendix J. ISPF Example... 599

Appendix K. MQ Series Applications...603
C Applications.. 603

C Sample Files..603
C Sample...603
Execute the application... 604

COBOL and PL/I Applications..604
COBOL Sample Files.. 604
PL/I Sample Files...605
COBOL and PL/I Samples..605

Execute the application... 605
Assembler Applications...606

Assembler Sample... 606
Execute the application... 607

REXX Applications... 607
REXX Sample Files... 607
REXX Sample..607
Execute the application... 607

Appendix L. Data Compression Services... 609
A Dictionary Build Using CSRBDICV..609
Using CSRCMPEV to Test Compression and Expansion... 612

Appendix M. Converting fork() + exec() to spawn().. 615
Conversion Examples.. 615

Example 1...615
Example 2...616

Factors to Consider When Converting...618
Inheritance... 618
Parameters... 620

 xv

Notices..625
Programming Interface Information...626
Trademarks.. 626
Terms and Conditions for Product Documentation.. 626
IBM Online Privacy Statement.. 627

Bibliography.. 629
Where to Get z/VM Information.. 629
z/VM Base Library..629
z/VM Facilities and Features... 631
Prerequisite Products.. 632

Index.. 633

xvi

Figures

1. CMS System Structure...4

2. OpenExtensions Programming Interfaces... 11

3. File I/O Interoperability.. 13

4. Minidisk System.. 30

5. Users Sharing Disks in the Minidisk System... 30

6. Shared File System..31

7. Files the FORTRAN Compiler Uses... 44

8. CMS Loader..53

9. Relationship between First Level and Second Level Systems... 71

10. An Update with a Control File... 80

11. Summary of DLL and DLL Application Preparation and Usage.. 93

12. Referencing Functions and External Variables in DLL code...97

13. Reference of Functions and External Variables in non-DLL code..98

14. Pointer Assignment in DLL Code...99

15. Pointer Assignment in Non-DLL Code.. 100

16. C Non-DLL Code in a DLL.. 101

17. C DLL Code in a DLL Application...101

18. C Non-DLL Code in a Non-DLL Application.. 102

19. DLL Function Pointer Call in Non-DLL Code... 103

20. Comparison of Function Pointers in Non-DLL Code...104

21. Comparison of Two DLL Function Pointers in Non-DLL Code.. 105

22. Comparison of Function Pointers in DLL Code...106

23. Explicit Use of a DLL in an Application Part 1 of 2... 108

 xvii

24. Explicit Use of a DLL in an Application Part 2 of 2... 109

25. Use of APPC/VM Paths by SFS..190

26. Guest data spaces...217

27. Data Space Addressability..223

28. Private and Shared Usage within a Virtual Machine.. 225

29. Private and Shared with Another Virtual Machine... 227

30. Sharing Primary Address Space with Another Virtual Machine...228

31. Sharing with a XA-Mode Virtual Machine... 230

32. Access-List-Controlled Protection... 231

33. Alternate User ID and VCIT Usage... 233

34. Access Registers and Data Space Addressability.. 240

35. Relationship between an Application, Transaction, and Synchronization Point...................................242

36. Hierarchy of Application Calls and Updates...244

37. Example of a REXX Exec Used to Iteratively Retrieve Error Blocks.. 248

38. Relationship between CMS Work Units and Protected Conversation's LUWID.................................... 249

39. Asynchronous Processing Sequence in CRR..251

40. Flow of Control between a Multitasking Application and the SPM..252

41. Context Switching Routine for Replacement of DMSCWAIT... 253

42. DMS2OW TEMPLATE File..253

43. ADAPTERX TEMPLATE File... 264

44. Break Tree Processing.. 271

45. How a Resource Manager Not Directly Maintaining the Resources Uses Protected Conversations.... 302

46. How Distributed Resource Managers Use Protected Conversations.. 303

47. CMS Libraries.. 306

48. Sample MACLIST Screen.. 310

xviii

49. Elements of a Console Stack.. 347

50. SORTPRT EXEC... 349

51. Example of Local Stack Usage..350

52. Assembler Program to Run a Pipeline..355

53. Format for Writing a PIPE Command... 355

54. Model of a REXX User-Written Stage Command..356

55. BATCH EXEC..365

56. ASSEMBLE EXEC... 365

57. A Typical Dialog Starting with a Menu.. 373

58. SELECT Service Used to Invoke and Process a Dialog...374

59. Sample ISPF Panel Definition...375

60. Sample ISPF Panel, When Displayed... 376

61. Designing a Panel for a Larger Size Terminal Screen... 382

62. TEST DLCS File.. 395

63. TESTUCEN DLCS File...396

64. MYCMD1: A REXX Exec Calling the Parsing Facility... 398

65. REXX Program Performing Its Own Syntax Checking.. 399

66. Message Record Format... 407

67. Sample Repository - DIAUME REPOS.. 408

68. Sample Repository - SAPUME REPOS..411

69. Sample Code Accessing SAPUME EXEC...411

70. Sample Repository - RUBUME REPOS... 412

71. Sample Program - RUBUME EXEC..412

72. Sample Repository - OPLUME REPOS.. 413

73. Creating an Executable SQL Program...436

 xix

74. Communications between a User Program and a Resource Manager.. 460

75. APPC/VM Programming Interfaces.. 461

76. Communication within One z/VM System..462

77. Communication within a TSAF Collection.. 462

78. Communication between a TSAF Collection and an SNA Network... 463

79. Communication between Two TSAF Collections... 464

80. Summary of z/VM Connectivity.. 465

81. Using a System Gateway to Get System Resources.. 476

82. Using a System Gateway to Get to a Private Resource Manager...476

83. Using a System Gateway to Get Resources on an Adjacent Collection...477

84. Communications Partners.. 479

85. Intermediate Servers..479

86. Target Program Located on the Same System... 481

87. Target Program Located on Another z/VM System.. 481

88. Target Program Located in an SNA Network.. 482

89. LU 6.2 Communications Model...499

90. Creating a TP-Model Application in z/VM...499

91. Three Potential Conversation Wrap-Back Scenarios... 500

92. Access Security User ID of User Program Flowed from VMUSR1 to VMUSR3......................................501

93. Access Security User ID of User Program Flowed from VMUSR1 to VMUSR3......................................502

94. Access Security User ID of Intermediate Server (VMUSR2) Flowed to VMUSR3................................. 502

95. Global Resource Request Scenario.. 508

96. Private Resource Request Scenario... 509

97. Synchronizing Multiple Updates Scenario..513

98. Results on USERID1 Virtual Machine... 523

xx

99. Results on USERID2 Virtual Machine... 523

100. Replacing XCWOE... 523

101. Allocation Requests on Any Resource... 524

102. Resource Revoked Notification on Any Resource..524

103. Information Input on a Conversation...525

104. Simple COBOL Application... 533

105. COBOL Application with CSL Routine Call..536

106. Simple FORTRAN Application...537

107. Complete FORTRAN Application.. 539

108. PL/I Program Part 1 of 2...543

109. PL/I Program Part 2 of 2...543

110. REXX Application Using Namedefs.. 546

111. CRR Communications on a Single Processor...583

112. CRR Communications in a TSAF Collection... 588

113. CRR Communications in an SNA Network... 593

114. ISPF Example..599

 xxi

xxii

Tables

1. Comparison of CMS Virtual Machine Architectures..6

2. Where CMS Loads Programs... 50

3. CP Commands for Debugging... 65

4. CMS Commands for Debugging Applications... 66

5. Referencing Functions and External Variables...96

6. Routines for Managing Work Units... 134

7. General Use Atomic Commands and Routines.. 139

8. Administration Atomic Commands and Routines.. 140

9. CSL Routines... 143

10. CMS Commands..144

11. CSL Routines for File I/O...149

12. Using the DMSERASE routine with the ENTIRE and DATAONLY options.. 162

13. Program Functions for SFS Directory Manipulation...165

14. CSL Routines for Manipulating Minidisk Directories.. 166

15. SFS Routines for Sharing Files and Directories..173

16. Results of Interactions between Accessing and Locking.. 179

17. Issuer Has Lock on File and Requests Another on Directory.. 180

18. Issuer Has Lock on Directory and Requests Another on File.. 180

19. Issuer Requests Lock on Directory While Another User Has Lock on File.. 180

20. Issuer Requests Lock on File While Another User Has Lock on Directory.. 180

21. CMS Record File System CSL Routines for BFS File I/O.. 198

22. CMS Record File System Routines for BFS Directory I/O.. 200

23. Results of Interactions between Accessing and Locking BFS Objects... 204

 xxiii

24. Lock Interactions between the OpenExtensions and CMS Interfaces..205

25. Data Space Callable Services Summary...220

26. Data Space Cleanup Events..225

27. Data Space Sharing Scopes.. 226

28. CSLFPI TYPE=CALL Behavior on XC Virtual Machine in Primary Space Mode......................................237

29. CSLFPI TYPE=CALL Behavior on XC Virtual Machine in AR Mode...238

30. CSL Routines the Resource Adapter Calls for SPM Functions... 256

31. Resource Adapter Exits.. 257

32. Resource Adapter Exit Routine Return Codes... 264

33. Synchronization Point Functions and Actions..265

34. Resource Adapter Exit Routine Response Codes for the ADAPRCOM (Precoordination Commit)
Sync Point Action Call.. 268

35. Resource Adapter Exit Routine Response Codes for the ADAPRBCK (Precoordination Backout)
Sync Point Action Call.. 268

36. Resource Adapter Exit Routine Response Codes for the ADAPREP (Prepare) Sync Point Action Call.272

37. Resource Adapter Exit Routine Response Codes for the ADARQCMT (Request Commit) Sync Point
Action Call.. 273

38. Resource Adapter Exit Routine Response Codes for the ADACMTD (Committed) or ADACMTDL
(Committed with New LUWID) Action Call.. 273

39. Resource Adapter Exit Routine Response Codes for the ADANEWL (New LUWID) Sync Point
Action Call.. 274

40. Resource Adapter Exit Routine Response Codes for the ADABOUT (Backout) Sync Point Action Call275

41. Resource Adapter Exit Routine Response Codes for the ADABOUT2 (Second Phase Backout) Sync
Point Action Call... 275

42. Resource Adapter Exit Routine Response Codes for the ADAOKBO (OK Backout) Sync Point
Action Call.. 276

43. Resource Adapter Exit Routine Response Codes for the ADAPTRS (Prepare to Resynchronize)
Sync Point Action Call.. 277

44. Resource Adapter Exit Routine Response Codes for the ADADA (Deallocate Abend) Sync Point
Action Call.. 277

xxiv

45. Resource Adapter Exit Routine Response Codes for the ADAIOKBO (Initiator OK Backout) Sync
Point Action Call... 278

46. Resource Adapter Exit Routine Response Codes for the ADAPSCOM (Postcoordination Commit)
Sync Point Action Call.. 279

47. Resource Adapter Exit Routine Response Codes for the ADAPSBCK (Postcoordination Backout)
Sync Point Action Call.. 279

48. Resource Adapter Exit Routine Response Codes for the ADAPSSC (Postcoordination State Check)
Sync Point Action Call.. 280

49. Resource Adapter Exit Routine Response Codes for the ADAPSABN (Postcoordination Abnormal
Termination) Sync Point Action Call.. 280

50. Resource Adapter Exit Routine Response Codes for the ADAEWPUR (Purge Work Unit) Sync Point
Action Call.. 281

51. Resource Adapter Exit Routine Response Codes for the ADAEWRET (Return Work Unit) Sync Point
Action Call.. 281

52. Resource Adapter Exit Routine Response Codes for the ADAEWEOC (End of Command) Sync
Point Action Call... 282

53. Resource Adapter Exit Routine Response Codes for the ADAEWABN (CMS Command Abend) Sync
Point Action Call... 282

54. Resource Adapter Exit Routine Response Codes for the ADAEWSS (End of CMS Subset) Sync
Point Action Call... 283

55. Resource Adapter Exit Routine Response Codes for the ADABRQBO (Backout Required) Sync
Point Action Call... 284

56. Resource Adapter Exit Routine Response Codes for the ADABRQRF (Resource Failure) Sync Point
Action Call.. 284

57. Resource Adapter Exit Routine Response Codes for the ADABRQDA (Deallocate Abend) Sync
Point Action Call... 285

58. Exchange Log Names GDS Variable for z/VM Resource Managers..287

59. Compare States GDS Variable for z/VM Resource Managers.. 289

60. Resynchronization Initialization Exchange Log Names Request...293

61. Resynchronization Initialization Exchange Log Names Reply... 294

62. Resynchronization Recovery Exchange Log Names Request.. 297

63. Resynchronization Recovery Compare States Actions.. 298

64. SFS Resource Manager's Compare States Actions..299

 xxv

65. Resynchronization Recovery Exchange Log Names Reply.. 300

66. Features of DMS/CMS... 380

67. Contents of a CMS Communications Directory File... 484

68. Contents of the $SERVER$ NAMES File... 487

69. Identifying the Target of a Connection Request...489

70. Summary of CPI Communications Routines.. 504

71. Summary of z/VM Extension Routines... 506

72. Example of a Log Name Table Record in the CRR Recovery Server's Log, Single Processor Case.......585

73. Example of a Log Name Record in the Resource Manager's Log, Single Processor Case.................... 586

74. Example of an SPM Pending Record in the CRR Recovery Server's Log, Single Processor Case......... 587

75. Example of a Log Name Table Record in the CRR Recovery Server's Log, TSAF Collection Case........ 590

76. Example of a Log Name Record in the Resource Manager's Log, TSAF Collection Case......................591

77. Example of an SPM Pending Record in the CRR Recovery Server's Log, TSAF Collection Case...........592

78. Example of a Log Name Table Record in the CRR Recovery Server's Log, SNA Network Case............ 595

79. Example of a Log Name Record in the Resource Manager's Log, SNA Network Case..........................596

80. Example of an SPM Pending Record in the CRR Recovery Server's Log, SNA Network Case...............596

81. Comparison of spawn() Attributes to fork() and exec()... 618

82. Inheritance Structure Usage.. 622

83. Inheritance Conversion Tips...623

xxvi

About This Document

The purpose of this document is to assist application programmers in the development of an application
system to run on an IBM® z/VM® system. Application system means a group of applications (or just
one application) needed to satisfy the given problem. This development process includes: planning and
designing the application system, writing, compiling, and debugging an application using CMS services,
and executing an application.

Intended Audience
This information is for experienced users in writing application programs in a high-level language or
assembler language.

Before reading this information you should be familiar with the application development management
cycle; that is, planning, designing, coding, debugging, and testing. You must also be familiar with the
general concepts of CMS. If you are not familiar with CMS, see the z/VM: CMS Primer.

Where to Find More Information
For information about related publications, see the “Bibliography” on page 629.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1990, 2022 xxvii

xxviii z/VM: 7.2 CMS Application Development Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM® service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1990, 2022 xxix

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xxx z/VM: 7.2 CMS Application Development Guide

Summary of Changes for z/VM: CMS Application
Development Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6256-02, z/VM 7.2 (September 2022)
This edition includes terminology, maintenance, and editorial changes.

SC24-6256-02, z/VM 7.2 (September 2021)
This edition includes terminology, maintenance, and editorial changes.

SC24-6256-02, z/VM 7.2 (March 2021)

[VM66201, VM66425] z/Architecture Extended Configuration (z/XC) support
With the PTFs for APARs VM66201 (CP) and VM66425 (CMS), z/Architecture® Extended Configuration
(z/XC) support is provided. CMS applications that run in z/Architecture can use multiple address spaces.
A z/XC guest can use VM data spaces with z/Architecture in the same way that an ESA/XC guest can
use VM data spaces with Enterprise Systems Architecture. z/Architecture CMS (z/CMS) can use VM data
spaces to access Shared File System (SFS) Directory Control (DIRCONTROL) directories. Programs can
use z/Architecture instructions and registers (within the limits of z/CMS support) and can use VM data
spaces in the same CMS session. For more information, see z/VM: z/Architecture Extended Configuration
(z/XC) Principles of Operation.

Information in the following topics is updated:

• “CMS Virtual Machine Environments” on page 4
• “Outline of VM Data Space Support” on page 218
• “Effect of Data Space Support on Existing Programs” on page 238
• “I/O Errors” on page 233

SC24-6256-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM® 7.2.

Updates reflect the removal of KANJI language files from base z/VM components. The only currently
supported languages are American English and uppercase English.

SC24-6256-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1990, 2022 xxxi

xxxii z/VM: 7.2 CMS Application Development Guide

Part 1. Introduction

Before you begin to develop your application, you should be familiar with the environment in which
you will be programming. The first chapter in this part describes the CMS environment and some of
the programming services your application can use in CMS. The second chapter in this part describes
OpenExtensions and the services that z/VM provides in support of open systems applications.

© Copyright IBM Corp. 1990, 2022 1

2 z/VM: 7.2 CMS Application Development Guide

Chapter 1. Introduction to the CMS Programming
Environment

z/VM is an operating system that lets you and many other users each have the functional equivalent of a
computing system (the resources—processor, terminal, disk drives, tape drives, printers). This means that
z/VM can support a large number of users who all need the machine at the same time.

Because you do not have direct control over the real machine, your configuration is known as a virtual
machine. Each virtual machine operates in the real computer under control of the control program (CP).
The control program is the resource manager for the real computer. The resource manager ensures that
each virtual machine is allocated the resources it needs to perform its own jobs.

Among the programs that can run in a virtual machine are the Conversational Monitor System (CMS)
component of z/VM and operating systems such as z/OS® and Linux® for z Systems®. This book discusses
CMS.

What is CMS?
CMS provides functions for you to use at the terminal. It is an interactive environment. CMS is specifically
designed to run on CP and depends on CP to interface with the resources. Therefore, unlike an operating
system, CMS cannot operate independently on a real machine.

CMS provides terminal support, a file system, and a conversational command interface. (See Figure
1 on page 4.) CMS also allows you to run programs written in standard programming languages,
such as COBOL, PL/I, VS Pascal, FORTRAN, C/C++, and assembler. CMS is designed to make the whole
programming process easier. You can plan, design, code, run, and test an application in your own virtual
machine without interfering with anyone else. It is similar to having your own workstation.

Although it seems like you are the only one using CMS, many other virtual machines are using CMS,
and you or your application can communicate and share data with these virtual machines. You or your
application can even communicate with a virtual machine on another VM system or with another user or
application on a non-VM system. (See “Common Programming Interface (CPI) Communications” on page
7.)

Structure of CMS
CMS consists of three areas: the terminal support facility, the CMS system services, and the file system.
Each area has a number of commands and programming interfaces that invoke CMS functions.

Introduction to the CMS Programming Environment

© Copyright IBM Corp. 1990, 2022 3

Figure 1. CMS System Structure

Terminal System
The CMS terminal system provides communication between you and your system. It reads commands
entered at the keyboard and displays system responses to those commands.

File System
The CMS file system provides three methods for storing files. You can store files on virtual disks
(called minidisks), in Shared File System (SFS) directories, or in Byte File System (BFS) directories.
SFS and BFS directories reside in CMS file pools.

Each file system provides basic input and output function, such as read and write operations. These
I/O functions are used by the CMS system services and by applications running in a CMS virtual
machine.

System Services
The CMS system services provide the basic user interface. It consists of:

• Library services
• Utility commands
• XEDIT
• REXX, EXEC 2, CMS EXEC
• The Batch Facility
• Message repository
• Resource recovery services
• Multitasking facilities
• OpenExtensions services (POSIX support)
• REXX sockets

CMS Virtual Machine Environments
To understand how your applications communicate with CMS and use available services, you must first
understand the virtual machine environments in which CMS runs.

z/VM provides two versions of CMS:
ESA/390 CMS (generally referred to simply as CMS)

CMS runs in the following virtual machine architectures:

Introduction to the CMS Programming Environment

4 z/VM: 7.2 CMS Application Development Guide

ESA/390 (ESA or XA virtual machine)
An ESA virtual machine simulates IBM Enterprise Systems Architecture/390 (ESA/390), which is
a superset of IBM Enterprise Systems Architecture/370 (ESA/370), which is a superset of IBM
System/370 Extended Architecture (370-XA). The XA virtual machine designation is supported for
compatibility; an XA virtual machine is functionally equivalent to an ESA virtual machine.

ESA/XC (XC virtual machine)
An XC virtual machine processes according to IBM Enterprise Systems Architecture/Extended
Configuration (ESA/XC), which is an architecture unique to virtual machines. Although XC virtual
machines run with dynamic address translation off, they can take advantage of a subset of
dynamic address translation architectural features, and in particular, data spaces.

z/Architecture CMS (z/CMS)
z/CMS runs in the following virtual machine architectures:
z/Architecture (ESA, XA, or Z virtual machine)

z/Architecture uses 31-bit addressing mode in an ESA, XA, or Z virtual machine. CMS programs
can use z/Architecture instructions, including those instructions that operate on 64-bit registers.
Existing ESA/390 architecture CMS programs can continue to function without change.

When z/CMS is IPLed in an ESA/390 (ESA or XA) virtual machine, z/CMS switches the virtual
machine to z/Architecture mode and thereafter runs in z/Architecture mode.

z/XC (XC virtual machine)
A z/XC guest uses VM Data Spaces with z/Architecture in the same way that an ESA/XC guest uses
VM Data Spaces with Enterprise Systems Architecture. CMS applications that run in z/Architecture
can use multiple address spaces. z/CMS can use VM Data Spaces for accessing Shared File
System (SFS) Directory Control (DIRCONTROL) directories. z/XC supports programs that employ
z/Architecture instructions and registers (within the limits of z/CMS support) and programs that
use data spaces in the same CMS session.

When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC mode
and thereafter runs in z/XC mode.

Unless otherwise indicated, "CMS" means either version, and descriptions of CMS functions apply to both
CMS and z/CMS. For more information, see z/VM: CMS Planning and Administration.

The virtual machine mode is defined by using the MACHINE or GLOBALOPTS directory statement, the CP
SET MACHINE command, or the Systems Management application programming interfaces.

Note: CP does not support System/370 architecture (370 mode) virtual machines. However, the 370
Accommodation Facility allows many CMS applications that are written for System/370 virtual machines
to run in ESA/390 and ESA/XC virtual machines. The CP level of the 370 Accommodation Facility is
activated with the CP SET 370ACCOM command. The CMS level of the 370 Accommodation Facility is
activated with the CMS SET CMS370AC command. In addition, modules that are generated with the 370
option can run in an ESA/390 or ESA/XC virtual machine by issuing the CMS SET GEN370 OFF command.
The 370 option of the GENMOD command is not supported,

Information about the 370 Accommodation Facility is available in another publication. See z/VM: CP
Programming Services.

Information about the SET 370ACCOM command is available in another publication. See z/VM: CP
Commands and Utilities Reference.

Information about the SET CMS370AC and SET GEN370 commands is available in another publication.
See z/VM: CMS Commands and Utilities Reference.

The relationships between virtual machines and processor architectures are summarized in Table 1 on
page 6.

Introduction to the CMS Programming Environment

Chapter 1. Introduction to the CMS Programming Environment 5

Table 1. Comparison of CMS Virtual Machine Architectures

CMS
Version

Virtual Machine
Architecture
Mode1

Virtual Machine
Architecture

Addressing
Scheme

Addressable
Primary Storage

Addressable Data
Space2

CMS ESA, XA3 ESA/390 31-bit 2047 MB 2 GB per data
space4

CMS XC ESA/XC 31-bit and access
registers

2047 MB 2 GB per data
space

z/CMS ESA, XA3, Z z/Architecture5 31-bit6 2047 MB7 2 GB per data
space4

z/CMS XC z/XC8 31-bit6 and access
registers

2047 MB7 2 GB per data
space

Notes:

1. Architecture mode is set by using the SET MACHINE command and the MACHINE statement of the directory
entry.

2. Multiple data spaces are possible.
3. The XA designation is supported for compatibility. An XA virtual machine is functionally equivalent to an ESA

virtual machine.
4. Data spaces can be read but cannot be modified. Data spaces can be modified only in virtual machines that

run in XC architecture mode.
5. When z/CMS is IPLed in an ESA/390 virtual machine, z/CMS switches the virtual machine to z/Architecture

and thereafter runs in z/Architecture mode.
6. Although z/CMS does not use or explicitly support 64-bit addressing mode, programs that run on z/CMS can

enter 64-bit addressing mode.
7. Although z/CMS does not directly use storage above 2047 MB, z/CMS can be IPLed in a virtual machine with

more than 2 GB of storage. z/CMS allows programs to use storage with addresses that are greater than 2
GB.

8. When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC and thereafter
runs in z/XC mode.

CMS Programming Interface
The CMS programming interface enables applications using either 31-bit addressing or 24-bit addressing
to run on CMS. The CMS programming interface consists of the following groups:

• CMS preferred interface group
• CMS compatibility group
• OS/MVS and DOS/VSE group.
• Systems Management APIs

CMS Preferred Interface Group
The CMS preferred interface group enables your application to be architecturally independent—your
application can run in an ESA, XA, or XC virtual machine, and it can run on ESA/390 CMS or z/CMS.

The CMS preferred interface group consists of callable services (routines), macros, and functions that
provide you with a means of making program calls, managing storage, performing I/O, handling interrupts,
and processing abends. These routines, macros, and functions also reduce your need to reference CMS
internal data areas and control blocks, and they make it easier for you to develop programs that are
portable across the ESA, XA, and XC virtual machine environments.

Introduction to the CMS Programming Environment

6 z/VM: 7.2 CMS Application Development Guide

Applications written in the high-level languages use the routines. Applications written in the assembler
language use the routines, the CMS macros, and the CMS functions.

All CMS routines are included in the preferred interface group. The routines are documented in the
following books:

• z/VM: CMS Callable Services Reference describes routines that perform various general programming
tasks, such as file pool and minidisk file I/O and file pool administration.

• z/VM: CMS Application Multitasking describes routines that perform multitasking and related
programming tasks.

• z/VM: OpenExtensions Callable Services Reference describes routines that manage byte file systems,
manipulate BFS data, and perform socket-related operations.

See the z/VM: CMS Macros and Functions Reference for more information on the macros and functions in
the CMS preferred interface.

CMS Compatibility Group
The CMS compatibility group consists of macros, functions, and services that CMS maintains for
compatibility with previous releases. Existing programs that use interfaces in the compatibility group
can run in 24-bit addressing mode in ESA, XA, or XC virtual machines. Compatibility group interfaces may
cause unpredictable results in 31-bit addressing mode.

See the z/VM: CMS Macros and Functions Reference for more information on the CMS compatibility group.

OS/MVS and DOS/VSE Group
The OS/MVS and DOS/VSE group consists of macros also provided by the OS/MVS and DOS/VSE operating
systems. CMS supports these macros to make it easier to run CMS programs originally developed for
OS/MVS or DOS/VSE.

See the z/VM: CMS Application Development Guide for Assembler for more information on the OS/MVS and
DOS/VSE group.

Note: CMS macros, control blocks, and functions that are not part of the CMS defined programming
interface are considered CMS internals. These macros, control blocks, and functions should not be used
by programs other than CMS.

Systems Management APIs
The Systems Management APIs provide a standard, platform-independent client interface that reduces
the amount of VM-specific programming skills required to manage virtual system resources. These APIs
include functions that create new virtual images, allocate and manage their resources, and change their
configurations. They can be used to activate and deactivate images individually or in groups. Security and
directory management functions are also provided.

The APIs are invoked by a client through a set of socket calls. See z/VM: Systems Management Application
Programming for more information.

Common Programming Interface (CPI) Communications
Common Programming Interface (CPI) Communications defines a set of routines you can use to write
Advanced Program-to-Program Communication (APPC) applications. You can call these routines from
an application written in REXX, assembler or high-level programming languages. Programs using these
routines can be more easily portable to other systems that abide by the CPI definitions.

z/VM has defined some routines that are extensions to CPI Communications routines. These z/VM
extension routines exploit the capabilities of the z/VM operating system. In this book, the term "CPI
Communications" includes the common routines and z/VM's extension routines.

CPI Communications lets your program communicate with another program that is on the same z/VM
system, on a different VM system, or in a network defined by SNA. In z/VM, your application can use CPI

Introduction to the CMS Programming Environment

Chapter 1. Introduction to the CMS Programming Environment 7

Communications only in a CMS environment. See Chapter 33, “Understanding CPI Communications,” on
page 493 for more information on CPI Communications.

Resource Recovery Interface
The resource recovery element of the Common Programming Interface provides a consistent
programming interface to the sync point management services. The sync point manager, through
interactions with the underlying system support for various resources, provides services that allow
changes to resources (such as database updates) to be made atomically—that is, either all are made
(committed) or none are made (backed out). Affected resources can be either local or remote. See the
z/VM: CPI Communications User's Guide for more information on CPI resource recovery.

The CMS Coordinated Resource Recovery (CRR) facility implements the CPI resource recovery interface
in z/VM. CRR is available only in CMS environments. For more information, see Chapter 16, “Your
Applications and Data Integrity,” on page 241.

REXX Sockets
z/VM supports an application program interface for socket applications written in REXX for the TCP/IP
environment. The SOCKET external function in REXX/VM uses the TCP/IP IUCV interface to access the
TCP/IP internet socket interface. This allows you to use REXX to implement and test TCP/IP applications.
The REXX socket functions are similar to socket calls in the C programming language.

For descriptions of the REXX socket functions, see the z/VM: REXX/VM Reference.

CMS Operating Characteristics
CMS is a command-driven system—you enter a command, CMS runs it. The command you enter can be a
CP command, a CMS command (a command that is part of the CMS system), or it can be the name of a
user-written program (a program written by you, your local system programmer, or your favorite software
house).

User-written programs are generally in the form of modules or execs. Modules are programs written in
or compiled into machine-readable language. Execs are programs written in the Restructured Extended
Executor (REXX) language. See the z/VM: REXX/VM Reference for more information on execs.

CMS Command Search Order
When you enter a command in the CMS environment, CMS uses a defined search order to locate the
command. When the command is found, CMS stops its search and runs the command. The search order
is:

1. Search for an exec with the specified command name:

a. Search for an exec in storage. If an exec with this name is found, CMS determines whether the exec
has a USER, SYSTEM, or SHARED attribute. If the exec has the USER or SYSTEM attribute, it is run.

If the exec has the SHARED attribute, the INSTSEG setting of the SET command is checked. When
INSTSEG is ON, all accessed directories and minidisks are searched for an exec with that name. (To
find a file in a directory, read authority is required on both the file and the directory.) If an exec is
found, the file mode is compared with the file mode of the CMS installation saved segment. If the
file mode of the saved segment is not closer to Z than the file mode of the directory or minidisk,
then the exec on the saved segment is run. Otherwise, the exec in the directory or on the minidisk is
run. However, if the exec is in a directory and the file is locked, the execution will fail with an error
message.

b. Search the table of open files for a file with the specified command name and a file type of EXEC. If
more than one open file is found, the one opened first is used.

c. Search for a file with the specified command name and a file type EXEC on any currently accessed
disk or directory, using the standard search order (A through Z).

Introduction to the CMS Programming Environment

8 z/VM: 7.2 CMS Application Development Guide

To find a file in a directory, read authority is required for both the file and the directory. If the file is
in a directory and the file is locked, the processing fails with an error message.

2. Search for a translation or synonym of the specified command name. If found, search for an exec with
the valid translation or synonym by repeating step “1” on page 8.

3. Search for a module with the specified command name:

a. Search for a nucleus extension module.
b. Search for a module in the transient area.
c. Search for a nucleus-resident module.
d. Search the table of open files for a file with the specified command name and a file type of

MODULE. If more than one open file is found, the one opened first is used.
e. Search for a file with the specified command name and a file type MODULE on any currently

accessed disk or directory, using the standard search order (A through Z).

To find a file in a directory, read authority is required for both the file and the directory. If the file is
in a directory and the file is locked, the processing fails with an error message.

4. Search for a translation or synonym of the specified command name. If found, search for a module
with the valid translation or synonym by repeating step “3” on page 9.

If the command is not known to CMS (that is, all of the above fails), it is passed to CP.

When CMS searches for a translation or synonym (as in steps 2 and 4), the translation and synonym tables
are searched in this order:

1. User National Language Translation Table
2. System National Language Translation Table
3. User National Language Translation Synonym Table
4. System National Language Translation Synonym Table
5. CMS User Synonym Table
6. CMS System Synonym Table.

See the SET TRANSLATE command in the z/VM: CMS Commands and Utilities Reference for information on
tables 1 through 4. See the SYNONYM command in the z/VM: CMS Commands and Utilities Reference for
information on tables 5 and 6.

Preferred File Types
CMS has a list of preferred file types. The list of preferred file types are:

ASSEMBLE FORTRAN MODULE TXTLIB

AUTOSAVE HELP* SCRIPT XEDIT

CMSU* LISTING SYSU* XEDTEMP

EXEC MACLIB TEXT XMOD

Note: The "*" in the previous list represents the last four characters of the file type.

Preferred file types are used during the CMS search procedure to help eliminate unnecessary searches.
Before searching an accessed disk for a file having a preferred file type, CMS determines whether the disk
contains any files with the specified preferred file type. If CMS determines that the disk does not contain
any files with the specified file type, CMS does not search the disk. CMS continues checking accessed
disks until a disk is found containing files with the specified preferred file type or until all disks have been
checked. This way, CMS only searches for the specified file on disks already determined to contain files
with the specified file type.

Because this process improves performance by avoiding searching a disk for a file that is not located on
that disk, you should keep groups of files with preferred file types on separate disks.

Introduction to the CMS Programming Environment

Chapter 1. Introduction to the CMS Programming Environment 9

Programming Language Environments
z/VM supports many programming languages and applications. Some of the languages and applications
supported and discussed throughout this manual are:

• Ada
• APL2*
• Assembler
• C
• C++
• COBOL
• FORTRAN
• Language Environment®

• MQSeries®

• Pascal
• PL/I
• REXX
• VisualAge® Generator

Note: If you want to use Java™ in a z/VM environment, consider using Java for Linux™ running in a Linux®

guest.

The programming language environments are intended for anyone involved in planning or writing
application programs. Application programmers use most of the programming language environments.
Some languages, such as assembler, are of special interest to system programmers. Compiled high-level
languages such as COBOL, PL/I, and FORTRAN use the same I/O interface on both MVS and z/VM.
All compiled, high-level languages use the OS/MVS Simulation Interface when running on z/VM. If you
run the same program on MVS and z/VM using the subset of the interface that OS/MVS Simulation
supports, then the results should be equivalent. The most significant difference is that many conditions
that result in abends in MVS are either ignored or simply give an error message in z/VM. See the z/VM:
CMS Application Development Guide for Assembler for more information on OS/MVS Simulation.

The following documents provide information about programs that run on z/VM:

• Licensed Products Migration Matrix for VM lists IBM licensed programs. It is available at:

IBM: z/VM Operating Systemrelated
• Software Vendors' Products That Will Run on VM lists non-IBM programs. It is available at:

IBM: z/VM Operating Systemvendor

Another source of information about supported products is the IBM Global Solutions Directory (https://
www.ibm.com/it-infrastructure/us-en/).

Introduction to the CMS Programming Environment

10 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/it-infrastructure/us-en/
https://www.ibm.com/it-infrastructure/us-en/

Chapter 2. Introduction to OpenExtensions

The term OpenExtensions refers to z/VM services that provide industry-standard open systems
interfaces for applications and users, such as the Institute of Electrical and Electronics Engineers
(IEEE) Portable Operating System Interface for Computer Environments (POSIX). This chapter provides
an overview of OpenExtensions. It discusses compiling, building, and running applications that use
OpenExtensions. It also includes a brief discussion of POSIX processes.

Overview
OpenExtensions is included in CMS and provides the z/VM implementation of the following POSIX
standards:

• POSIX 1003.1 (known as POSIX.1) - System Interfaces
• POSIX 1003.1a (known as POSIX.1a) - Extensions to POSIX.1
• POSIX 1003.1c (known as POSIX.1c) - Threads
• POSIX 1003.2 (known as POSIX.2) - Shell and Utilities

Note:

1. Although OpenExtensions provides the fork() function for porting purposes, it does not meet
full POSIX.1 specifications. (See the z/VM: OpenExtensions POSIX Conformance Document and the
description of the fork (BPX1FRK) service in the z/VM: OpenExtensions Callable Services Reference.
Also see “Converting fork() and exec() Usage to spawn()” on page 18.) As a substitute for fork(),
OpenExtensions implements the spawn() function from POSIX.1d. All other parts of POSIX.1 are
implemented at the Federal Information Processing Standard (FIPS) 151-2 level. For POSIX.1c,
OpenExtensions provides a subset of the sixth draft of the threads standard.

2. Each of the POSIX.2 utilities additionally conform to the X/Open Portability Guide, issue 4 (XPG4) for
Commands and Utilities.

The supported POSIX interfaces are provided as C/C++ library routines in the C/C++ run-time library
included in Language Environment. For programs written in other languages, a language-neutral version
of the POSIX functions is provided as a set of OpenExtensions callable services library (CSL) routines.
As shown in Figure 2 on page 11, these CSL routines are called by the C/C++ routines to provide
the functions, but are also available to other applications. Programming language binding files are
provided for REXX and Assembler (H or XL) application usage of these CSL routines. In addition, a
REXX subcommand environment, ADDRESS OPENVM, is provided so the routines can be invoked as REXX
functions.

Figure 2. OpenExtensions Programming Interfaces

Introduction to OpenExtensions

© Copyright IBM Corp. 1990, 2022 11

Included in OpenExtensions is a POSIX-compliant file system known as the byte file system (BFS). BFS
is a companion to the CMS shared file system (SFS) that provides a byte-stream view of files rather than
records. BFS allows data to be organized and used in a UNIX® style and format. Like SFS files, BFS files are
organized in a hierarchical directory structure and stored in CMS file pools. While supporting the POSIX
file system functions and rules, BFS also takes advantage of administration and system management
facilities that it shares with SFS. These include space allocation, backup, and DFSMS/VM file migration, as
well as other administrative functions.

CMS provides a set of commands, known as the OPENVM commands, that allow users to manage their
BFS directories and files and control their related permission and ownership attributes. CMS Pipelines
additionally provides the ability to use BFS from pipeline programs.

OpenExtensions provides a set of utilities that aid in program development and in porting applications
from other open systems. OpenExtensions also provides a UNIX-like interactive user environment known
as the shell. Users of the shell environment have access to both the shell command set (built-in
commands and utilities) and the full CP and CMS command set, as well as both OpenExtensions and
non-OpenExtensions applications.

Setting Up OpenExtensions
Before users can run OpenExtensions applications, you need to set up the OpenExtensions facilities in
z/VM. This involves assigning POSIX security values to users and setting up the OpenExtensions byte file
system. For more information, see the z/VM: OpenExtensions User's Guide.

OpenExtensions Byte File System
POSIX-compliant file services are provided by the OpenExtensions byte file system (BFS). CMS file
system programming interfaces include both record-oriented services, provided by record file system
assembler macros and callable services library (CSL) routines, and byte-oriented services, provided by
OpenExtensions callable services.

The CMS record file system (which includes minidisks and SFS) supports record-oriented files with
eight-byte file names and file types. In contrast, BFS supports byte-oriented files identified by a directory
path and file name. CMS file pools serve as the repositories for both SFS data and BFS data. CMS provides
a means for OpenExtensions applications to access CMS files stored on minidisks or in SFS, which allows
new OpenExtensions applications to use traditional CMS production data.

The file paradigm used by BFS is significantly different from that of the CMS record file system. A BFS file
is a byte stream whose interpretation is defined by the applications that use it. Such a file has no record
format or other record attributes. BFS files are sometimes interpreted by special characters included in
the byte sequence, such as the new-line character. Other differences from record files are sharing and
update processing rules.

For the user, the chief differences between BFS files and record file system files are in the area of naming.
A BFS file identifier includes a path and a file name. The path shows the file's position in the hierarchical
directory structure, while the file name corresponds generally to a CMS file name. BFS has no concept of
file type and file mode.

Figure 3 on page 13 provides an overview of file I/O interoperability between the record file system and
BFS.

Introduction to OpenExtensions

12 z/VM: 7.2 CMS Application Development Guide

Figure 3. File I/O Interoperability

An OpenExtensions C/C++ application can access both record files and BFS files. The standard C/C++
file I/O functions, including fopen(), fclose(), fread() and fwrite(), can access minidisk files and
SFS files through C/C++ naming convention and extensions that allow the programmer to specify file
characteristics. The naming convention is simply to use a dot (.) between the file name, file type, and file
mode elements of a CMS file ID and to begin the file ID with two slashes (//).

The POSIX file I/O functions in the C/C++ run-time library do not provide for the specification of file
characteristics, such as logical record length or record format, as these are not concepts embodied in the
POSIX file architecture.

To allow the POSIX file I/O functions to apply to CMS minidisk and SFS record-oriented data, BFS provides
a new type of link known as an external link. An external link is a BFS file that represents a file stored
outside of BFS. The external link is created by the CMS command OPENVM CREATE EXTLINK. The
characteristics of the record-oriented file, including the value of any new-line character that should be
associated with record boundaries, are specified on this command. The C/C++ run-time library uses this
link information to operate on the record-oriented file.

Introduction to OpenExtensions

Chapter 2. Introduction to OpenExtensions 13

The following points summarize the relationships between the record file system and BFS:

1. An application that performs file I/O through the ANSI C/C++ file I/O services, such as fopen(),
fread(), and fwrite(), can manipulate files in either the record file system or BFS. This is done
within the I/O semantics defined by C/C++.

2. Through POSIX file services, such as open(), read() and write(), an application can access BFS
files or, through an external link, a record file.

3. The CMS record file API, such as the FSREAD and FSWRITE macros, or the DMSREAD and DMSWRITE
CSL routines, can manipulate record files stored on minidisk or in SFS.

4. If a file is to be accessed from CMS applications using the record file API and also from
OpenExtensions applications using the POSIX file services, the file must be stored in the record file
system and accessed from BFS through an external link. When this external link is created, a user
specifies how the record-to-byte mapping is to be made. In addition, CMS file sharing and commit
rules are followed.

5. The CMS data block interface to SFS can also be used to read and write BFS files at the 4KB block
level. The files will appear to have a record format of fixed and logical record length of 1.

6. The CMS file pool administration and DFSMS facilities and the administration CSL routines apply to
both SFS and BFS.

CMS also provides commands specifically to manage BFS directories and files. These commands, known
as the OPENVM commands, allow a user to perform such tasks as copying, erasing, renaming, and
changing permissions and ownerships of BFS files and directories. In addition, a CMS command allows
files to be copied into or out of BFS, with appropriate handling of special characters. The OPENVM
commands are described in the z/VM: OpenExtensions Commands Reference, with additional information
about their use in the z/VM: OpenExtensions User's Guide.

The CMS system editor, XEDIT, can be used to edit either record files or BFS files.

CMS Pipelines handles data in BFS files in the same way it handles data in SFS files and on CMS minidisk.
Applications and tools that use CMS Pipelines to read and write SFS files will typically require very little
change to handle BFS files.

Compiling and Building OpenExtensions Applications
A C/C++ program that makes use of POSIX services must be compiled and built using the C/C++
application development utilities included with OpenExtensions. These are the c89 and cxx commands
and the make utility. You also need the C/C++ compiler. Application source code in BFS files or CMS native
files can be compiled to create output object files residing either in BFS or in the CMS native file system.

You may also want to refer to the following publications:

• z/VM: OpenExtensions Commands Reference
• XL C/C++ for z/VM: User's Guide

Using c89
The c89 command, by default, invokes the IBM IBM C for VM/ESA compiler to compile C application
source code. The application source code can be compiled and built at one time or compiled and then
bound at another time with other application source files or compiled objects.

The syntax of the c89 command is:

c89 [-options …] [file.c …] [file.a …] [file.o …] [-l libname]

where:
options

are the c89 options described in the z/VM: OpenExtensions Commands Reference.

Introduction to OpenExtensions

14 z/VM: 7.2 CMS Application Development Guide

file.c
is the source file.

file.a
is the archive file.

file.o
is the object file.

libname
is the archive library.

You can use the c89 command from within the shell or directly from CMS. If you use c89, you must keep
track of and maintain all the source and object files for the application program. However, you can take
advantage of the make utility and create makefiles to maintain your OpenExtensions application source
and object files automatically when you update individual modules. The make utility must be run from the
shell. See “Using make” on page 16.

The c89 command has defaults for the name and placement of the executable file to be generated. The
placement of the intermediate object file output depends on the location of the source file.

• If the C source file is a BFS file, the default executable file is a.out, the object file is file.o, and both are
created in the BFS working directory.

• If the C source file is a CMS native file, the default executable file is file MODULE, the object file is file
TEXT, and both are created as CMS native files on the CMS minidisk or SFS directory accessed as A.
Because the CMS file ID is always converted to uppercase, you can specify it in lowercase or mixed
case.

You can use the –o option on c89 to specify the name and placement of the executable file to be
generated. For example:

• To compile C source file usersource.c, located in the BFS working directory, and build the executable
file mymod.out in the /app/bin directory, specify:

 c89 -o /app/bin/mymod.out usersource.c

The object file usersource.o will be placed in the BFS working directory.
• To compile the C source file MAINBAL C, located on the B disk, and build the executable file
mainbal.out in the /u/parker/myappls/bin directory, specify:

 c89 -o /u/parker/myappls/bin/mainbal.out //mainbal.c.b

The object file MAINBAL TEXT will be placed on the A disk.

To compile a C source file to produce only an object file, use the –c option. For example:

• To compile source file usersource.c to create the default object file usersource.o in the BFS
working directory, specify:

 c89 -c usersource.c

• To compile source file approg.c to create an object file as a file on the A disk, specify:

 c89 -c //approg.c

By default, the c89 command invokes the C prelinker and the CMS LOAD and GENMOD commands. To
use the Program Management binder (CMS BIND command) instead of the prelinker, LOAD, and GENMOD,
specify the –W b,b option. For example:

 c89 -W b,b,NOTERM file.c

Introduction to OpenExtensions

Chapter 2. Introduction to OpenExtensions 15

You can also choose to have the c89 command invoke the IBM IBM C/C++ for z/VM compiler. To do this,
you must first specify the C/C++ compiler module (CBXFINIT) on the _CNAME environment variable by
issuing the following command:

 globalv select cenv setlp_cname cbxfinit

The IBM C/C++ for z/VM compiler always uses the Program Management binder.

Using cxx
The cxx command invokes the IBM IBM C/C++ for z/VM compiler to compile a C or C++ application
program and build an executable file in one step. The cxx command has the same syntax as the c89
command. A C++ source input file has the form file.cpp or file.cxx. If the C++ input file is a CMS
native file, the file type must be CPP or CXX. The IBM C/C++ for z/VM compiler always uses the Program
Management binder.

Use the -o option on cxx to specify the name and location of the executable file. For example:

• To compile and build a C application program source file to create the default executable file a.out in
the BFS working directory, specify:

 cxx usersource.c

• To compile and build a C++ application source file to create the mymod.out executable file in
the /app/bin directory, specify:

 cxx -o /app/bin/mymod.out usersource.cpp

• To compile and build several C application source files to create the mymod.out executable file in
the /app/bin directory, specify:

 cxx -o /app/bin/mymod.out usersource.c ottrsrc.c //pwapp.c

• To compile and build a C++ application source file to create the MYLOADMD MODULE file on disk A,
specify:

 cxx -o //myloadmd.module usersource.cpp

• To compile and build a C application source file with several previously compiled object files to create
the executable file zinfo in the /approg/lib BFS directory, specify:

 cxx -o /approg/lib/zinfo usersource.c existobj.o //PWAPP.C

Using make
You can use the make utility in the OpenExtensions shell to control the parts of your OpenExtensions
C/C++ application. The make utility calls the c89 command by default to compile and link the programs
specified in the previously created makefile. However, when creating the makefile, you can specify the
cxx command to compile and build C++ programs.

The /etc/startup.mk file contains the make default rules.

For example, if you have the file /u/jake/appwrk/makefile.c that contains the dependencies
for OpenExtensions C application program primappl, and you make changes to the source file
subordpgm.c, you can recompile the application by entering:

 cd appwrk
 make -f makefile.c

The result is the same as if you had entered:

 c89 -O -o primappl ./appwrk/subordpgm.c

Introduction to OpenExtensions

16 z/VM: 7.2 CMS Application Development Guide

Note: The make utility requires that any application program source files to be "maintained" through use
of makefiles must reside in BFS. To compile and build C/C++ source files that are in CMS native files, you
must use the c89 or cxx command directly.

See the z/VM: OpenExtensions Commands Reference for a description of the make utility. For a detailed
discussion on how to create and use makefiles to manage application parts, see z/VM: OpenExtensions
Advanced Application Programming Tools.

Running OpenExtensions Applications
Because an OpenExtensions application is simply a program that uses POSIX services, it need not be
distinguished from any other CMS applications. Users can run OpenExtensions applications without
entering the shell. How the application is invoked depends upon whether it resides in the CMS record
file system or in BFS.

If the OpenExtensions application resides on an accessed minidisk or SFS directory, it has a CMS file
ID in which the file name is the name of the application and the file type is MODULE. It is run, like
any other CMS module file, by entering its name. If the application resides in BFS, it must be run by
using the OPENVM RUN command. BFS directories are not searched during CMS command resolution,
so no BFS files will ever be invoked as a result of entering a command at the CMS command line. In
addition, applications in BFS have directory paths associated with them and names longer than the eight
characters of a CMS command name.

If you want to run the file application1.a in the directory /u/home/apps, you would issue:

 openvm run /u/home/apps/application1.a

CMS keeps track of the current working directory, so you could first change the working directory to the
directory that contains your application and then avoid entering it on the OPENVM RUN command. For
example,

 openvm set dir /u/home/apps
 openvm run application1.a

When running OpenExtensions programs, you should be aware of the following differences between how
programs are started in the shell environment compared with how they are started directly from CMS:

• In CMS, the principle way to set environment variables is to set them in the CENV group of GLOBALV.
The OpenExtensions C application will initialize its environment variables from this GLOBALV group.
The shell has additional mechanisms for setting environment variables that can be interrogated by
applications.

If the OpenExtensions application is started through the OPENVM RUN command, the environment
variables HOME, LOGNAME, PATH, and SHELL are initialized even if they are not defined in GLOBALV.
HOME is set to the initial working directory field in the POSIX user database, or / by default. LOGNAME
is set to the lowercase representation of the z/VM user ID. PATH defaults to /bin:/usr/bin. SHELL is
set to the initial user program field in the POSIX user database, or /bin/sh by default.

• If an OpenExtensions application resides on an accessed minidisk or SFS directory, it can be invoked
by name from the CMS command line. However, because it does not reside in BFS, it has no BFS
permission settings. This means that all such OpenExtensions applications are executable, as if they
had the execute permission set.

• To start an application in a strictly-conforming POSIX environment, you must start from the shell or
by means of the OPENVM RUN command. An application started from the CMS command line is not
guaranteed to have the environment variables HOME, LOGNAME, and PATH appropriately set. The user
is responsible for giving values for these variables if the application has dependencies on them.

• An external link can be created in BFS that points to a CMS module in the record file system. This
program can be run through the OPENVM RUN command, but care must be taken to assure that
programs set up to be so invoked are capable of handling the POSIX entry conditions as defined by the
exec() function.

Introduction to OpenExtensions

Chapter 2. Introduction to OpenExtensions 17

• Applications started by using OPENVM RUN or the shell are automatically given the run-time option
POSIX(ON). Applications invoked from the command line must be given the POSIX(ON) option explicitly.
This is done either by coding a #pragma runopts(POSIX(ON)) statement in the C application, or
by passing the run-time option at invocation time. This is done by specifying the option after the
command name and followed by a slash (/). The parameters passed to the command follow the slash.
For example, to invoke the program myappl and pass it two parameters, parm1 and parm2, the user
would enter the following at the command line:

 myappl posix(on) / parm1 parm2

Multiple run-time options can be specified. To invoke the program mentioned above and pass it an
environment variable in addition to those defined by GLOBALV, the user would enter:

 myappl envar('OUTDIR=/tmp/out1') posix(on) / parm1 parm2

POSIX Processes
POSIX.1 defines a process as a program that is running. A process owns various resources, such as a
signal environment and environment variables, and has associated with it various attributes, such as an
effective user ID and group ID. Implicit in the definition of a POSIX process is the fact that it can run
concurrently with other processes.

As part of its application multitasking support, CMS implements its own native processes, which are also
programs that can run concurrently with each other. CMS represents a POSIX process as a CMS process
that has the additional POSIX resources associated with it.

POSIX processes have local copies of their POSIX process environment, but native VM resources, such as
the file system search order, nucleus extensions, subcommand environments, CP and CMS settings, and
the virtual devices are shared by all POSIX processes in the CMS session.

A POSIX process is created when an OpenExtensions C/C++ program with the POSIX(ON) run-time option
is run or when the spawn() function is called. The OpenExtensions application, together with the storage
it has allocated, is known as the POSIX process image.

Converting fork() and exec() Usage to spawn()
The spawn() function provides a fast, low-overhead mechanism for creating a new POSIX process to run
a new program. This is the typical usage of the POSIX.1 fork() function. OpenExtensions includes the
POSIX.1d spawn() definition, which was included in the standard to handle the following operations in
one function:

1. Create a new process.
2. Perform operations typically done in the new process to prepare to run a new program. This includes

file descriptor mapping, changing process group membership, job control, and altering the signal
handling environment.

3. Invoke the new program through exec().

To convert an application from using fork() and exec() to using spawn(), the following steps should
be followed:

1. Replace the call to fork() with a call to spawn(), using the program name and program parameters
from the exec() call.

2. Delete the call to exec().
3. Determine the other parameters to spawn() by examining the calls made between the fork() and

the subsequent exec() to change the environment for the new program:

• Calls to dup2() should be replaced by entries in the file descriptor array.
• The mask value in any sigmask() calls should be used in the signal mask member of the

inheritance structure.

Introduction to OpenExtensions

18 z/VM: 7.2 CMS Application Development Guide

• Signals whose actions are defaulted through sigaction() calls should be included in the sigdefault
member of the inheritance structure.

• A call to setpgid() should be replaced by an entry in the process group member of the inheritance
structure.

• A call to tcsetpgrp should be replaced by an entry in the inheritance structure.

For examples of using spawn() instead of fork() and exec() and a detailed explanation of factors to
consider concerning the conversion, see Appendix M, “Converting fork() + exec() to spawn(),” on page
615.

POSIX Terminal Interactions
POSIX.1 defines terminal input and output in terms of file system I/O operations to character special files
that represent the terminal. Generally, this character special file is /dev/tty. This file must be created
by using the mknode shell command or the mknode() system call.

POSIX terminal I/O can be done only in canonical mode. This means that data is written to and read
from the terminal in a one-line-at-a-time manner. Specifically, data is not read from the terminal until
an attention key, such as the enter key, is pressed. Applications that operate in noncanonical mode, also
known as character or raw mode, are not supported by the OpenExtensions terminal facilities.

Additional Considerations
A user virtual machine communicates with the BFS server virtual machine over Advanced Program to
Program Communication (APPC) connections. Two APPC paths are used by each POSIX process during its
execution, and each mounted file system also requires two paths. This means that the user should have
a MAXCONN value in the user's CP directory entry of at least 70 and perhaps more if the user's directory
tree is composed of elements managed by many file pools.

Introduction to OpenExtensions

Chapter 2. Introduction to OpenExtensions 19

Introduction to OpenExtensions

20 z/VM: 7.2 CMS Application Development Guide

Part 2. Developing Your Program

This part discusses each task needed to develop your application. These tasks are contained in the
following chapters:

• Chapter 3, “Planning and Designing Your Program,” on page 23
• Chapter 4, “Coding Your Program,” on page 39
• Chapter 5, “Compiling Your Program,” on page 43
• Chapter 6, “Loading and Running Your Program,” on page 47
• Chapter 7, “Debugging and Testing Your Program,” on page 65
• Chapter 8, “Updating Your Source Program,” on page 73

© Copyright IBM Corp. 1990, 2022 21

22 z/VM: 7.2 CMS Application Development Guide

Chapter 3. Planning and Designing Your Program

This chapter identifies and describes the objectives and the z/VM facilities you need to consider during
the planning phase of z/VM application development.

You develop and use applications to solve problems and make certain tasks easier and faster to do—
applications automate a process. Planning is the first phase in the application development process. You,
as an application programmer, planner, or both, decide how to build an application package to execute
successfully and efficiently. Once you determine the application's requirements, you plan an application
package that satisfies these requirements. An application package can be a single application within one
virtual machine or a group of applications located in many different virtual machines communicating with
each other.

Note: Throughout this book, the terms "application", "application package", "application system", and
"program" are used interchangeably.

Before planning your application, you must:

• Understand the function of the application (what problem you must solve).
• Understand the environment the application will run in (z/VM CMS programming environment). See

Chapter 1, “Introduction to the CMS Programming Environment,” on page 3 for information on the CMS
programming environment.

After you are through planning your application, you begin designing your application by expanding the
objectives set by your plan.

Planning Objectives
During the early phases of application development, you can divide your planning and designing
considerations into two areas:

• “CMS Environment Considerations” on page 23)
• “Application Processing Considerations” on page 29).

CMS Environment Considerations
The CMS environment considerations consist of:

• Identifying the system architecture
• Determining system resources
• Language considerations
• Data recovery/data integrity
• Using data spaces
• Types of processing
• Portability
• Tailoring
• Packaging your application
• Making your application available
• Supporting your application.

Identifying the System Architecture
As described in the Introduction, ESA, XA, and XC virtual machines give your application the capability of
exploiting 31-bit addressing and residing above the 16 MB line in virtual storage (up to 2047 MB).

Planning and Designing Your Program

© Copyright IBM Corp. 1990, 2022 23

When you process your application, you have to specify this addressing and residency function using the
AMODE and RMODE options. See Chapter 6, “Loading and Running Your Program,” on page 47 for more
information on using the AMODE and RMODE options.

Determining the Functional Level of CMS and CP
You may also want to know the functional level of CMS and CP of your system, especially if your
application supports several releases of VM and depends on this information to make execution decisions.
For example, it may use this information to determine the availability or behavior of certain commands.

The DMSQEFL CSL routine is the recommended method to obtain the CP and CMS functional levels.
DMSQEFL returns codes that indicate both the product and level of CMS and CP.

Determining System Resources
System resources may be difficult to determine at the planning stage. Once you define the hardware and
software requirements of the application, such as the database system or file system you want to use or
any extra security features you may want to have, then you can determine:

• How much virtual storage you need to set up your application system.
• How much storage space your application requires.
• How much processor time your application requires. If your application requires a large amount of

processor time, you may want to run it in a batch environment or send it to a disconnected virtual
machine to run. This frees your terminal for other work.

See the appropriate books describing the resource requirements needed for each licensed program or
feature. Begin by looking in the planning material, administration material, or both for each licensed
program.

Language Considerations
The programming language you decide to use depends on the:

• Function of the application. Some programming languages are better suited for certain functions than
other languages. For example, FORTRAN is used for scientific and engineering applications. COBOL is
used for business and commercial applications.

• Language compiler that is available to you on your system.
• Standards used within your work area.
• Standards the customer mandates.

Data Recovery/Data Integrity
The first thing you must consider is how critical your data is and where it is located. Will loss of data
(or the temporary loss of its use) disrupt business or endanger security or safety? Is the data located at
your installation, on the same system, or is it on another system or distributed among systems in an SNA
network?

The rule of thumb is: The more critical your data is, the more carefully and thoroughly you must prepare
for recovery in the event of a failure. Although that sounds obvious, it is nevertheless crucial. The key
word is prepare. If you plan for it carefully, it is less likely to get lost in the shuffle when writing the
application begins.

CMS provides support for data integrity through Coordinated Resource Recovery (CRR). Resources that
participate in CRR are called protected resources. In a nutshell, this means that changes made to
protected resources in the same work unit are all either committed or rolled back in unison to maintain
consistency among the data.

Before starting the first project utilizing CRR, check with your system administrator to be certain that the
CRR recovery server is available. You cannot have coordinated resource recovery without this server.

Planning and Designing Your Program

24 z/VM: 7.2 CMS Application Development Guide

Note: An IBM-supplied CRR recovery server can optionally be installed during the z/VM installation
process, or your own CRR recovery server can be generated in a postinstallation procedure.

Use Transaction Tags to Aid Problem Determination
The CRR recovery server and resource managers, such as Shared File System (SFS), each keep a special
log to aid in recovering protected resources. Your application should provide CMS with meaningful
information to store in the CRR log so that if a problem arises requiring operator intervention, the
operator can determine what needs to be done. Although the likelihood of such a severe problem
occurring is remote, you should nevertheless prepare for it by providing transaction-specific information
that helps the operator or administrator make the proper decisions. You can use the Set Transaction Tag
(DMSSETAG) and Get Work Unit ID (DMSGETWU) CSL routines to provide this essential information. For
details on DMSSETAG and DMSGETWU, see “Setting Up to Ensure Data Integrity” on page 243 and the
z/VM: CMS Callable Services Reference.

General Considerations
Generally, an application that resides on a single virtual machine and only writes to one resource (for
example, a file pool) on a work unit need not be concerned with CRR or transaction tags. However, a
resource manager may participate in CRR in such a way that a coordinated commit is always done.

In any case, many applications today need to perform complex transactions, often in a distributed
environment. In support of these applications CRR automatically handles any necessary coordination of
protected resources when an application:

• Writes to more than one resource on a work unit
• Accesses remote protected data
• Is distributed. (Part of the application runs on one virtual machine and part runs on one or more other

virtual machines or systems. These parts are connected by protected conversations.)

Your application does not require any special actions to invoke the CRR facility. The only addition you
should make to your application is to have it specify the appropriate transaction tags for CMS to store on
the CRR recovery server log (and logs of participating resource managers) to help the operator determine
what needs to be done in the event of a resynchronization or a situation requiring operator intervention. It
is also a good idea to have your application save all data pertaining to a transaction if certain error codes
are encountered. For more information, see “Designing Your Application for Data Integrity” on page 242.

Some Important Issues to Address
• Are all resources able to participate in CRR?

Check the documentation of each resource to be accessed to determine if it participates in CRR. The
SFS and protected conversations (those initiated with the SYNCLVL=SYNCPT option) in CMS participate
in CRR. Note that the CMS minidisk file system and the OpenExtensions Byte File System do not
participate in CRR.

• What should you do if other resources you are using do not participate in CRR?

Changes made to data controlled by resources that do not participate in CRR cannot be guaranteed
to be consistent with the data controlled by participating resources. The reason for this is that when
updates are made to a nonparticipating resource in a work unit containing protected resources, CMS
does not count the nonparticipating resources as a part of the work unit. Therefore, it is possible for
the protected resources to be committed while the nonparticipating resource is left unchanged. You
must issue a commit for that resource using the product-specific commit routine. To reduce problems,
design your application to issue resource-specific commits first to make the changes permanent to
resources not participating in CRR. Then, if that commit succeeds, issue a coordinated commit for the
protected resources. If the commit fails, you can still roll back the work unit. It is also a good idea to
journal (keep a chronological record of changes to the data) the part of the transaction that updates the
nonparticipating resource.

• Do all resources involved offer the same recovery features, such as backward recovery, forward
recovery, and so on?

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 25

Now that your applications can update multiple resources with integrity using CRR, you could have
an application that updates both participating SFS file pools and participating non-SFS resources. SFS
supplies the capabilities to back up data and then to restore it (see the z/VM: CMS File Pool Planning,
Administration, and Operation). Assume that the non-SFS resources have the same capabilities. If a
media failure occurs (such as a DASD failure), you can restore both the SFS resources and non-SFS
resources to the backup level. The non-SFS resources may also have forward recovery, which restores
the user data up to the time of the DASD failure. SFS, however, does not have forward recovery of user
data, so the SFS resources could not be restored up to the time of DASD failure. This would result
in the resources not being restored to the same level. Therefore, when you design applications that
take advantage of CRR to update different resources in the same coordinated transaction, you should
consider whether the different resources have forward recovery and the implications of one of the
resources not having forward recovery.

The administration guide for each resource should indicate whether the particular resource participates
in CRR and what type of recovery is provided. If the resource allows tailoring of the recovery level
supported, check with the system administrator to determine exactly what recovery capabilities are
installed. Also determine if the resource manager logs transaction tags. Your design for recovery
procedures is limited by the lowest level provided by the resources you plan to access.

• What can you do to limit effects of an application or system failure?

If a failure occurs after a synchronization point (or even during one), CRR should be able to maintain
data consistency, but when processing can be resumed, it may be hard to tell which transactions were
completed successfully before the failure. Therefore, you should consider having your application keep
a log of the work it is doing. This could save considerable time and trouble whenever normal processing
is disrupted by a failure.

• What situations are not recoverable?

Operator or resource manager intervention can result in inconsistent data that is not recoverable. For
example, the operator could issue a command to roll back changes to a file, but the resynchronization
process results in the changes being committed to the other files involved in the same transaction.
Resynchronization occurs when a commit or roll back cannot be completed due to a severe failure.
Resynchronization completes the request at a later time, when contact is restored with all affected
resources. See “How CRR Works” on page 241 for more information on resynchronization.

Here are some things you can do to reduce the chances of this situation occurring:

– Use the transaction tag to indicate the preferred action for your application in the event that operator
intervention becomes necessary during resynchronization. This should be in line with the policies of
the computer center where you run your application.

– If your application must perform critical processing, you might also consider keeping a record of each
critical transaction until it has been successfully committed or rolled back. This can aid in manual
recovery when resynchronization fails or is interrupted.

– Use the Set Synchronization Point Options (DMSSSPTO) CSL routine to set defaults for your
application that reflect the policies of the computer center where you can run your application.
Consistency helps to avoid confusion, especially in times of crisis.

• Design your application with CRR in mind

There are several things to keep in mind when designing your application to access multiple resources:

– Establish protected conversations by specifying SYNCLVL=SYNCPT.
– Follow Common Programming Interface (CPI) Communications protocols for protected

conversations.
– Set up standards for the content of transaction tags and call the DMSSETAG (Set Transaction Tag) CSL

routine at appropriate points in your application.
– Find out how the error data for each resource is formatted so your program can use the DMSGETSP

(Get Synchronization Point Errors) CSL routine to retrieve detailed error information.
– Use the Set Synchronization Point Options (DMSSSPTO) CSL routine to set defaults for your

application that reflect the policies of the computer center where your application will run.

Planning and Designing Your Program

26 z/VM: 7.2 CMS Application Development Guide

Considerations for Multiuser Server Applications
If you write an application (like a server) to accept requests from multiple users, you will want to
supply your own routine to replace the CRR Wait (DMSCWAIT) CSL routine that CRR uses to wait for
asynchronous requests. The reason for this is that CRR does not exploit multitasking. Therefore, when
your application calls DMSCWAIT, your virtual machine goes into a wait state until the event completes.
If your application is serving several clients, it is unable to service requests from any other clients until
completion of the event that triggered the call to CRR Wait. By supplying your own routine to wait on the
request, your application can continue serving other clients. For information on the requirements for such
a routine, see Chapter 17, “Writing a CRR Wait Routine for Multiuser Server Applications,” on page 251.

Using Data Spaces
Data spaces are areas of storage that a program can create and access outside its own virtual machine
storage. A program can use data spaces to store data for its own use and to share with other programs
running in other virtual machines. Using data spaces in an application can improve overall apparent
performance in these ways by:

• Reducing the need for IUCV or APPC/VM interaction between client and server virtual machines
• Replacing virtual I/O, such as DIAGNOSE I/O, with paging I/O (such as data space mapping services),

which is more efficient
• Allowing data needed only temporarily to reside in storage rather than using DASD files for it.

See “Using Data Spaces in Your Applications” on page 221 for information on using data spaces.

Data space support includes sharing capabilities that apply to primary address spaces as well as data
spaces. The term data space refers to a data-only address space. The term address space is more
general, referring to any contiguous area of virtual storage that is addressable by a virtual machine. In
general, address space is used in this book for situations that apply to both primary address spaces and
data spaces.

Here are some things to keep in mind as you design data space support into your application:

• To create a data space, the application must be executing in an XC virtual machine.
• The virtual machine (user ID) in which the application is to run must be authorized to create and delete

data spaces. In other words, it must have an XCONFIG ADDRSPACE directory statement.
• If a data space is to be shared among other users or applications, the virtual machine that owns the

data space must be authorized to share by specifying the SHARE option on the XCONFIG ADDRSPACE
statement.

• Virtual machines that need access to more than 62 address spaces must have a larger access list
allocated with an XCONFIG ACCESSLIST directory statement. Although only XC virtual machines can
create and directly manipulate data in a data space, ESA and XA virtual machines can copy data from
data spaces and can share their primary address space.

• When you create a data space, request a large enough size to handle the needs of your application. You
specify the data space size in units of 4KB pages. The amount of storage you specify when you create a
data space is the maximum amount the system will allow you to use in that space.

• Data space management can be performed in either primary space or access register execution mode,
but to manipulate data in a data space, the application must be running in access-register mode.

Types of Processing
Your application can run in the following processing environments:

• Online processing

You should use online processing if your application requires user interaction. An example of an online
application is the record keeping application used at a video store.

• Batch processing

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 27

You should use batch processing for applications that do not require user interaction or applications
that use large amounts of processor time. An example of a batch application is payroll processing.

For information on using the CMS batch facility, see Chapter 23, “Using the Batch Facility,” on page 357.
• Disconnected virtual machine processing

You can send your applications to a disconnected virtual machine to run. This frees up your terminal.

Portability
If you want your communications application to be portable from one system to another, you should
use the SAA defined CPI Communications (also known as SAA communications interface) routines. z/VM
supports these routines.

For more information on the CPI Communications routines, see Chapter 33, “Understanding CPI
Communications,” on page 493 and the CPI Communications Reference. For more information on
designing a portable application, see the SAA Writing Applications: A Design Guide.

If you want your application to run on both MVS and VM, you should code it using OS/MVS Simulation.
For more information on OS/MVS Simulation, see the z/VM: CMS Application Development Guide for
Assembler.

If you want your application to run on VM and UNIX and other POSIX-compliant systems, you should code
it as an OpenExtensions application using C POSIX services. For more information, see the C/C++ User's
Guide.

Tailoring the System
You can tailor some areas of z/VM to enhance the operation of your application. You can do this by
modifying the System Profile exec (SYSPROF EXEC). For more information on tailoring your system,
contact your system administrator and see the z/VM: CP Planning and Administration.

Packaging Your Application
You can package your application as:

• An EXEC file
• A TEXT file
• A MODULE file
• An immediate command
• A subcommand
• A nucleus extension.

See Chapter 20, “Using Execs,” on page 333 for information on using execs. See Chapter 6, “Loading
and Running Your Program,” on page 47 for information on creating TEXT files and MODULE files. See
the z/VM: CMS Application Development Guide for Assembler for information on creating an immediate
command, a subcommand, or a nucleus extension.

Making Your Application Available
Once your application package is complete, you will want to make it available to users. You can store
these applications:

• On minidisks
• In SFS directories
• In saved segments
• In BFS directories.

For information on differences between minidisks, SFS, and BFS, see “Storing and Manipulating Data” on
page 29.

Planning and Designing Your Program

28 z/VM: 7.2 CMS Application Development Guide

See the z/VM: CMS File Pool Planning, Administration, and Operation for information on enrolling users in
a file pool and the z/VM: CMS User's Guide for information on accessing a file pool and granting authority
to users to access a file or an SFS directory. See Chapter 11, “Understanding the CMS File System,” on
page 119 and the z/VM: CMS User's Guide for information on the minidisk system. See Chapter 27, “Using
Saved Segments,” on page 419 for information on using saved segments. See Chapter 11, “Understanding
the CMS File System,” on page 119 and the z/VM: OpenExtensions User's Guide for information on BFS.

Supporting Your Application
You must be aware of who will be supporting your application.

• Will the support person be a programmer on site?
• If you are part of a distributed environment, will the support person be a programmer at another remote

site or at the central site?
• Will you have the programmable operator facility running? Programmable operator facility enables

automatic filtering and routing of messages from a specified virtual machine to a logical operator virtual
machine in a local distributed or mixed environment. For details on programmable operator facility see
the z/VM: CP Planning and Administration.

• Will you be using the Single Console Image Facility (SCIF)? SCIF allows one user logged on to a single
virtual machine to control multiple disconnected virtual machines. For details on SCIF, refer to the z/VM:
Virtual Machine Operation.

• Will you be using NetView*? NetView automates network operations and network problem analysis.
For more information on NetView, see Network Program Products General Information and the Network
Program Products Planning.

Application Processing Considerations
The application processing considerations consist of:

• Storing and manipulating data
• Communicating with users and applications
• Controlling I/O
• Distributed processing
• System, data, and program security
• Debugging and testing your application package.

Storing and Manipulating Data
Most applications receive data, send data, or manipulate data. When you are planning an application
package, you have to identify the application's data file and database requirements. z/VM provides you
with the following data file system architectures and database system:

• Enhanced Disk Format (EDF) architecture (CMS minidisk files)
• Shared File System (SFS) architecture
• OpenExtensions Byte File System (BFS) architecture
• Structured Query Language/Data System (SQL/DS) database.

Enhanced Disk Format (EDF) Architecture
EDF, referred to as the minidisk system, stores files on minidisks. A minidisk is a location of Direct Access
Storage Device (DASD) space allocated to you without having to dedicate an entire DASD pack to you
(unless all its space is needed). This disk space is allocated in contiguous cylinders or blocks. The space is
yours whether you use it all or not. The following figure illustrates the EDF or minidisk file system.

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 29

Figure 4. Minidisk System

Only one user can own a minidisk, but many users or applications can share data or other programs on a
minidisk by linking to it. The following figure illustrates how users can share data or programs in EDF file
system.

Figure 5. Users Sharing Disks in the Minidisk System

When you link to another minidisk, data access is at a disk level. That is, you have access to all the data
files on this minidisk, except those files on the owners minidisk accessed as file mode A0. The owner of
the minidisk cannot control who can look at the files.

Two users or applications should not attempt to write on a minidisk at the same time. There is no locking
facility on the minidisk system. CMS does not protect a user from loss of data on a minidisk when multiple
users have write access to it.

Shared File System (SFS) Architecture
Use SFS when you want to:

• Allow multiple users to share and update data and programs
• Allow users on different z/VM systems to access shared files
• Control multiple users from updating at the same time
• Ensure file level security (control who accesses specific files)
• Preserve data integrity. (SFS is a protected resource. It can participate in CRR.)

For list of performance considerations when you use SFS, see “Performance Tips” on page 184.

SFS stores files in CMS file pools. A file pool is a collection of minidisks that contains the files for a number
of users. This collection of minidisks is assigned to a virtual machine called a file pool server machine.
The file pool server machine manages all of the file within the file pool. An SFS user is given a certain
amount of space within a file pool. This space is called a file space.

File spaces are similar to minidisks because both are allocations of DASD storage for storing files.
However, SFS stores files on different minidisks (transparently) within this file space. This space is not
contiguous blocks of storage like the minidisk system. It is dynamic in that the space is allocated to you
as you need it—up to the amount for which you have been authorized. This saves on DASD space because
the whole space is not allocated and left unused. The following figure illustrates SFS.

Planning and Designing Your Program

30 z/VM: 7.2 CMS Application Development Guide

Figure 6. Shared File System

SFS lets you share files with other applications. You, as the owner of the files, can grant authorities that
let others read from or write to your files and directories. The owner of the directory has control over who
accesses the files.

Two applications cannot write to the same file within SFS at the same time. To prevent two applications
from writing to the same file at the same time, SFS has a locking facility. There are two types of locks:
an implicit lock and an explicit lock. SFS acquires and releases an implicit lock automatically. However,
all implicit locks are released at the end of a work unit. You can create an explicit lock by issuing a CMS
command or routine that forces an object to be locked. An explicit lock can be in effect even if a work unit
ends. A work unit is a group of related operations. SFS allows either all changes in a work unit to complete
successfully or none of them to complete.

For more information on using SFS, see Chapter 12, “Manipulating SFS and Minidisk Files and
Directories,” on page 129 and the z/VM: CMS User's Guide.

Manipulating Minidisk Files and SFS Files
The minidisk file system and SFS are collectively known as the CMS record file system, because data is
stored in the form of records. You can manipulate CMS record files using a set of Callable Services Library
(CSL) routines. A subset of these routines perform file I/O operations. These routines are easily used
within your application.

For more information, see Chapter 12, “Manipulating SFS and Minidisk Files and Directories,” on page
129. You can also manipulate CMS record files using a group of CMS macros known as File System (FS)
macros. See the z/VM: CMS Application Development Guide for Assembler for more information.

OpenExtensions Byte File System (BFS)
BFS is a hierarchical file system similar in concept to SFS. Like SFS files, BFS files are stored in CMS file
pools. A byte file system is enrolled as a file space in a file pool. Multiple users can access the files and
directories in a byte file system. Multiple byte file systems can be enrolled in the same file pool, and byte
file systems can reside in the same file pool as SFS. However, BFS files are different from CMS record
files in that a BFS file consists of an ordered sequence of bytes rather than records. BFS allows data to be
organized and used in a UNIX style and format.

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 31

A special set of CSL routines, known as the OpenExtensions callable services, are provided to allow
applications to manipulate BFS files and directories. BFS data can also be accessed from CMS Pipeline
programs. In addition, CMS supports limited manipulation of BFS files and directories using the CMS
record file system interface (CSL routines and commands, but not FS macros).

For more information about BFS, see Chapter 11, “Understanding the CMS File System,” on page 119
and Chapter 13, “Manipulating BFS Files and Directories Using CMS Record File System CSL Routines,” on
page 193. For information about the OpenExtensions CSL routines, see the z/VM: OpenExtensions Callable
Services Reference.

DB2® Server for VM
DB2 Server for VM is a relational database management system. Relational means that the data is
organized in table format. Each table has a certain number of columns and rows with data at each
intersection. A database management system controls the storing and retrieval of this data.

Use a database system when you want to:

• Allow multiple users to share data and update data
• Control multiple users from updating at the same time
• Ensure row level security (control who accesses the data)
• Avoid inconsistencies
• Enforce data processing standards
• Access groupings of data with common characteristics
• Preserve data integrity.

DB2 Server for VM is a z/VM and SAA supported database system. DB2 Server for VM is a separately
orderable licensed program. DB2 Server for VM simplifies data handling by offering facilities for querying
data, manipulating data, and writing reports. It also contains data recovery and data security measures.

DB2 Server for VM allows you to run applications in either single user mode or multiple user mode. In
multiple user mode, one or more users or applications can access the same database. DB2 Server for VM
controls the access of data by allowing you to grant privileges to specific users on certain data or to give
users access to only part of the information in a table. That is, you can control what rows in a table other
users can access. Data access is at the row level.

To prevent two applications from updating the same information at the same time, DB2 Server for VM
uses an automatic locking system. There are two types of locks: exclusive locks and share locks. Exclusive
locks prevent other applications from reading or modifying data that your application is using. Share
locks permit other applications to read data your application is using, but prevent other applications from
modifying the data.

DB2 Server for VM preserves data integrity by using logical units of work. A logical unit of work is a
sequence of SQL statements that DB2 Server for VM treats as a single unit. Similar to the work units in
SFS, either all changes in a logical unit of work complete successfully or none of them complete.

Your applications can use Structured Query Language (SQL) statements to access and manipulate data
stored in the DB2 Server for VM database. (INSERT, DELETE, UPDATE)

For more details, see Chapter 28, “Using DB2 Server for VM,” on page 425.

Communicating with Users and Applications
Communication is the primary reason for creating an application. An application can communicate
with users interactively, with another application on the same system or on a different system, or
with a database. You have to decide who your application communicates with and how it does this
communicating.

Communicating with Users (Application to User Communication)
Your application can communicate with a user using a panel interface or a command interface.

Planning and Designing Your Program

32 z/VM: 7.2 CMS Application Development Guide

A panel interface is usually much easier and friendlier for the user. When the application is panel driven,
the user of the application does not have to be aware of how the information is processed. The user just
enters data on a panel. If you use a command interface, the user of the application must know what
commands are to perform the specific function and how to use these commands.

The following interactive facilities are available with z/VM:

• Interactive System Productivity Facility (ISPF)
• Display Management System for CMS (DMS/CMS).

For more details on the interactive facilities, see Chapter 24, “Creating an Interactive Program,” on page
369.

Communicating with Applications (Application to Application Communication)
Your application can communicate with another application that runs in a virtual machine on the same
system as your application, on a different z/VM system, or within a Systems Network Architecture (SNA)
defined network. SNA is the IBM networking architecture. Applications communicate with each other
using Advanced Program-to-Program Communication (APPC). The z/VM implementation of APPC is
called APPC/VM.

z/VM provides two interfaces to APPC/VM: SAA defined CPI Communications routines and APPC/VM
assembler functions. Your high level language applications can use the CPI Communications routines to
communicate with applications on another z/VM system or on another operating system in the network.
Assembler applications can use both the routines and macros to communicate with other applications.

For more details on application to application communication, see Chapter 30, “Introduction to
Connectivity Programming in CMS,” on page 459. For information on the individual CPI routines, see
the CPI Communications Reference. For more details on application to application communication for
assembler language applications, see the z/VM: CMS Application Development Guide for Assembler.

Controlling I/O
You should understand the routines and facilities that are available to control the input and output of your
application. These I/O operations include:

• File I/O
• Screen and Terminal I/O
• Unit Record I/O
• Tape I/O.

File I/O
What language your application is written in and how you store your data determine how you perform file
I/O operations. To access and manipulate files, your application can use:

• CSL routines
• Specific language statements
• FS macros
• CMS Pipelines stage commands: FILEFAST, FILEBACK, FILERAND, FILESLOW, <, >, >>, BLOCK, and

DEBLOCK
• EXECIO command
• OS and DOS simulated macros.

For example, if your data files are stored in SFS, your application can use the CSL routines or FS macros
to access and manipulate data. CSL routines can access data files stored in file pools and on minidisks.
FS macros can also access data files stored in file pools and on minidisks. FS macros can be called only
from an assembler program. Therefore, applications written in a high-level language must call assembler
subroutines to use FS macros.

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 33

Note: FS macros can access only SFS data stored in file pools; they cannot access BFS data.

See the z/VM: CMS Commands and Utilities Reference for information on the EXECIO command. See the
z/VM: CMS Application Development Guide for Assembler for information on the DOS and OS macros.
See the z/VM: CMS Pipelines User's Guide and Reference for information on the CMS Pipelines stage
commands.

Screen and Terminal I/O
Your applications can use the following methods to retrieve information from or display information on
your screen or terminal:

• Dialog Management System—Interactive System Productivity Facility (ISPF) and Display Management
System for CMS (DMS/CMS)

• XMITMSG command
• CMS Pipelines stage commands: FULLSCREEN, BUILDSCR, CONSOLE, FULLSCRQ, FULLSCRS,

APLENCODE, APLDECODE, 3270ENC, 3270BFRA
• CONSOLE, LINERD, LINEWRT, APPLMSG macros.

Unit Record I/O
Unit record I/O operation consists of:

• Writing information to a virtual printer using the PRINTL macro or CMS Pipelines stage commands
PRINTMC and URO

• Writing information to a virtual punch using the PUNCHC macro or CMS Pipelines stage command
PUNCH

• Reading information from a virtual reader using the RDCARD macro or CMS Pipelines stage command
READER

See Chapter 10, “Handling Input and Output,” on page 113 for more information on the I/O operations.

Distributed Processing
Distributed processing means that a specific task can be broken up into functions, and the functions
are dispersed across two or more interconnected processors. A distributed application is an application
for which the component application programs are distributed between two or more interconnected
processors. Distributed data is data that is dispersed across two or more interconnected systems.

When your application is located on one system and the data you need is located on one or more other
systems, you must decide whether you should write an application to access the distributed data or write
a distributed application.

Use an application that accesses distributed data when:

• Your application runs in a batch environment. For example, if the function of your application only
updates a database, this application can run in a batch environment.

• Your application does not access large amounts of data on another system.

However, accessing data that is distributed on another system is generally much less efficient than writing
a distributed application because the data traffic increases. This may result in a decrease in the efficiency
of the system.

Use a distributed application when:

• The data your application needs resides on another system, and your application expects this data to be
processed before receiving it.

• Your application overwhelms the computing resources on one system. Then, you should divide the
application into different functions, and let other systems do some of the processing.

• Your application performs a specific function that other applications can use. This application can reside
on a system accessible by many applications.

Planning and Designing Your Program

34 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

• Your application is online.

Writing a distributed application is a more complex task than writing an application that accesses
distributed data. When writing distributed applications, one application communicates with another
application. These applications must be in sync with each other—that is, the application making a request
must know when the application handling the request is ready to receive the request. In most situations,
you will be writing both the requesting and the receiving applications. The two applications will use APPC
to communicate.

Scenario 1
Suppose you have an application that accesses three files, all of which reside on one other system. If
one subroutine of the program does all of the referencing of the three files on the other system, that
subroutine could be moved over to the other system.

Scenario 2
Suppose you want to run an interactive application. You could divide this application into two sections:
the panel presentation section and the logical (or main) section. In this example, the panel presentation
processing could be done on another system and the logic processing could be done at the host system.

As a Rule of Thumb
If an application frequently accesses data, this application and data should reside on the same system.

System, Data, and Program Security
Security is another important element in your application environment. There are three areas of security
to consider:

• System
• Data
• Program.

Before deciding what data and program security are needed for your application, you should understand
your system security features and the security features of the products your application may be
using. Customer requirements also determine the level of security needed in your program. Once
you understand these security measures and customer requirements, you can determine the security
measures you should use for your application.

System Security
To ensure that only authorized users access the z/VM system, the system administrator provides each
user with a user ID and password. Only users with a valid user ID and password can access or log on to a
z/VM system.

Data Security
If the data your application handles is sensitive, for example payroll information, it is critical to have
control over who can access the data and how much of the data can be accessed.

Shared File System

SFS provides security features that control who can access data or programs. The file pool administrator
controls the file pool. That is, the administrator defines the read and write authority on all SFS files owned
by every user in a particular file pool. Each user can control who has access to the data or programs in
their own directory. See Chapter 12, “Manipulating SFS and Minidisk Files and Directories,” on page 129
and the z/VM: CMS File Pool Planning, Administration, and Operation for details on the security features
file pools provide.

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 35

Byte File System

BFS authorization mechanisms provide data security on an individual file basis. The system administrator
provides each user of the system with a POSIX user ID (UID) and a primary POSIX group ID (GID). By
default, if the user is not assigned a UID or GID, the system assumes a UID of 4,294,967,295 and a GID of
4,294,967,295. In addition, the user can be assigned membership in a number of supplementary groups.

When a user file space is created in a file pool, the UID of the root directory is derived from the userid
parameter specified on the DMSENUSR routine (or the USER operand on the ENROLL command), and the
GID of the root directory is derived from the gname parameter specified on DMSENUSR (or the GROUP
operand on ENROLL). When a BFS file is created, the effective UID of the creating process and the GID of
the parent directory become associated with the file.

There are three distinct classes associated with a BFS file:
file owner class

A process whose effective UID matches the UID associated with the file.
file group class

A process that is not in the file owner class, and whose effective GID or one of its supplementary GIDs
matches the GID associated with the file.

file other class
A process that is not in either the file owner class or the file group class.

Each BFS file has its own set of permissions. These permissions are defined for each class (file owner,
file group, and file other) and determine whether members of the corresponding class have read, write, or
execute/search permission to the file. The owner of a BFS file can control access to the file by setting the
permission bits associated with the three different classes. In addition, the file owner can change the file
group of the file.

Database Management

A database management system, such as DB2 Server for VM, also provides security features that control
who can access data. The database administrator controls the data and privileges associated with the
database. A user must have connect authority to access the database. After receiving connect authority, a
user can create tables and control who has access to the data in these tables.

DB2 Server for VM also allows different users to view different presentations of the same data. These
features can prevent users from seeing data they should not see. See Chapter 28, “Using DB2 Server for
VM,” on page 425 for details of the security features DB2 Server for VM provides.

Program Security
You may write certain applications that only a specific group of users can access. Using SFS, you can put
your applications in certain directories and control who has access to these directories. Using BFS, you
can set the permission bits of a file to control who has access to it.

If your application is handling requests from applications on other VM systems or non-VM systems, you
may want to ensure that only authorized users communicate with your application. Therefore, as a local
or global resource manager, your application should verify that each user attempting to communicate with
your application is authorized to communicate.

If your application is managing a private resource, the system administrator can set up a special NAMES
file, $SERVER$ NAMES, for the server virtual machine in which your private resource manager runs.
z/VM uses the $SERVER$ NAMES file to check security authorization. The $SERVER$ NAMES file lists the
private resources and the user IDs of the users authorized to access the private resources. Therefore, as a
private resource manager, your application does not need to verify that users are authorized. See Chapter
32, “Program-to-Program Communications,” on page 479 for details on the $SERVER$ NAMES file.

If your application needs to communicate with another application, your application should specify
access security information. The three types of access security your application can specify are:
SECURITY(NONE), SECURITY(PGM), and SECURITY(SAME). You can use a CMS communications directory
to define this access security information. A communications directory is a special NAMES file that lets
APPC/VM applications connect to a resource using nicknames. See Chapter 32, “Program-to-Program

Planning and Designing Your Program

36 z/VM: 7.2 CMS Application Development Guide

Communications,” on page 479 for details on CMS communications directories and Chapter 31,
“Understanding Communications Programming Terminology,” on page 467 for details on the security
types.

Debugging and Testing Your Application System
You can use CMS and CP to debug your applications. Most programming languages have a debugging
tool you can use to find and correct errors in your application. You can also use the virtual machine
environment z/VM provides to test your complete application package. For more information on the
commands, debugging tools, and the "testing" environment, see Chapter 7, “Debugging and Testing Your
Program,” on page 65.

Planning and Designing Your Program

Chapter 3. Planning and Designing Your Program 37

Planning and Designing Your Program

38 z/VM: 7.2 CMS Application Development Guide

Chapter 4. Coding Your Program

In addition to the programming language statements you use when you write your application, z/VM
also provides you with routines, macros, and functions your application can issue to perform a specific
operation. This chapter briefly discusses the following services provided by z/VM:

• Callable services library (CSL) routines
• OpenExtensions callable services
• REXX Sockets
• CPI Communications (also known as SAA communications interface) routines
• CMS macros
• CMS functions
• DB2 Server for VM statements.

CSL Routines
VMLIB and VMMTLIB are CMS libraries that contain CSL routines. Rather than writing separate assembler
routines, applications written in a high-level language (and also assembler applications) can use these
routines to perform specific services. Some of the services provided by these routines are:

• Getting extended error information
• Extracting system information
• Opening and closing files
• Creating threads of execution for multitasking

See “Using Callable Services Libraries” on page 320.

Getting Extended Error Information
CMS maintains error blocks to store information regarding errors encountered by the various resources
your applications access. Because the information may come from different sources and in different
forms, CMS provides specialized CSL routines for retrieving it. The three routines provided are:

• DMSWUERR — Work Unit Error Data Deblocker
• DMSGETSP — Get Synchronization Point Errors
• DMSPCAER — Protected Conversation Adapter Errors.

All three routines are described in the z/VM: CMS Callable Services Reference.

DMSWUERR: DMSWUERR extracts the extended error information returned in the wuerror parameter
on CSL routines that operate on the Shared File System (SFS) and places it in individual variables for
high-level languages to use. The following information is returned in the wuerror buffer:

• Number of file pool error information areas returned
• Total number of errors for which information is available
• One or more groups of file pool error information.

The file pool error information includes the file pool ID, work unit ID, error reason code, and warning
reason codes (up to 16 possible). The CSL routine, DMSWUERR, converts the wuerror output to data
placed in individual variables. DMSWUERR can also be used to convert the SFS error information returned
by the DMSGETSP routine.

Assembler programs can use the WUERROR and FPERROR macros to map into the workunit (WUERROR)
and file pool (FPERROR) error data areas. These macros are described in the z/VM: CMS Macros and
Functions Reference.

Coding Your Program

© Copyright IBM Corp. 1990, 2022 39

DMSGETSP: DMSGETSP retrieves all errors relating to the last synchronization point. This routine can
return error blocks from a variety of resources, including SFS and the protected conversation adapter.
Among the output parameters are resource_component_ID and exit_name. These two parameters can be
used to identify what resource each error block is from so you can deblock the information correctly. For
IBM products, the component ID can be found in the Programming Systems General Information Manual.
You need to identify the product to determine the format of the error block, which is specified in the
documentation of each product. For more information on using this routine, see the Chapter 16, “Your
Applications and Data Integrity,” on page 241.

DMSPCAER: DMSPCAER retrieves error information specific to a particular protected conversation. To use
this routine, your program must first call DMSGETSP to get the CMS error block containing the information
for DMSPCAER to parse. Because DMSGETSP retrieves all error blocks relating to the last sync point, your
program must identify the error blocks containing the information you need by matching the resource
component ID and exit ID of the protected conversation adapter for which you want error information.
The DMSGETER (Get My Errors) CSL routine, described in the z/VM: CMS Callable Services Reference, can
also be used to obtain the error blocks to be parsed.

Extracting System Information
Your applications can obtain or modify selected system information using the Extract/Replace facility.
DMSERP is the CSL routine your application uses to call the Extract/Replace facility. For details on the
Extract/Replace facility, see Chapter 14, “Extracting and Replacing System Information,” on page 209. For
details on the DMSERP routine, see the z/VM: CMS Callable Services Reference.

Opening and Closing Files
CMS provides CSL routines to open, close, and manipulate files residing in SFS and on minidisks. See
Chapter 12, “Manipulating SFS and Minidisk Files and Directories,” on page 129 for details on opening,
closing, reading, and writing SFS and minidisk files.

OpenExtensions Callable Services
OpenExtensions interfaces, such as POSIX and socket functions, are provided as C/C++ library routines in
the C/C++ run-time library included in Language Environment. For programs written in other languages, a
language-neutral version of the functions is provided in CMS as a set of CSL routines (stored in VMMTLIB)
known as the OpenExtensions callable services. These CSL routines are called by the C/C++ library
routines to provide the functions, but are also available to other applications. Programming language
binding files are provided for REXX and Assembler (H or XL) application usage of these CSL routines.
In addition, a REXX subcommand environment, ADDRESS OPENVM, is provided so the routines can be
invoked as REXX functions. These routines provide functions for manipulating Byte File System (BFS) files
and performing socket-related operations. For more information, see the z/VM: OpenExtensions Callable
Services Reference.

REXX Sockets
The REXX Sockets API provides support for socket applications written in REXX for the TCP/IP
environment. The SOCKET external function of REXX/VM uses the TCP/IP IUCV API to access the TCP/IP
internet socket interface. This allows you to use REXX to implement and test TCP/IP applications. The
REXX socket functions are similar to socket calls in C.

REXX Sockets provides functions to:

• Process socket sets
• Initialize, change, and close socket sets
• Exchange data
• Resolve names for sockets
• Manage configurations, options, and modes for sockets

Coding Your Program

40 z/VM: 7.2 CMS Application Development Guide

• Translate data and do tracing

For information about the REXX socket functions, see the z/VM: REXX/VM Reference.

CPI Communications Routines
In z/VM, APPC/VM enables applications to communicate with each other. CPI Communications is the
"high-level language" interface to APPC/VM. CPI Communications consists of a group of routines that
enable one application to communicate with another application. Applications written in REXX or a
high-level language can use these routines.

See Part 4, “Connectivity Programming in CMS,” on page 457 for information on the CPI Communications
routines. A complete description of each routine is found in the CPI Communications Reference.

Macros and Functions
CMS provides many assembler macros and functions. These macros and functions provide all the
functions needed to write an application, ranging from writing lines to a terminal to abending the virtual
machine.

See z/VM: CMS Macros and Functions Reference for details on the CMS macros and functions. See z/VM:
CMS Application Development Guide for Assembler for information on how to use some of these macros
and functions in your assembler applications.

DB2 Server for VM Statements
If your application needs data that is stored on an DB2 database, your application can issue DB2
commands to retrieve, insert, update, and delete this data.

See Chapter 28, “Using DB2 Server for VM,” on page 425 for details on coding and using DB2 commands.

Coding Your Program

Chapter 4. Coding Your Program 41

Coding Your Program

42 z/VM: 7.2 CMS Application Development Guide

Chapter 5. Compiling Your Program

This chapter includes information on:

• Invoking different language compilers
• Describing the files used and generated by the compilers
• Identifying libraries that contain files necessary to compile your application
• Identifying the location of your source files
• Specifying options on the compiler commands.

Before you run your application, you must compile your application. Compiling translates a program
written in a high-level language into machine language. However, before you compile a program, you need
to:

• Access the minidisk containing the compiler you need.
• Provide sufficient storage. See the individual language manual for storage requirements.
• Be aware of the file attributes of the individual source files. The file attributes are determined by the
file type. See the z/VM: XEDIT Commands and Macros Reference for a list of file types and their file
attributes.

Invoking the Compiler
Each language has a different command to invoke its compiler. The following table lists some of the
languages z/VM supports and the corresponding command to invoke the language compiler.

Language Compiler Command

VS COBOL II COBOL2

OS PL/I PLIOPT

VS Pascal VSPASCAL

VS FORTRAN FORTVS2

C/C++ c89 or cxx
CC (for non-OpenExtensions program only)

Ada/370 A370 (for single source file)
PKG370 (for multiple source files)

When you invoke these commands, CMS searches all of your accessed disks or directories, using the
standard search order, until it locates the specified file. See “CMS Command Search Order” on page 8
for a description of the search order. The compiler creates an output listing file (file type of LISTING)
and a text deck file (file type of TEXT). LISTING files contain the compilation list for each source file you
compile. TEXT files contain the machine-language relocatable object code.

The compiler writes these files to disk according to the following priorities:

• If the source file is on a read/write minidisk or directory, the TEXT and LISTING files are written onto
that minidisk or directory.

• If the source file is on a read-only minidisk or directory that is an extension of a read/write minidisk or
directory, the TEXT and LISTING files are written onto the read/write minidisk or directory.

• If the source file is on any other read-only minidisk or directory, the TEXT and LISTING files are written
onto the first read/write minidisk or directory.

Compiling Your Program

© Copyright IBM Corp. 1990, 2022 43

• If the source file is on tape or in your virtual reader, the TEXT and LISTING files are written onto the first
read/write minidisk or directory.

• If the preceding choices are not available, the command is terminated.

Example: Suppose you have a FORTRAN program called TESTPROG FORTRAN. To compile the TESTPROG
program using the VS FORTRAN Version 2 compiler, enter:

fortvs2 testprog

CMS creates two files on your read/write minidisk or directory: TESTPROG TEXT and TESTPROG LISTING.

The following figure shows the files the FORTRAN compiler uses:

Figure 7. Files the FORTRAN Compiler Uses

If your FORTRAN program compiled correctly, you receive a message similar to the following:

VS FORTRAN VERSION 2 COMPILER ENTERED. 15:33:48

TESTPROG END OF COMPILATION 1 ******

VS FORTRAN VERSION 2 COMPILER EXITED. 15:33:48

Ready; T=0.06/0.02 15:33:49

If you had any errors in your program:

1. Edit the source program.
2. Correct the errors.
3. Compile the program again.

Identifying Source Files
Your source files can be located on a minidisk, in a directory, on tape, or in your virtual reader. If the
source files are on a minidisk or in a directory, just invoke the compiler. If they are on tape or in your
virtual reader, before invoking the compiler, you must do the following:

Compiling Your Program

44 z/VM: 7.2 CMS Application Development Guide

Source Files Located on Tape
If your FORTRAN source file is on tape, the source file must have been sent to tape using the MOVEFILE
command. The MOVEFILE command puts the file in the correct format for the compiler. If the TAPE DUMP
command is used, the file is not in the correct format and it will not compile correctly. To identify where
the source file is located, enter the following FILEDEF command:

FILEDEF ddname TAPn (RECFM F LRECL 80 BLKSIZE 80

Ddname is the name the file is referred to in your program. Each language has a specific ddname. See the
individual language manual for details. For example, if you were compiling a FORTRAN program, ddname
would be FORTRAN. If you were compiling a PL/I program, ddname would be SYSIN.

The n is a number from 1 through 4 that corresponds to virtual tape units 181 through 184. RECFM F
LRECL 80 BLKSIZE 80 identifies the record format, the logical record length, and the block size.

Source Files Located in Your Virtual Reader
If the FORTRAN source file is located in your virtual reader, the source file must have been sent to the
virtual reader using the PUNCH command with the NOHEADER option. The PUNCH command formats the
file correctly for the compiler. The NOHEADER option is specified when you punch a file that is not going
to be read by the RECEIVE command. If the source file was sent using the SENDFILE command, the file is
not in the correct format. The application will not compile correctly.

You must also be aware of the file class of the source file. To ensure that you use the correct file when
you invoke the compiler, you should change the class of the source file to a class not already assigned to
the other files in your reader. (If the source file is the only file in your reader, you do not have to issue the
CHANGE and SPOOL commands. You just have to issue the FILEDEF command.)

To change the class, enter the following CHANGE command:

CHANGE RDR spoolid CLASS c

spoolid is the spool ID number associated with the source file. c is the class you want the file changed to.

Then, you must make sure that your reader has the same class as the class of the source file. To do this,
enter the following SPOOL command:

SPOOL READER CLASS c

c is the same class specified in the CHANGE command. See the z/VM: CP Commands and Utilities
Reference for information on the CHANGE and SPOOL commands.

Next, to identify where the source file is located, enter the following FILEDEF command:

FILEDEF ddname READER (RECFM F LRECL 80 BLKSIZE 80

Ddname is the name by which the file is referred to in your program. Each language has a specific
ddname. See the individual language manual for details. For example, if you were compiling a FORTRAN
program, ddname would be FORTRAN.

Note: After a source file is compiled, it is erased from the reader.

Identifying Libraries to Be Searched
If you compile a source program that uses MACRO or COPY files, before you invoke the compiler, the
macro libraries containing these files must be made available. Otherwise, CMS cannot find these files
and you cannot compile your application successfully. To identify the macro libraries, issue the GLOBAL
command.

For example, if COPYLIB MACLIB contains COPY files your application uses, enter the following GLOBAL
command to identify the COPYLIB macro library:

Compiling Your Program

Chapter 5. Compiling Your Program 45

GLOBAL MACLIB COPYLIB

You can specify more than one library on the GLOBAL command line. The libraries you specify on a
GLOBAL command line are searched in the order you specify them. A GLOBAL command remains in effect
for the remainder of your terminal session, until you issue another GLOBAL MACLIB command, or until
you IPL CMS again.

See “Creating and Manipulating Macro Libraries” on page 306 for detailed information on creating macro
libraries.

Specifying Compiler Options
When you compile your application, you may want to specify some options on the compiler command.
The following list describes a few of these options. See the individual language manual for a complete list
of their compiler options.
AMODE

specifies whether your application can run in 24-bit addressing mode or 31-bit addressing mode.
RMODE

specifies whether your application can reside above or below the 16 MB line.
XREF

produces a source cross reference listing that includes symbols and statement labels used in the
source program.

Compiling Your Program

46 z/VM: 7.2 CMS Application Development Guide

Chapter 6. Loading and Running Your Program

This chapter includes information on:

• Defining your input and output files using the FILEDEF, CREATE NAMEDEF, and DLBL commands.
• Identifying libraries to resolve references using the GLOBAL command.
• Loading your application using the LOAD and INCLUDE commands.
• Running your application using the START, GENMOD, LKED, OSRUN, and OPENVM RUN commands.

Defining Input and Output Files
If your application has input or output files, before running your application, you must identify the files to
CMS with the FILEDEF command. The FILEDEF command in CMS performs the same functions as the data
definition (DD) card in MVS JCL: it describes the input and output files.

Similar to the CMS FILEDEF command is the CMS file system CREATE NAMEDEF command. The CREATE
NAMEDEF command defines a namedef name that is to be associated with a real file, SFS directory, or file
mode. This namedef name allows you to write application programs to use file system routines such that
the file, directory names and file modes are defined externally to the program.

Using the FILEDEF Command
When you issue the FILEDEF command, you specify the following information:

• The ddname.
• The device type.
• A file identifier, if the device type is DISK.
• The type of label on your tape file, if tape label processing is specified.
• One or more options, as necessary.

The FILEDEF command connects the logical I/O control LIOCS (logical I/O control statements)
statements (LIOCS) in your program with the physical I/O PIOCS (physical I/O statements) control
statements (PIOCS) that define the I/O files outside the program.

Example: If you are writing a COBOL program, the SELECT or ASSIGN clause in the FILE CONTROL
paragraph specifies the ddname. For example, your program could contain the following FILE CONTROL
paragraph and FD statements:

FILE-CONTROL.
 SELECT INFILE ASSIGN TO UR-3505-S-TDATAIN.
 SELECT OUTFILE ASSIGN TO DA-3390-S-TDATAOUT.
 .
 .
 .
FD INFILE
 .
 .
 .
FD OUTFILE
 .
 .
 .

In this case, ddname for the input file is TDATAIN, and ddname for the output file is TDATAOUT. These are
the names you would use in the ddname portion of the FILEDEF command. For example, if the input file is
to be read from your virtual reader, enter the following FILEDEF command:

FILEDEF TDATAIN READER

Loading and Running Your Program

© Copyright IBM Corp. 1990, 2022 47

Specifying Device Type
For input files, the device type you enter on the FILEDEF command line identifies the device from which
you want the records read. The device type can be:
DISK

for files on CMS (minidisk or directory), OS, or VSE disks.
TERMINAL

for keyboard input.
READER

for input from your virtual reader.
TAPn

for tape. The n designates multiple tape drives.

For output files, the device you specify can be:
DISK

for files on CMS (minidisk or directory), OS, or VSE disks.
TERMINAL

for terminal output.
PRINTER

for the virtual printer.
TAPn

for tape. The n designates multiple tape drives.
PUNCH

for the virtual punch.
You may specify a FILEDEF, but may not need the output. For example, when you test a program, you may
be concerned with its logic rather than the correctness of the output. In this case, you can specify the
device type DUMMY. FILEDEF provides the necessary linkage between LIOCS and PIOCS, but no actual
data is produced. Also, if your program can run without input, you can use the device type DUMMY when
defining input files.

Specifying a CMS File ID for Input and Output
If the device type is DISK and the input or output file is on a CMS disk, you can specify a CMS file identifier
as part of the device type specification.

In the preceding example, the TESTPROG COBOL program has an input ddname of TDATAIN. Suppose this
file resides on your A-disk in a file called TEST DATA A1. To identify the file to CMS prior to running your
program, enter the following command (on the command line or from within an EXEC):

filedef tdatain disk test data

Specifying FILEDEF Options
The FILEDEF command provides several options to control file specifications. Some of these options are:
BLOCK (or BLKSIZE), LRECL, RECFM, and DSORG

specifies and describes the file format and organization.
PERM

specifies whether the file definition is to be permanent (until CHANGE, or IPL (next session)).
MEMBER

specifies if the file is a member of an OS partitioned data set or CMS MACLIB or TXTLIB.
UPCASE/LOWCASE

determines whether output is in uppercase or mixed case.
See the z/VM: CMS Commands and Utilities Reference for a complete description of each option.

Loading and Running Your Program

48 z/VM: 7.2 CMS Application Development Guide

Identifying VSAM Files Using the DLBL Command
If your application uses VSAM files for input or output, use the DLBL command to identify these VSAM
files to CMS. For details on the DLBL command, see the z/VM: CMS Commands and Utilities Reference.

Using the CREATE NAMEDEF Command
Specifically, a namedef is a 1- to 16-character string that represents one of the following:

• File name and file type
• Directory ID
• File mode letter

To associate a namedef with the name of a real file or directory, you issue the CREATE NAMEDEF
command prior to running the program. When the program runs, CMS does the operations on the file or
directory the namedef represents. Now by using namedefs, you can run a program to process different
files, directories, or file mode letters without changing the code and recompiling the program. For more
information on using namedefs, see “Using a Namedef” on page 131. For more information on the
CREATE NAMEDEF command, see the z/VM: CMS Commands and Utilities Reference.

Loading Your Application
The compiler generates an object file (TEXT file) that contains machine-language object code. The TEXT
file is also referred to as an object module. To load a TEXT file into storage, issue the LOAD command,
specifying the name of a TEXT file you want to load. To load subsequent TEXT files, use the INCLUDE
command.

The INCLUDE command has a similar format and option list as the LOAD command. The main difference
between them is that when you issue the INCLUDE command, the loader tables are not reset. If you issue
two LOAD commands in succession, the second LOAD command replaces the first.

Conversely, the INCLUDE command, which you must issue when you want to load additional files into
storage, should not be used unless you have just issued a LOAD command. You may specify as many
INCLUDE commands as necessary following a LOAD command to load files into storage.

When the LOAD and INCLUDE commands operate, they produce a load map. You may find the load map
useful in debugging your programs. The load map indicates entry points loaded, their virtual storage
locations, and their AMODE and RMODE values. The load map shows what the default values are or what
you may code in your application. The load map does not show what options you may have specified on
the LOAD command.

The load map is written onto your A-disk as LOAD MAP A5. Each time you issue the LOAD command, the
old load map is replaced by a new one. However, if you specify the NOMAP option, the old LOAD MAP file
is erased and a new LOAD MAP file is not created.

Where Are TEXT Files Loaded?
The relocatable object code references addresses relative to the start of an entry point. The reference
point is always taken as zero. However, when you load your object module, the LOAD command loads
the object module into storage beginning at X'20000' or the largest contiguous storage location available,
unless otherwise specified. When the program is loaded, all address references within the module are
resolved relative to the load point.

For example, if an object module references an address at X'30A' in the relocatable (TEXT) version, after
issuing the LOAD command, all references to that address are changed to X'2030A'.

Loading a TEXT file into storage is simple; you issue the LOAD command specifying the name of a TEXT
file you want to load. Determining where the TEXT file gets loaded can be a little more complex. Where
CMS loads programs depends on many factors:

• The mode of the virtual machine (ESA, XA, or XC).

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 49

• Whether you specify the ORIGIN option.
• The setting of the SET LOADAREA command. The default value is LOADAREA=RESPECT.
• The residency mode of the program.

Table 2 on page 50 summarizes how the various options determine where a program is loaded.

Table 2. Where CMS Loads Programs

LOAD
Command

SET
LOADAREA
Setting

Result

LOAD pgma ... 20000 CMS loads pgma at X'20000' This overrides
the RMODE value (if any) set in the TEXT
file.

LOAD pgma (RMODE 24 20000 CMS loads pgma at largest contiguous free
storage area under 16 MB.

LOAD pgma (RMODE ANY 20000 CMS loads pgma at largest contiguous free
storage area above 16 MB (if available).

LOAD pgma (AMODE 24, 31 or ANY 20000 Load begins at the area determined from
the default RMODE setting.

LOAD pgma (ORIGIN TRANS 20000 CMS loads pgma at the start of the
transient area.

LOAD pgma (ORIGIN hexloc 20000 CMS loads pgma at hexloc.

LOAD pgma ... RESPECT CMS loads pgma at the largest available
contiguous free storage area according to
the first RMODE setting in the TEXT file.
If RMODE is omitted or if the first RMODE
setting in the TEXT file is RMODE 24, CMS
loads the program in the largest area below
16 MB. If the first RMODE setting in the
TEXT file is RMODE ANY, CMS loads the
program in the largest area above 16 MB.
(If CMS encounters a subsequent setting
of RMODE 24 in the TEXT file, it stops
loading the program above 16 MB, issues
a message, and starts loading the program
below 16 MB.)

LOAD pgma (RMODE 24 RESPECT CMS loads pgma at largest contiguous free
storage area under 16 MB.

LOAD pgma (RMODE ANY RESPECT CMS loads pgma at largest contiguous free
storage area above 16 MB (if available).

LOAD pgma (AMODE 24, 31 or ANY RESPECT Load begins at the area determined from
the default RMODE setting.

LOAD pgma (ORIGIN TRANS RESPECT CMS loads pgma at the start of the
transient area.

LOAD pgma (ORIGIN hexloc RESPECT CMS loads pgma at hexloc.

Note:

1. The combination AMODE 24/RMODE ANY is incorrect. Specifying AMODE 24 and an ORIGIN address
greater than 16 MB is also incorrect.

Loading and Running Your Program

50 z/VM: 7.2 CMS Application Development Guide

2. Using the INCLUDE command:

a. If, after you load a program above 16 MB, CMS encounters an RMODE 24 in a TEXT file you
INCLUDE, CMS restarts the load process below 16 MB. Note that CMS restarts the load in the
existing environment—if you change you virtual machine environment (for example, release disks)
between the time you LOAD a file and the time you INCLUDE a file, unpredictable results may occur.

b. If you specify an ORIGIN address on the INCLUDE command, that address must be on the same
side of the 16 MB line as the program already loaded; otherwise, the INCLUDE command fails. For
example, if you LOAD a program named PIE above 16 MB and you attempt to INCLUDE a program
named ASLICE at an ORIGIN below 16 MB, the INCLUDE command fails and ASLICE does not get
loaded; when PIE runs it will be missing ASLICE.

c. If you (a) specify an ORIGIN address on the INCLUDE command that requires storage currently
occupied by programs loaded using the LOAD command, and (b) issue the START command,
unpredictable results may occur.

3. The CMS loader uses the following logic when resolving names entered on the LOAD command. First
search all disks for matching text file names in order from left to right. If the name is found it is loaded
into storage. If it is not found, it is marked as unresolved. If text deck is loaded as a result of the name
being found on a disk and it contains any VCONs, they will not be resolved until the entire command
line is parsed. After the command line is parsed, unresolved symbols will be searched in the order that
they where created. For more information on unresolved names see “Resolving External References by
Identifying Libraries” on page 52.

How Long Does Your Program Stay in Storage?
Program life refers to how long a program remains in storage. In CMS, program life is determined by form
of your program (TEXT file or module file) and by the method used to load the program.

Knowing how and when the various program forms are deleted from storage can help you select how you
want to package your program and the load method most suitable for your application.

The following list summarizes when programs are deleted according to the method used to load the
program.

1. LOAD, INCLUDE—in general, TEXT files loaded using the LOAD and INCLUDE commands remain in
storage until you issue another LOAD or LOADMOD command or until CMS abend recovery occurs.

a. You can use the PRES option of the LOAD and LOADMOD commands to prevent deletion of
programs previously loaded using LOAD, INCLUDE, or LOADMOD; however, if a program you load
requires storage that is currently held by another program, the other program is deleted regardless
of whether you specify the PRES option. (In prior releases, the previously loaded program would be
overlaid but not deleted.)

b. Because CMS deletes programs rather than overlaying them (see the previous note), the SET
LOADAREA command setting can affect the program life of a nonrelocatable program. When
LOADAREA=20000, CMS loads TEXT files at storage location X'20000' unless an ORIGIN is
specified. For example, assume that (a) you have two programs, OLDPROG and NEWPROG, (b)
LOADAREA=20000 is in effect, and (c) you enter the following sequence of commands:

load oldprog (pres
load newprog

Because OLDPROG has no ORIGIN specified, CMS loads it at X'20000' Because NEWPROG also
has no ORIGIN specified, CMS loads it at X'20000'. Because OLDPROG resides in storage that
NEWPROG needs, OLDPROG is deleted, even though the PRES option was specified.

On the other hand, when LOADAREA=RESPECT (the default value), CMS loads TEXT files at
the largest contiguous area of storage available unless an ORIGIN is specified. Therefore, if
LOADAREA=RESPECT you enter the following sequence of commands:

load oldprog (pres
load newprog

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 51

OLDPROG is not deleted. Both OLDPROG and NEWPROG will reside in the largest contiguous pieces
of storage available at the time they were loaded.

c. If you issue an INCLUDE command with a specified ORIGIN that requires storage currently
occupied by programs that were specified by the LOAD command, unpredictable results may occur
when a START command is issued.

2. LOADMOD—modules loaded using the LOADMOD command remain in storage until you issue a
subsequent LOAD or LOADMOD command, or until CMS abend processing occurs.

a. You can use the PRES option of the LOAD and LOADMOD commands to prevent deletion of
programs previously loaded by LOAD, INCLUDE, or LOADMOD; however, if a program you load
requires storage that is currently held by another program, the other program is deleted regardless
of whether you specify the PRES option. (In prior releases, the previously loaded program would be
overlaid but not deleted.)

b. Because CMS deletes programs rather than overlaying them (see the previous note), the SET
LOADAREA command setting can affect the program life of a nonrelocatable program. See “1.b” on
page 51 for a further discussion.

3. Command Invocation—modules that are invoked as commands (invoked by the file name associated
with the MODULE file) remain in storage until the command completes (end-of-command) or CMS
abend recovery.

Note: Attempting to use the START command to restart a module that has been invoked as a command
can cause unpredictable results.

4. NUCXLOAD—modules that you use the NUCXLOAD command to invoke as nucleus extensions remain
in storage until:

a. You issue the NUCXDROP command to delete the program.
b. CMS abend recovery (unless you issue the SYSTEM option of the NUCXLOAD command). If you

issue the SYSTEM option of NUCXLOAD, the program is not deleted during CMS abend recovery.
c. You re-IPL CMS.

5. CMSCALL—if you use the CMSCALL macro to invoke a module, the module remains in storage until it
completes (end-of-command) or CMS abend recovery.

6. OS/MVS LOAD macro—programs invoked using the OS/MVS LOAD macro remain in storage until they
complete (end-of-command), until they are deleted by the OS/MVS DELETE macro, until they are
deleted to provide storage for subsequent programs you load, or until CMS abend recovery.

a. If you use the OS/MVS LOAD macro to load a TEXT file that (a) has already been loaded by
the LOAD command and (b) is still identified in the CMS loader tables, CMS does not reload the
TEXT file; rather, it reuses the program currently loaded. The length returned in R1 under these
circumstances is unpredictable.

b. A program that uses the OS/MVS LOAD macro to load may be deleted if it resides in storage
required by a nonrelocatable program you subsequently load.

c. Programs that use the OS/MVS LOAD macro to load are not automatically deleted if the CMS LOAD
or LOADMOD commands are subsequently issued before end-of-command.

d. If a program is brought into storage by the LOAD macro and a LINK macro is issued for the same
program, the copy of the program already in memory will be used.

e. A program which is loaded into memory by the LINK macro will be deleted at the ENDSVC
processing.

f. If you use the OS/MVS LOAD macro to load a module from CMS LOADLIB and this module was
marked as nonreusable or nonreentrant, the LOAD macro will always bring in a new copy of the load
module. The previous copy of the load module will be deleted.

Resolving External References by Identifying Libraries
When you issue the LOAD or INCLUDE commands to load files into storage, the loader checks for
unresolved references.

Loading and Running Your Program

52 z/VM: 7.2 CMS Application Development Guide

Figure 8. CMS Loader

If there are any (as a result of a CALL to a subprogram, for example), the loader searches your minidisks
and directories for TEXT files with file names that match the external entry name.

Note: TEXT is the default file type searched for. You can specify a file type other than TEXT with the
FILETYPE option on the LOAD and INCLUDE commands. However, for the purposes of this discussion, we
will assume that you are using only TEXT files.

When it finds a match, the loader loads the TEXT file into storage. If it does not find a match, the loader
searches any available TXTLIBs for members that match. If there are still unresolved references, you
receive a message identifying the undefined routines.

To resolve these unresolved references, issue the GLOBAL command to identify the TXTLIBs containing
these routines. Then issue the INCLUDE command to load additional TEXT files or TXTLIB members into
storage.

A failure to resolve external references might occur if you have TEXT files with file names that are
different from either the CSECT names or the entry names. You must explicitly issue LOAD and INCLUDE
commands for these files.

At run time, if there are still any unresolved references, their addresses are all set to 0 by the loader; so
any attempt to address them in a program may result in a program check.

A duplicate identifier message could occur if you have a library that contains a member with a name
different from the CSECT name and both the member and the CSECT are forced to be loaded by
unresolved references.

Example: Suppose your application called REPORTA calls routines PRINT and ANALYZE, and you enter
the following LOAD command to load your application called REPORTA into storage:

LOAD REPORTA

If the loader cannot locate routines PRINT and ANALYZE, you may receive the message:

The following names are undefined:
 PRINT ANALYZE

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 53

Now, suppose NEWLIB TXTLIB contains the PRINT and ANALYZE routines. To resolve the two undefined
references, enter the following GLOBAL, INCLUDE, and START commands to run your application:

global txtlib newlib
include print analyze
start

Also, you may have to identify specific TXTLIBs for the programming language you are using. For example,
before running your COBOL application, you may have to enter the following GLOBAL command:

GLOBAL TXTLIB VSC2LTXT

LOAD and INCLUDE Options
There are many options of the LOAD and INCLUDE commands you may consider using. Some of these
options are:
AMODE

specifies whether your application uses 24-bit addressing or 31-bit addressing. The AMODE option on
the LOAD command overrides any AMODE value set on the compiler command (if an AMODE setting
was used on the compiler command). AMODE is not an option on the INCLUDE command.

RMODE
specifies whether your application can reside above or below the 16 MB line. The RMODE option on
the LOAD command overrides any RMODE value set on the compiler command (if an RMODE setting
was used on the compiler command). RMODE is not an option on the INCLUDE command.

RESET
changes the entry point where control is passed when execution begins.

AUTO, LIBE, and DUP
controls how CMS resolves references and handles duplicate CSECT names.

CLEAR
clears storage to binary zeros before loading files. For the CLEAR option to be meaningful the ORIGIN
TRANS option, which loads the program into the CMS nucleus transient area, must be used.

HIST, NCHIST
saves history information from the TEXT files. The HIST option saves all history information. The
NCHIST options saves only noncommented history information. If neither the HIST nor NCHIST is
specified on the LOAD or INCLUDE commands, the history information is not saved for the files being
loaded into storage.

See the z/VM: CMS Commands and Utilities Reference for more information on the LOAD and INCLUDE
command options.

Loader Control Statements
In addition to the options provided by the LOAD and INCLUDE commands, you can also use loader control
statements. You can insert these statements in TEXT files using the editor. These statements allow you to:

• Set the location counter to control the load address of the next TEXT file
• Modify instructions and constants in a TEXT file (patch a program)
• Change the entry point
• Nullify an external reference.

See the z/VM: CMS Commands and Utilities Reference for a description of these statements (as well as the
standard loader statements produced by the compiler).

Loading and Running Your Program

54 z/VM: 7.2 CMS Application Development Guide

Determining Program Entry Points
When you load a single TEXT file or a TXTLIB member into storage to run, the default entry point is the
first CSECT name in the object module loaded. You can specify an alternate entry point on the LOAD,
INCLUDE, or START commands.

When you load multiple TEXT files (either explicitly or implicitly by allowing the loader to resolve external
references), you also have the option of specifying the entry point on the LOAD, INCLUDE, or START
command lines.

If you do not specifically name an entry point, the loader determines the entry point for you according to
the following hierarchy:

1. An entry point specified on the START command
2. The last entry specified with the RESET option on a LOAD or INCLUDE command
3. The name on the last ENTRY statement that was read
4. The name on the last LDT statement that contained an entry name that was read
5. The name on the first assembler- or compiler-produced END statement that was read
6. The first byte of the first control section loaded.

For example, if you load a series of TEXT files that contain no control statements and do not specify
an entry point on the LOAD, INCLUDE, or START commands, execution begins with the first file that you
loaded. If you want to control the execution of program subroutines, you should be aware of this hierarchy
when you load programs or when you place them in TXTLIBs.

An area of particular concern is when you issue a dynamic load (with the OS/MVS LINK, LOAD, or XCTL
macros) from a program, and you call members of CMS TXTLIBs. The CMS loader determines the entry
point of the called program and returns the entry point to your program. If a TXTLIB member that you load
has a VCON to another TXTLIB member, the LDT card from the second member may be the last LDT card
read by the loader. If this LDT card specifies the name of the second member, CMS may return that entry
point address to your program rather than the address of the first member.

Running Your Application
You can use one of the following methods to create an executable program and to run it:

• Use the LOAD and INCLUDE commands to produce an executable program in virtual storage. Use the
START command to run this program.

• Use the LOAD, INCLUDE, and GENMOD commands, or use the BIND command, to build an executable
program stored as a MODULE file on a CMS disk or directory. Run the program by issuing the name of
the MODULE file created by the GENMOD or BIND command.

• Use the LKED or BIND command to create an executable program stored as a load module in a member
of a CMS LOADLIB. Use the OSRUN command to run this program.

• Use the LOAD, INCLUDE, and GENMOD commands, or use the BIND command, to build an executable
program stored as a module file on a CMS disk or directory. Use the OPENVM PUTBFS command to copy
the file to BFS. Use the OPENVM RUN command to run this program.

• Use the c89 utility, the cxx utility, or the BIND command to create an executable file in BFS. Use the
OPENVM RUN command to run this program.

Using the START Command
After you compile your application, access any libraries using the GLOBAL command, and create a
temporary copy of your executable program in virtual storage using the LOAD and INCLUDE commands,
issue the START command to run your application.

Example: Suppose you have an object file called WELCOME TEXT. You can run this program using the
following sequence of commands:

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 55

load welcome
start

or the following command:

load welcome
(start

Passing Parameters on the START Command
If the program you are going to run expects a parameter list, you can specify the arguments on the START
command line. For example, to pass the argument 007 to your application, enter:

start * 007

* specifies the default entry point that is usually the beginning of your application. See the z/VM: CMS
Commands and Utilities Reference for details on the START command.

Using the GENMOD Command
After you compile your application, access any libraries needed using the GLOBAL command, and
load your application into virtual storage using the LOAD and INCLUDE commands, issue the GENMOD
command to create a MODULE file stored on your disk or directory. Then, issue the file name of the
MODULE file to run your application.

Example: Suppose you have an object file called WELCOME TEXT. To create a MODULE file, you must load
the required files into storage and then enter the GENMOD command:

load welcome
genmod welcome

Now, CMS generated an executable nonrelocatable program called WELCOME MODULE. See “Creating
Nonrelocatable and Relocatable Modules” on page 56 for information about creating relocatable and
nonrelocatable MODULE files.

To run WELCOME MODULE, enter:

welcome

If your program expects arguments passed to it, you can enter them following the module name. For
example, if you want to pass WELCOME MODULE the argument 007, enter:

welcome 007

Creating Nonrelocatable and Relocatable Modules
A relocatable module is one that CMS does not need to load at a specific storage location. CMS loads
relocatable modules at the highest available storage range large enough to contain it. Defining your
modules as relocatable helps eliminate the possibility that the storage your module requires is being
used by another program. By contrast, CMS loads nonrelocatable modules according to the location of the
TEXT file when the module was created.

For CMS to create a relocatable module, you must specify the RLDSAVE option on the LOAD command.
The RLDSAVE option instructs the CMS loader to save the relocation information from the TEXT file. By
default, CMS does not save this relocation information when you use the LOAD command.

Example — Creating a Relocatable Module
To create a relocatable module named OZ from TEXT files named DORTHY, TINMAN, LION, and
TOTOTOO, enter the following commands:

Loading and Running Your Program

56 z/VM: 7.2 CMS Application Development Guide

load dorthy tinman lion tototoo (rldsave
genmod oz

When you run OZ MODULE, CMS loads it at the highest available storage range large enough to contain it.

Example — Creating a Nonrelocatable Module
To create a nonrelocatable module named NOTOZ from a TEXT file named WITCH TEXT, enter the
following commands:

load witch (norldsav
genmod notoz

Or, because NORLDSAV is the default value, you could enter:

load witch
genmod notoz

When you run NOTOZ MODULE, CMS loads it at the same storage location that WITCH TEXT occupies
when you issue the GENMOD command.

Creating a Module to Run in the Transient Program Area
The CMS transient area, a two-page area of storage located at X'E000', is reserved for the execution of
frequently used programs and commands. Programs that execute in the transient area run disabled for
interrupts.

To generate a module to run in the transient area, use the ORIGIN TRANS option when you load the TEXT
file into storage, then enter the GENMOD command. For example:

load myprog (origin trans
genmod

The two restrictions placed on command modules running in the transient area are:

• They may have a maximum size of 8192 bytes (the size of the transient area).
• They must be serially reusable.

The z/VM: CMS Commands and Utilities Reference identifies the CMS commands that run in the transient
area.

Specifying Addressing and Residency Modes for a Module
You can use the AMODE and RMODE options of the GENMOD command to specify the addressing and
residency modes of a MODULE file. Note that the AMODE and RMODE values you specify on GENMOD
override the values that were previously set. For example, to specify that ODDJOB run as an AMODE 31
RMODE ANY program, enter:

load oddjob
genmod (amode 31 rmode any

Restricting a Module to XC Mode
You can use the XC option of the GENMOD command to specify that a module will run only in an XC virtual
machine. For example, to specify that ODDJOB will run only in an XC virtual machine, enter:

load oddjob
genmod (XC

Note: CP does not support System/370 (370 mode) virtual machines. The 370 option of the GENMOD
command is also not supported. However, the CMS SET GEN370 OFF command allows modules
generated with the GENMOD 370 option to run in an ESA, XA, or XC virtual machine. See the z/VM:
CMS Commands and Utilities Reference for more information on the SET GEN370 command.

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 57

Saving History Information for Modules
You can use the HIST or NCHIST option of the LOAD and INCLUDE commands to create a module that
includes history information from the TEXT file used. The HIST option saves all history information. The
NCHIST option saves only noncommented history information. If neither the HIST nor NCHIST option is
specified on the LOAD or INCLUDE commands, the history information is not saved for the files being
loaded into storage. For example:

load progone (hist
include progtwo (hist
genmod

The MODULE file created contains the history information that was in PROGONE TEXT and PROGTWO
TEXT.

Loading MODULE Files
To load a MODULE file, you can:

• Issue the LOADMOD command from your terminal, from an EXEC, or by the CMSCALL macro from an
assembler program. You can use the ORIGIN option on the LOADMOD command to specify the load
address; otherwise, CMS loads the MODULE where storage is available. The LOADMOD command should
be used only with module files created by the GENMOD command with the MAP option.

• Enter the name of the module from your terminal.
• Issue the NUCXLOAD command from your terminal, from an EXEC, or by the CMSCALL macro from an

assembler program.
• Issue the CMSCALL macro from an assembler program.
• Issue the OS/MVS LOAD macro from an assembler program.

Loading a MODULE into a Saved Segment
You can load a MODULE file into a logical saved segment, a member of a CP segment space, or a
discontiguous saved segment (DCSS). For a brief description of these types of saved segments, see
Chapter 27, “Using Saved Segments,” on page 419. For information about defining and building saved
segments, see z/VM: CP Planning and Administration.

Note: Building a saved segment requires the CP authority to perform the DEFSEG and SAVESEG
operations.

Using the BIND Command
After you compile your application and access any libraries needed using the GLOBAL command, use the
BIND command to create a module file stored on your disk or directory. Then enter the file name of the
module file to run your application. The BIND command may also be used to create an executable file in
BFS or a member of a CMS LOADLIB. For more information about using the BIND command, refer to z/VM:
Program Management Binder for CMS.

Using the LKED and OSRUN Commands
After you compile your application, you can create (also referred to as link-edit) an executable application
using the LKED command. The LKED command uses the MVS/XA linkage editor to create this executable
program from a CMS TEXT file, a TXTLIB member, or another LOADLIB member and stores it as a load
module as a member of a CMS LOADLIB.

The primary LKED input is a data set known to the linkage editor as SYSLIN, which is identified by the
fname operand of the LKED command. The file type of the input file named must be TEXT. Optionally, you
can override the fname operand by issuing a FILEDEF that defines SYSLIN as the ddname of an alternate
primary input source. If your alternate input is a CMS file, the choice of file type is unrestricted. The
contents of the SYSLIN data set may be:

Loading and Running Your Program

58 z/VM: 7.2 CMS Application Development Guide

1. An object module (TEXT file), such as, assembler or compiler output
2. Linkage editor control statements
3. A combination of an object module and control statements.

Linkage editor control statements can be inserted before, between, and after object modules and other
control statements. Editing procedures can be used to construct files to meet your requirements. Linkage
editor INCLUDE statements may be used to designate explicitly the following files or file members as
secondary linkage editor input:

1. CMS TEXT files
2. Members of CMS TXTLIB files
3. Members of CMS LOADLIB files
4. Members of OS/MVS object libraries
5. Members of OS/MVS load libraries.

A FILEDEF must be issued before the LKED command to define a unique ddname for each file to be
included as secondary linkage editor input. An INCLUDE statement in the SYSLIN data set must specify
the ddname assigned to the file by your FILEDEF. For library files, the statement must also specify all
members of the library that are to be included as input.

Once you have identified all your input files and created your executable program, issue the GLOBAL and
OSRUN commands. The GLOBAL command identifies all the load libraries that need to be searched when
running your program. The OSRUN command runs your load module.

Example 1: Suppose you have a FORTRAN object file called TESTFILE TEXT. To create the CMS LOADLIB,
TESTFILE LOADLIB, enter:

FILEDEF SYSLIB DISK VSF2FORT TXTLIB *
LKED TESTFILE

The FILEDEF SYSLIB command resolves any FORTRAN library routines references when creating the
LOADLIB file. The CMS LOADLIB created by the LKED command is an OS simulated partitioned data set
(PDS) named TESTFILE LOADLIB and contains one member named TESTFILE. For details on CMS OS data
management, see the z/VM: CMS Application Development Guide for Assembler.

The linkage editor produces two permanent files on your A-disk. The file name of both files is the name
specified on the LKED command. One file contains the load module(s) created by the linkage editor. It is
given the file type LOADLIB. The other file is the printed output from the linkage editor. It is given the file
type LKEDIT. If you specify the PRINT or NOPRINT option on the LKED command, the LKEDIT file is not
created on disk. The LKEDIT file is sent directly to the printer.

Before running TESTFILE, use the GLOBAL command to identify the LOADLIB to be searched and any
other LOADLIB necessary because of the programming language you are using. For example:

GLOBAL LOADLIB TESTFILE VSF2LOAD

Then, the following OSRUN command performs the search and loads, relocates, and runs the TESTFILE
member of TESTFILE LOADLIB:

OSRUN TESTFILE

The OSRUN command searches only the libraries specified in the GLOBAL LOADLIB command, unless
you have a system library named $SYSLIB LOADLIB. Then, OSRUN searches $SYSLIB LOADLIB for the
member name.

Example 2: Linking a Program that Requires More than One Library: Suppose you have a VS FORTRAN
object module called TEST TEXT that explicitly invokes a routine called SUB0000 from a user library
called USERLIB TXTLIB and implicitly invokes routines from the VS FORTRAN library called VSF2FORT
TXTLIB. Then, the LKED command places an executable module called TEST0000 in the TESTLIB
LOADLIB.

You can define and create the appropriate libraries using one of the following two methods:

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 59

Method 1: First, create the following SYSLIN input file called INPUT TEXT:

INCLUDE TXTDEF
LIBRARY LIBDEF(SUB0000)

Next, enter the following commands:

FILEDEF TXTDEF DISK TEST TEXT A
FILEDEF SYSLIB DISK VSF2FORT TXTLIB *
FILEDEF LIBDEF DISK USERLIB TXTLIB *
LKED NPUT (LIBE TESTLIB NAME TEST0000

To run TEST0000, enter the following:

GLOBAL LOADLIB TESTLIB VSF2LOAD
OSRUN TEST0000

Note: Note that by using the library statement, instead of the INCLUDE statement, the indicated
member(s) are only added to the LOADLIB as they are required by LKED to resolve external references
found in the program. The INCLUDE and LIBRARY statements must begin in column 2.

Method 2: Enter the following CMS commands:

GLOBAL TXTLIB USERLIB VSF2FORT
FILEDEF SYSLIB CLEAR
FILEDEF SYSLIB DISK USERLIB TXTLIB * (CONCAT
LKED TEST (LIBE TESTLIB NAME TEST0000

To run TEST0000, enter the following:

GLOBAL LOADLIB TESTLIB VSF2LOAD
OSRUN TEST0000

For more information on the LKED and OSRUN command, see the z/VM: CMS Commands and Utilities
Reference.

LKED Options
The LKED command has many options available for you to use. CMS does not use all of the options. The
CMS-related options are:
TERM, NOTERM

causes the linkage editor to display diagnostic messages or to suppress such messages at the
terminal. TERM is the default option.

PRINT, DISK, NOPRINT
directs the linkage editor printed output to specific medium. PRINT spools the linkage editor printed
output to the printer. DISK stores the linkage editor output in a CMS disk files with a file type of
LKEDIT. DISK is the default option. NOPRINT suppresses all printed output.

AMODE
specifies whether your application can run in 24-bit addressing mode or 31-bit addressing mode. This
option overrides the AMODE setting on the LOAD command.

RMODE
specifies whether your application can reside above or below the 16 MB line.

NAME membername
identifies the member name to be used for the load module created.

LIBE loadlibname
identifies the file name of a LOADLIB file where the load module is placed.

You can use the following options with the linkage editor to specify characteristics of the load module:
LET, NE, OL, RENT, REUS, REFR, and OVLY. XREF, MAP, LIST, NCAL, XCAL, SIZE, and ALIGN2 are also
options of the LKED command. See the z/VM: CMS Commands and Utilities Reference for a description of
these options.

Loading and Running Your Program

60 z/VM: 7.2 CMS Application Development Guide

Using the OPENVM RUN Command
You can use the OPENVM RUN command to invoke applications that reside in the BFS or record file
system or exist as nucleus extensions. Files invoked by OPENVM RUN must have been generated with the
GENMOD command, the BIND command, the c89 utility, or the cxx utility. Because of the multitasking
nature of OpenExtensions applications, these modules must be generated to be relocatable in order to
avoid overlay problems. When using the OPENVM PUTBFS command to copy a module file from a minidisk
or SFS directory to BFS, the MODULE option must be used (or defaulted to) to make sure that the BFS file
is in executable format.

The OPENVM RUN command accepts a path name as input. The path name can be the name of a module
file in the BFS, an external link to a module file in the record file system, or the CMS file ID of a module file
in the record file system or loaded as a nucleus extension.

OPENVM RUN first tries to open the path name as a file in the BFS. If the open is successful, this is the file
that is loaded and invoked. If the file is an external link, OPENVM RUN obtains information about the file
that the external link represents, including the CMS file ID. This file is invoked if it is an FST_EXEC type of
external link and one of the following is true:

• The file resides on an accessed minidisk or SFS directory.
• The file type of the file is MODULE or unspecified, the file mode of the file is * or unspecified, and the file

is loaded as a nucleus extension.

If neither a suitable BFS file nor an external link is found, OPENVM RUN attempts to interpret the path
name as a CMS file ID. If the path name can successfully be parsed into a CMS file ID, OPENVM RUN
determines if the specified file exists on the accessed file modes, or, under the conditions described
above, whether it is loaded as a nucleus extension. If the file is found, this is the file that is invoked.
Otherwise, the OPENVM RUN command fails.

Note that when using the OPENVM RUN command, files in the record file system need not have a
file type of MODULE. Renaming a MODULE file to give it a different file type is one way to prevent an
OpenExtensions application in the record file system from being invoked by name from the CMS command
line. It should also be noted that the OPENVM RUN command is case sensitive, so you have to enter the
file ID of a file in upper case if its name is in upper case. In addition, path names that contain blanks must
be delimited by quotation marks. If you want to specify a file name and file type on the OPENVM RUN
command, you must enclose the entire CMS file ID in single or double quotation marks.

For example, if you want to invoke the OpenExtensions application MY OEAPP that resides on your A disk,
enter:

openvm run 'MY OEAPP'

Passing Parameters on the OPENVM RUN Command
The OPENVM RUN command provides the ability to pass parameters to the application. Each parameter
specified on the command has a NULL character (X'00') appended to it and is passed to the application
as a separate argument. Parameters that contains blanks or special characters, such as quotation marks,
must be enclosed in quotation marks. (For more information, see the description of the OPENVM RUN
command in the z/VM: OpenExtensions Commands Reference.) The first parameter that OPENVM RUN
passes to the application is always the file name. Any user-specified parameters come after the file name.

For example, if you want to invoke the application called /u/FamilyTree and pass it the parameters
"DAUGHTER Megan" and "SON Brian", enter:

openvm run /u/FamilyTree 'DAUGHTER Megan' "SON Brian"

This would invoke the file /u/FamilyTree with three parameters:

• FamilyTree
• DAUGHTER Megan
• SON Brian

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 61

The parameter list that OPENVM RUN passes to the application is pointed to by register 1. It is not a
standard or tokenized parameter list, but is the type that the exec (BPX1EXC) callable service passes. (For
more information about this parameter list, see the description of the exec (BPX1EXC) service in the z/VM:
OpenExtensions Callable Services Reference.) An application can check the USECTYP flag in the user save
area that is pointed to by register 13 to determine what type of parameter list it is getting. The user save
area can be mapped using the USERSAVE macro. If the flag contains a X'10', the parameter list is the type
passed by the exec (BPX1EXC) callable service. C or C++ applications need not worry about this, because
the run-time code determines what kind of parameter list is being passed, and the application code is
entered as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv[] is an array of character pointers to the arguments
themselves.

Things to Be Aware of When Using OPENVM RUN
It is not possible to specify run-time options on the OPENVM RUN command. If an application needs
run-time options, another language-specific method of passing them must be used.

The OPENVM RUN command initializes the POSIX environment variables from the GLOBALV variables in
the CENV group. In addition, it defines the LOGNAME, HOME, PATH, and SHELL environment variables in
a POSIX-compliant manner. For more information on setting these variables, see the description of the
OPENVM RUN command in the z/VM: OpenExtensions Commands Reference.

Because many OpenExtensions applications expect STDIN, STDOUT, and STDERR to be opened as file
descriptors 0, 1, and 2, respectively, OPENVM RUN opens the terminal if any of these file descriptors is
not already open.

When OPENVM RUN loads a module into storage prior to execution, it copies any map information that
was saved at GENMOD time into the loader tables. However, it is unwise to rely on the loader table
information, because the loader tables are shared among all of the processes in the virtual machine, and
the information can be overwritten whenever another module file is loaded.

Displaying Information about Programs In Storage
You can use the PROGMAP command to display information about programs currently loaded in storage.

PROGMAP Command
The PROGMAP command obtains the name, entry point, origin, addressing mode, and relocation
attributes of programs that were loaded using the LOAD, INCLUDE, LOADMOD, or NUCXLOAD commands
or the OS LOAD macro.

If you issue PROGMAP from within a program, use the STACK and LIFO|FIFO operands of PROGMAP to
have the return information placed in the program stack. To display information at your terminal, omit the
STACK and FIFO|LIFO options.

Example 1: To display information about all programs, enter:

progmap

In response, CMS displays something similar to the following:

Name Entry Origin Bytes Attributes
PROG1 02000400 02000400 0000066D Amode 31 Reloc
PROG2 02000A6D 02000A6D 0000042A Amode 31 Reloc
PROG3 02000E97 02000E97 00000338 Amode 31 Reloc

Example 2: To display information about all programs and nucleus extensions, enter:

progmap (all

Loading and Running Your Program

62 z/VM: 7.2 CMS Application Development Guide

In response, CMS displays something similar to the following:

Name Entry Origin Bytes Attributes
PROG1 02000400 02000400 0000066D Amode 31 Reloc
PROG2 02000A6D 02000A6D 0000042A Amode 31 Reloc
PROG3 02000E97 02000E97 00000338 Amode 31 Reloc
Name Entry Userword Origin Bytes Amode (Attributes)
NUCX1 0035A000 00000000 00000000 00000000 31 SYSTEM SERVICE
NUCX2 0035E934 00361828 00000000 00000000 Any SYSTEM
NUCX3 004DB000 00000000 004DB000 00001FF8 24 SYSTEM SERVICE IMMCMD
 PERM

Example 3: To display information for a program named PROG1, enter:

progmap prog1

Example 4: To display information about all nucleus extensions, enter:

progmap (nucx

Example 5: To display information about a nucleus extension named NUCX1, enter:

progmap nucx1 (nucx

Loading and Running Your Program

Chapter 6. Loading and Running Your Program 63

Loading and Running Your Program

64 z/VM: 7.2 CMS Application Development Guide

Chapter 7. Debugging and Testing Your Program

This chapter describes commands, tools, and facilities you can use to help debug and test your
applications. These topics include:

• CP and CMS commands that provide access to general registers, main storage, and control words, as
well as trace options and dump control

• Debugging tools available for some of the programming languages
• Dialog and testing service of ISPF
• Using SQL for database prototyping and testing
• Testing your complete application package.

Commands Used for Debugging
You can use these the CP and CMS commands to debug your applications:

CP Commands for Debugging
Table 3. CP Commands for Debugging

CP Command Description

CPEREPXA Accesses the Environmental Record Editing and Printing (EREP) program. This
program reads EREP records from a disk or a tape and produces printed output
reports.

DISPLAY Displays at your terminal the contents of your virtual machine registers, virtual
machine storage, old and new PSWs, storage keys, or subchannel information blocks.

DUMP Dumps to your virtual printer the contents of your virtual machine registers, virtual
machine storage, old and new PSWs, storage keys, and subchannel information
blocks.

MONITOR Controls the selection, collection, and reporting of data from the system.

QUERY CPTRACE Displays the current setting of the tracing of real system events.

QUERY
RECORDING

Determines the status of CP data collection for accounting, symptom, and EREP
records, and determines if record retrieval is in progress.

QUERY TRSAVE Displays the destination of traces defined by TRSOURCE or displays the status of
traces controlled by the SET CPTRACE command.

QUERY
TRSOURCE

Displays the current status of the traces defined using the TRSOURCE command.

RECORDING Alters the processing parameters for CP recording facilities.

RETRIEVE Collects accounting, EREP, and symptom records and places the records into files for
later processing and analysis.

SET CPTRACE Activates or deactivates the tracing of real machine events.

SET MODE Sets the error recording mode for system recovery machine checks.

SET RECORD Sets the recording mode for a device.

STORE Alters virtual storage locations, registers, PSWs, CAWs, and CSWs.

Debugging and Testing Your Program

© Copyright IBM Corp. 1990, 2022 65

Table 3. CP Commands for Debugging (continued)

CP Command Description

TRACE Monitors events that occur in your virtual machine. You can monitor: execution of
instructions, changes to storage, changes to registers, and I/O activity.

TRSAVE Specifies where CP trace table data or data from traces defined by the TRSOURCE
command will be saved.

TRSOURCE Defines a trace (an I/O, data, or guest trace) and controls (enables, disables, drops,
or displays) the individual trace.

VMDUMP Dumps all or selected pages from second level storage. This information can be used
by the dump viewing facility. VMDUMP also saves the following information: virtual
program status word, general registers, control registers, storage protection keys,
and timer values.

For more information on these CP commands, see the z/VM: CP Commands and Utilities Reference.

CMS Commands for Debugging
You can use these CMS commands to debug your applications:

Table 4. CMS Commands for Debugging Applications

CMS Command Description

DEBUG Displays status information following ABEND processing.

MODMAP Displays the load map associated with the specified MODULE file.

PROGMAP Displays information about programs currently loaded in storage.

STDEBUG Traces the obtain and release requests made by an application.

STORMAP Displays storage information about your virtual machine. This information includes
the amount of allocated and unallocated free storage within your virtual machine and
the size of the largest contiguous block of storage both above and below the 16 MB
line.

SUBPMAP Displays storage allocation information for subpools in your virtual machine.

SVCTRACE Provides you with a record of all supervisor calls in your virtual machine. The
information, which is routed to your printer, includes:

• Call and return address information.
• GPR and floating-point register contents before, during, and after the call.

If you have more than one printer available, you may want to route the trace
information to a separate printer from your program output. Depending on the type
of problem, sometimes it is more informative to intermix the two outputs.

For details on the SVCTRACE command, see the z/VM: CMS Commands and Utilities
Reference.

Interactive Debug Tools for Specific Languages
The Interactive Debug tools contain a command and a set of subcommands that help you in diagnosing
and solving problems in your programs. These tools let you:

• Stop and start the program as it runs
• Examine and change values of variables

Debugging and Testing Your Program

66 z/VM: 7.2 CMS Application Development Guide

• Trace program transfers
• Track frequency of execution of statements
• Locate errors and correct them
• Test the code and improve its efficiency.

Debugging Your COBOL Application
You can use COBTEST, the VS COBOL II debug tool, to debug any VS COBOL II program. You can debug
your applications in batch mode or interactive mode. When debugging your application interactively, you
can use line mode or full-screen mode.

If you use COBTEST in full-screen mode, you must use the Interactive System Productivity Facility (ISPF),
Version 2. You must also specify the TEST compiler option to use COBTEST.

For details on debugging VS COBOL II applications, see the VS COBOL II Application Programming:
Debugging Guide.

Debugging Your FORTRAN Application
You can use the VS FORTRAN Version 2 Interactive Debug tool to debug VS FORTRAN Version 1 and VS
FORTRAN Version 2 programs. You can debug your applications in batch mode or interactive mode. When
debugging your application interactively, you can use line-mode or full-screen mode.

Invoking VS FORTRAN Interactive Debug in full-screen mode requires Interactive System Productivity
Facility (ISPF) Version 2, with or without the ISPF/Program Development Facility (ISPF/PDF).

For details on debugging your VS FORTRAN applications, see the VS FORTRAN Version 2 Interactive Debug
Guide and Reference.

Debugging Your Pascal Application
VS Pascal provides you with an interactive debugging tool that allows you to debug your VS Pascal
applications without having to write debugging statements directly into your source program. You can use
this tool in interactive mode and in batch mode.

To invoke this interactive debugging tool, follow these steps:

1. Use the DEBUG option on the compiler command.
2. Before you link-edit your application, use the GLOBAL command to identify the debugging library and

run-time library needed for the interactive debugging tool. You should identify the debugging library
before the run-time library. When you invoke the PASCMOD exec with the DEBUG option to build your
load module the debugging library, PASDEBUG TXTLIB, is automatically identified.

3. Use the DEBUG run-time option when you execute the load module.

Once you are in the debugging environment, you can issue the debug commands provided by the VS
Pascal language.

For details on the interactive debugging tool, see the VS Pascal Application Programming Guide.

Dialog Testing Using ISPF
The dialog test option provides you with aids for testing ISPF dialog parts (functions, panels, variables,
messages, tables, skeletons) and complete ISPF applications. For example, you can:

• Invoke selection panels, command procedures, programs and shared segments
• Display panels
• Add new variables and modify variable values
• Display a table's structure and status
• Display, add, modify, and delete table rows

Debugging and Testing Your Program

Chapter 7. Debugging and Testing Your Program 67

• Browse the ISPF log, provided that ISPF/PDF is installed
• Execute dialog services
• Add, modify, and delete function and variable trace definitions
• Add, modify, and delete breakpoint definitions.

When you enter dialog test from the ISPF/PDF primary option panel, you enter a new user application with
an application ID of ISR. When you enter dialog test from the ISPF primary option panel, you enter a new
user application with an application ID of ISP. All the options operate in this context.

Dialog test is itself a dialog and, therefore, uses the dialog variables. Because it is important to allow your
dialog to operate without interference (as though in a production environment), dialog test accesses and
updates variables independently of your dialog variables.

If your dialog encounters a severe error when it invokes a dialog service, that error is handled as
requested by a dialog. The current CONTROL service ERRORS setting (CANCEL, or RETURN; the default is
CANCEL) determines what is done. If CANCEL is in effect, when the error message panel is displayed you
may choose whether to continue dialog testing.

The following is a description of the test options:

The functions option lets you test a dialog function (panel, command procedure, or program). You do not
have to write supporting code or panels. The name of the dialog function and the parameters that may be
passed are the same as those that you can specify (from a dialog function) when you invoke the SELECT
service. When you press Enter, a SELECT is done. When you select this option, a panel is displayed that
lets you identify the dialog function that you want to test.

During panel development, the panels option lets you test newly created or modified panels and
messages. You do not need to write supporting code to display them. Any variables referenced and set
during panel processing are handled according to standard ISPF protocol.

The variables option lets you:

• Display all ISPF variables defined in the dialog application you are testing
• Change the value of a variable
• Define new variables
• Delete variable names and blank lines.

When you select this option, a scrollable display indicates all the current variables for the dialog being
tested. The rows of the display are ordered by the pool containing the variables, then by function pool
type within the function pool, then alphabetically by variable name within each pool. The function variable
pool is listed first, followed by the shared variable pool, and then the profile variable pool. Insertions are
left where they are entered on the display.

Modifications to the display are processed when you press Enter. Updating of the variable pools occurs
when you enter the END command.

The tables option lets you:

• Display the contents of an existing row in an open table.
• Remove an existing row from an open table.
• Change the contents of an existing row of an open table.
• Add a new row after a selected row of an open table.
• Display the structure of a table.
• Display a data information panel reflecting all operations using a specified table.

The log option lets you display and browse data recorded in the ISPF log. The ISPF/PDF product is
required for this function. You can use all the browse commands, except BROWSE, while looking at the
ISPF log. The ISPF log contains the following types of trace output:

• Trace header entries
• Function trace entries

Debugging and Testing Your Program

68 z/VM: 7.2 CMS Application Development Guide

• Variable trace entries.

The dialog services option lets you execute a dialog service by entering the service command invocation
with or without the ISPEXEC characters. You can call any dialog service that is valid in the command
environment except CONTROL at a breakpoint or before invoking a function.

The traces option lets you define, change, and delete trace specifications. You can trace executed dialog
services, except for the VPUT or VGET service issued to a panel, and referenced dialog variables during
dialog execution. Trace data is placed in the transaction log. From here you can browse it (using the LOG
option), or print it when you exit from ISPF.

Because tracing may degrade dialog performance and create large amounts of output, care should be
taken in setting the scope of trace definitions.

When you select this option, you are shown a selection panel on which you can indicate the type of trace
(function or variable) you wish to define.

Use the function traces option to establish criteria for recording the names of dialog service calls,
the service parameters, and return code in the ISPF log. Service calls made by the dialog or during
test processing are recorded. Whenever a new application or function has data recorded, a header is
placed in the trace. When you select the function traces option, a scrollable panel displays all currently
defined function traces. You may add, delete, and modify function trace definitions using this panel before
invoking a function or at a breakpoint.

The variable traces option establishes criteria for recording variable usage. The usage of a variable is
recorded:

• If an ISPF service is directly asked to operate on the variable (for example, VGET, VPUT, VCOPY).
• If an ISPF service is indirectly asked to operate on the variable (for example, DISPLAY).

Variables changed under the variables option are also recorded if the trace specifications are met.

When you select the variable traces option, a scrollable display lists all currently defined variable traces.
You may add, delete, or modify variable trace definitions by using this panel before invoking a function.

A breakpoint is a location at which the execution of a dialog is suspended so that dialog test facilities may
be used. The breakpoint option lets you indicate where such temporary suspensions should occur. At a
breakpoint, you are given control. You may now examine and manipulate dialog data (for example, tables
and variables) using various test options. You can also specify new test options, such as traces and other
breakpoints.

Breakpoints are located immediately before a dialog service receives control or after it relinquishes
control. Breakpoint definitions cause special handling within the ISPLINK, ISPLNK, and ISPEXEC
interfaces to dialog services. No user dialog is modified.

When you select the breakpoint option, a scrollable display shows all currently defined breakpoints for
this session. You may add, delete, or modify breakpoint definitions using this panel before invoking a
function or a breakpoint. All breakpoints exist until you delete them or you end or cancel your dialog test
session. If you invoke a dialog function or a selection panel and encounter a breakpoint, the dialog test
breakpoint primary option menu is displayed.

Like the dialog test primary option menu, the breakpoint primary option menu lets you use the RETURN
command from any one of the selected test options to process a redisplay of the breakpoint primary
option menu. You must use:

• The GO option to terminate processing at this breakpoint and continue executing the dialog being
tested.

• The CANCEL option to cancel the dialog test option.

The breakpoint primary option menu contains all options of the dialog test primary options menu except
Exit. It therefore presents all but one of the dialog test functions to you.

When a user dialog encounters a breakpoint, the current dialog environment is saved. When you select
the GO option, the environment is restored, except for the following:

Debugging and Testing Your Program

Chapter 7. Debugging and Testing Your Program 69

• If you change variable, table, and file tailoring data at a breakpoint, these actions are performed as an
extension of the suspended dialog. It is as if the dialog takes all the actions itself during execution.

• If you modify the service return code (on the breakpoint primary option menu), the new return code is
passed back to the dialog. It is as if the service sets the new code itself.

• If you execute the PANELID command at the breakpoint, the last setting for displaying panel identifiers
is retained.

• If any CONTROL service settings for DISPLAY LINE or DISPLAY SM are in effect before the breakpoint,
such settings are lost.

The manipulation of one dialog part may cause a change to another dialog part.

For further information on these functions and all dialog test functions, see the ISPF Dialog Management
Guide and Reference.

Database Testing Using SQL
You can use SQL as a tool for prototyping data designs and implementations during the application
development process. For example, the ability to CREATE, ALTER, and DROP tables dynamically from an
online, interactive environment lets you experiment with different designs.

SQL facilities support these data prototyping functions:

• Online definition of model designs
• Generation/loading of test data
• Design documentation and analysis
• Sharing host variables or SQL commands.

Online Definition of Model Designs: You can use ISQL to enter table, view, and index definitions for
validating and testing data design. The interactive definition through ISQL offers you direct feedback on
definitional errors. This feedback addresses both syntax and data mapping errors.

If you issue SQL definitional commands using ISQL, then it can save them as stored queries for later
recall, modification, or rerun. You can also save statements in CMS files used as input (SYSIN) to the DBS
utility.

Generation/Loading of Test Data: You can load tables created for design purposes with test data using
these SQL facilities:

• Item by item, using the ISQL INPUT command.
• From existing SQL tables within the database, using the SQL INSERT command.
• From existing SQL tables in another database, using the DBS UNLOAD and RELOAD commands.

Design Documentation and Analysis: By using the SQL explanation tables and the EXPLAIN command,
you can analyze how a given design will perform. You can issue the EXPLAIN command using ISQL,
the DBS utility, or an application program. EXPLAIN lets you get information about the structure and
execution performance of a SQL command.

You can see how well a SELECT command performs by using the ISQL query cost estimate. ISQL displays
this at the end of every SELECT result. This estimate of the resources used during command execution is
related to, but is not the same as, that obtained by EXPLAIN.

Sharing Host Variables or SQL Commands: When you are developing programs, you may want to use
the SQL INCLUDE command. This is useful when many applications use the same host variables or SQL
command sequence. This command causes the preprocessors to include source lines from other CMS
files in your source program.

Suppose you have a lengthy SELECT command that many programs use. First, place this SELECT
command in a separate CMS file, called SOURCE1, for example. Then, in your source program, put the
following SQL statement where you want to include the SELECT command:

EXEC SQL INCLUDE SOURCE1 END-EXEC.

Debugging and Testing Your Program

70 z/VM: 7.2 CMS Application Development Guide

When developing a program with embedded SQL commands, you can run the SQL preprocessors with a
CHECK option. This causes the preprocessor to generate diagnostics on the SQL in the program but not
an access module or compiler input. You can thus use a skeleton of the final program to do a lot of initial
code development and debugging.

Using ISQL
You can use ISQL facilities to test and debug SQL commands for application development. The ISQL
support of routines lets you develop logical sequences of SQL commands for this purpose. You can
produce different routines using parameters to simulate program variables for various paths through the
application logic. This tests the functional results of an application against various inputs.

In these situations, you can use the ISQL command SET RUNMODE, which lets you stop or continue the
execution of an ISQL routine when an error occurs.

This command offers these options:

• Continue to the next command even if an error occurs. (You can use this option to bypass unconnected
errors or examine later ones.)

• Stop processing when you make an error, but do not perform ROLLBACK WORK (that is, leave the data in
its processed state).

• Stop processing when you make an error, but perform ROLLBACK WORK (that is, erase all changes the
routine made and preserve the integrity of the database).

Testing Your Complete Application Package in a Virtual Machine
The virtual machine environment is an ideal environment to test a complete application package. Within
the same z/VM system, you can test your application package in a virtual machine that is completely
isolated from an "active" production environment.

The virtual machine concept of z/VM also allows you to set up z/VM as a second level system. That is,
z/VM can be the operating system of a real machine or as the operating system of a virtual machine. The
following figure shows the relationship between a first level system and a second level system.

Figure 9. Relationship between First Level and Second Level Systems

Debugging and Testing Your Program

Chapter 7. Debugging and Testing Your Program 71

As an example, suppose you build a second level system to test your application and you are a privilege
class user. While testing your application, if you issue a command that crashes your second level system,
you will not disturb the function or users of the first level system.

See z/VM: Running Guest Operating Systems for information on setting up a second level system.

Debugging and Testing Your Program

72 z/VM: 7.2 CMS Application Development Guide

Chapter 8. Updating Your Source Program

This chapter discusses the following topics:

• Making updates to a source file using an UPDATE file
• The contents of an UPDATE file
• Making multiple updates to a source file using a control file and an auxiliary control file
• Making updates to exec and macros
• Writing your own exec to invoke the UPDATE command
• An example of updating a program.

The simplest way to maintain backup copies of a program is to make a copy of the current source
file under a new name. You can do this using either the COPYFILE command or the editor. While this
procedure for modifying programs is suitable for many applications, it may not be adequate in a situation
where several programmers are applying changes to the same source code. Also, this procedure does not
provide you with a record of what has been changed. After using the editor, you do not have a record of
the lines that have been deleted, added, replaced, and so on, unless you manually add comments to the
code, insert special characters in the serialization column, or use some technique that records program
activity.

The XEDIT command with the UPDATE option and the UPDATE command allow you to:

• Modify the source program without affecting the original source file
• Record all the changes in separate UPDATE files
• Time-stamp and identify the changes in the UPDATE files
• Apply and remove changes as needed.

This update process allows you to apply one UPDATE file to a source file, one set of UPDATE files to a
source file, or more than one set of UPDATE files to a source file. The XEDIT command and the UPDATE
command use four files to during the update process:

• Source file (fn ft fm)
• UPDATE file (fn UPDATE fm)
• Updated source file ($fn ft fm)
• Update log file (fn UPDLOG fm).

Making Updates to a Source File
To update a source file following these steps:

1. Use the XEDIT command with the UPDATE option. The XEDIT command makes changes to the source
file by creating an UPDATE file that contains the new or changed source statements and the update
control statements.

2. Use the UPDATE command. The UPDATE command incorporates the changes recorded in the UPDATE
file and produces an updated source file and an update log file.

Step 1 - Using the XEDIT Command to Make Changes to a Source File
The XEDIT command with the UPDATE option creates an UPDATE file that contains the changes made to
the source file. This way the original source file is not affected.

Updating Your Source Program

© Copyright IBM Corp. 1990, 2022 73

Creating an UPDATE File
When using the XEDIT command to create an UPDATE file, the editor expects the source files to have
sequence numbers in the last eight columns of each record. The logical record length of the source file
can be up to 255. The source file has a fixed record format.

However, if you use the XEDIT subcommand SET SERIAL to sequence your files or if the file has been
sequenced using the default values of XEDIT, the sequence numbers are usually written in the last five
columns of the logical record length and prefaced by the first three character of the file name.

Therefore, depending on the location of the sequence numbers, you can create an UPDATE file using the
following two commands:

• The XEDIT command with the UPDATE option.
• The XEDIT command with the UPDATE option and the NOSEQ8 option.

Using the XEDIT Command With the UPDATE Option
Using the XEDIT command with the UPDATE option to create an UPDATE file, the editor expects the
source files to have sequence numbers in the last eight columns of the file. To generate sequence
numbers, edit your file, and before issuing the FILE or SAVE subcommand, enter the following XEDIT
subcommand:

serial all

Now, to make changes to the source file and to create an UPDATE file. enter the following command:

xedit ready cobol a (upd

This command specifies that a source file called READY COBOL is to be edited, but all updates to
the file are placed in a separate UPDATE file called READY UPDATE along with the appropriate control
statements. Using XEDIT, you do not need to enter the control statements in the UPDATE file. For details
on the control statements, see “Using a Control File” on page 78. They are generated automatically by
the editor.

Using the XEDIT Command With the UPDATE Option and the NOSEQ8 Option
Using the XEDIT command with the UPDATE option and the NOSEQ8 option to create an UPDATE file, the
editor expects the source file to have sequence numbers in the last five columns.

For example:

xedit ready cobol a (upd noseq8

specifies that a file called READY COBOL is to be edited and all updates to the file are placed in a separate
UPDATE file called READY UPDATE along with the appropriate control statements. Using XEDIT, you do
not need to enter the control statements in the UPDATE file. For details on the control statements, see
“Using a Control File” on page 78. They are generated automatically by the editor.

Using an Existing UPDATE File
If an UPDATE file already exists for a given source file, you can continue updating the source file using
the same UPDATE file. For example, if READY UPDATE already exists and you want to make additional
changes to the source file, enter the following command:

xedit ready cobol a (upd

This command applies all updates contained in READY UPDATE to the source file READY COBOL and
displays the resulting file on the screen. Now, you can make other updates created during this editing
session and these updates are added to those already contained in READY UPDATE. Again, all control
statements are automatically generated by XEDIT.

Updating Your Source Program

74 z/VM: 7.2 CMS Application Development Guide

Step 2 - Using the UPDATE Command to Add Changes to a Source File
Use the UPDATE command to add the changes from the UPDATE file to create a new updated source file.
The UPDATE command produces an update log indicating the changes that have been made.

The default values used by the UPDATE command are file types of ASSEMBLE and UPDATE for the source
and update files, respectively. If you are updating a COBOL source program named READY COBOL with an
UPDATE file named READY UPDATE, you would enter the command:

update ready cobol a ready update a

After an UPDATE command completes processing, the input files are not changed. Two new files are
created. One of them contains the updated source file, with a file name that is the same as the original
source file but preceded by a dollar sign ($). Another file, containing a record of updates is also created. It
has a file name that is the same as the source file and a file type of UPDLOG. For example:
Source Files

Output Files
SAMPLE ASSEMBLE

$SAMPLE ASSEMBLE
SAMPLE UPDATE

SAMPLE UPDLOG
READY COBOL

$READY COBOL
READY UPDATE

READY UPDLOG

When using the UPDATE command, the editor expects the source files to have sequence numbers in the
last eight columns of the file.

However, if you use the XEDIT subcommand SET SERIAL to sequence your files or if the file has been
sequenced using the default values of XEDIT, the sequence numbers are usually written in the last five
columns of the file and prefaced by the first three character of the file name.

Therefore, depending on the location of the sequence numbers, you can create an updated source file the
following ways:

• serial all
• ./ S
• update (noseq8

serial all: If you want an eight-character sequence number and you are editing the file, you must use the
subcommand:

serial all

before issuing a FILE or SAVE subcommand.

./ S: You can create an UPDATE file with the single record:

 ./ S

and issue the UPDATE command to sequence the file.

update (noseq8: If you use the UPDATE command with a file that has been sequenced using the default
values of XEDIT, you must use the NOSEQ8 option. Otherwise, the UPDATE command cannot process your
input file. The command:

update sample (noseq8

tells UPDATE to use only the last five columns when it looks for sequence numbers.

Now, you can compile the new source file created by the UPDATE command.

Updating Your Source Program

Chapter 8. Updating Your Source Program 75

UPDATE File
The UPDATE file usually has a file type of UPDATE. For convenience, you can give it the same file name as
your source file.

The UPDATE file consists of two types of records:

• New or changed source statements
• Update control statements.

UPDATE Control Statements
Some update control statements are automatically generated by the editor, while others must be entered
manually.

The editor generates the following three update control statements:

Statement Type

./ I Insert

./ D Delete

./ R Replace

The editor records these three control statements, along with the appropriate new or changed source
statements, in the UPDATE file. Each update control statement also carries a time and date stamp in
columns 52 through 71, reflecting when you created or changed the UPDATE file.

The layout of the update control statements is:

Columns Contents

1-2 ./

4 I, D, or R

6-13 Sequence number of source statement

24 $ (or other delimiter)

26-29 Starting statement number value, if this card applies to more than one statement in
the source file.

31-33 Incrementing statement number value, if this card applies to more than one
statement in the source file.

INSERT Statement: The INSERT statement precedes new records that you want to add to a source file.
The INSERT statement tells the UPDATE command where to add the new records. For example, the lines:

 ./ I 1600
 TEST2 TM HOLIDAY,X'02' HOLIDAY?
 BNO VACATION NOPE...VACATION

insert two lines of code, following the statement numbered 00001600, into the output file. The inserted
lines are flagged with asterisks in columns 73 through 80, assuming this is an 80-character file (or the
last eight columns if the logical record length is larger than 80). The INSERT statement also allows you to
request that new statements be sequenced.

DELETE Statement: The DELETE statement tells the UPDATE command the records to delete from the
source file. For example, the statement:

 ./ D 2500

deletes record 00002500 from the source file. The statements:

Updating Your Source Program

76 z/VM: 7.2 CMS Application Development Guide

 ./ D 2500 2800

deletes all the statements from 2500 through 2800 from the source file.

REPLACE Statement: The REPLACE statement replaces one or more records in the source file. It
precedes the new records you want to add. It is a combination of the DELETE and INSERT statements. For
example, the lines

 ./ R 38000 38500
 PLIST DS 0D
 DC CL8'TYPE'
 DC CL8' '
 DC CL8'FILE'
 DC CL8'A1'
 DC 8X'FF'

replace the existing statements numbered 38000 through 38500 with the new lines of code. The new
lines are not automatically resequenced.

The update facility does not automatically generate the following two update control statements. If you
use them, use the editor to manually add them into the UPDATE file.

Statement Type

./ S Cause Resequencing

./ * Comment

SEQUENCE Statement: The SEQUENCE statement tells the UPDATE command you want to number or
renumber the records in a file. Sequence numbers are written in the last eight columns of the source file.
For example, the statement:

 ./ S 1000

indicates that you want sequence numbering to be done in increments of 1000 with the first statement
numbered 1000. The SEQUENCE statement is convenient if you want to apply updates to a file that does
not already have sequence numbers. In this case, you may want to use the REP (replace) option of the
UPDATE command, so that instead of creating a new file ($file name), you replace the original source file.
For example:

update sample (rep

COMMENT Statement: Use the COMMENT statement to document the updates. These comments will
appear in the update log file. For example, the line:

 ./ * Changes by John J. Programmer

is not processed by the UPDATE command when it creates the new source file, but it is written into the
update log file.

Making Multiple Updates to a Source File Using the UPDATE
Command

If you have several UPDATE files to apply to the same source, you may apply them in a series of UPDATE
commands. For example, if you have updates named FICA UPDTUP1, FICA UPDTUP2, and FICA UPDTUP3
to apply to the source file FICA PLIOPT, you could do the following:

1. Update the source file with TEST1 UPDATE:

update fica pliopt a fica updtup1

2. Update the source file produced by the previous command with the TEST2 UPDATE:

Updating Your Source Program

Chapter 8. Updating Your Source Program 77

update $fica pliopt a fica updtup2

3. Update the new source file with TEST3:

update $$fica pliopt a fica updtup3

This final UPDATE command produces the file $$$FICA PLIOPT, which is now the fully updated source
file. This method is cumbersome, however, particularly if you have many updates to apply. They must be
applied in a particular order.

However, the UPDATE command provides a multilevel updating scheme that you can use to apply many
updates at one time, in a specified order. There are two ways you can apply multilevel updates to a source
file using the UPDATE command:

• Using a control file
• Using an auxiliary control file.

Using a Control File
A control file is actually a list. A control file, by convention, has a file type of CNTRL and a file name that
is the same as the source input file. It does not contain any actual update control statements (INSERT,
DELETE, and so on), but rather it indicates what UPDATE files should be applied, and in what order.

In the case of a multilevel update, all the UPDATE files must have the same file name as the source file.
Therefore, only the file types need be specified in the control file to uniquely identify the UPDATE file.
In fact, because all your UPDATE files specified in a control file must have file types beginning with the
characters UPDT, you need only specify the unique part of the file type.

For example, to apply the three UPDATE files to FICA PLIOPT described earlier, you should create a file
named FICA CNTRL. The control file for FICA PLIOPT, named FICA CNTRL, may typically look like the
following:

TEXT MACS PLILIB
FICA3 UP3
FICA2 UP2
FICA1 UP1

The first noncommentary record in the control file must be a MACS record. A control file can contain
multiple contiguous MACS records. The second field in this record must be “MACS”, and it may be
followed by as many macro library names that will fit on the line. Every record in the control file must have
an "update level identifier". In this example, the update level identifiers are TEXT on the MACS record,
FICA1 for the UP1 record, and so on. The update level identifier may have a maximum of five characters.

The UPDATE command only uses the MACS record and the update level identifier under special
circumstances. These are described later under “VMFASM EXEC Procedure” on page 82. For now, you
only need to know that these things must be in a control file in order for the UPDATE command to execute
properly.

Then, to update FICA PLIOPT, enter the UPDATE command as follows:

update fica pliopt (ctl

When you use the CTL option and you do not specify the name of a control file, the UPDATE command
looks for a control file with the file type of CNTRL and a file name the same as the source file. From the
control file, it reads the file types of the updates to be applied. In this example, the UPDATE command
searches for the file FICA UPDTUP1 and if found, applies the updates; then UPDATE searches for FICA
UPDTUP2, and applies those updates, if any. Last, it searches for FICA UPDTUP3, and applies those
updates.

Notice that the updates are applied from the bottom of the control file, toward the top. This becomes
important when an update is dependent on a previous update. For example, if you add some lines to a
file in FICA UPDTUP1, then modify one of those lines in FICA UPDTUP2, it is important that UPDTUP1 was
applied first.

Updating Your Source Program

78 z/VM: 7.2 CMS Application Development Guide

Alternate Ways of Naming a Control File
The preceding example, showing FICA CNTRL and UPDTxxxx files, illustrates a naming scheme using the
UPDATE command defaults. You can override the defaults for the control file's file name and file type.

If you name a control file GROUPA CNTRL, for example, you can specify the name of the control file on the
UPDATE command line:

update fica pliopt a groupa cntrl (ctl

Using an Auxiliary Control File (AUX File)
The two levels of update processing shown so far may be adequate for your applications. There is,
however, an additional level or step in the update structure that the z/VM procedures use and that you
may want to use also.

These techniques may be useful when you have more than one set of updates to apply to a source
program. For example, you may have two groups of programmers who are working on different sets of
changes for the same source file. Each group may create several UPDATE files and have a unique control
file. When you combine these changes, you could create one control file or you can use what are known as
auxiliary control files.

The updating structure for auxiliary control files is based on conventions for assigning file names and file
types. If a control file contains an entry that begins with the characters “AUX”, the UPDATE command
assumes that the file "fn AUXnnnn" contains a list of file types, not UPDATE control statements. For
example, if the file SAMPLE ASSEMBLE is being updated with a control file that contains the record:

TEST1 AUXLIST

Then SAMPLE AUXLIST does not contain UPDATE control statements. It contains entries indicating the
file types of the UPDATE files, all of which must have the same file name, SAMPLE.

To see how this structure works, assume we have a source file, SAMPLE ASSEMBLE, and a control file,
SAMPLE CNTRL. The file SAMPLE CNTRL contains the entries:

TEXT MACS
3676 AUXLIST

The file, SAMPLE AUXLIST may look like the following:

TEST1
FIXLOOP
BYPASS

The files:

SAMPLE TEST1
SAMPLE FIXLOOP
SAMPLE BYPASS

Contain UPDATE control statements (INSERT, DELETE, and so on) to be applied to the file SAMPLE
ASSEMBLE. As with control file processing, the updates are applied from the bottom of the AUX file, so the
updates in SAMPLE BYPASS are applied first, then the updates in SAMPLE FIXLOOP are applied, and so
on. Figure 10 on page 80 shows an illustration of a set of UPDATE files.

Updating Your Source Program

Chapter 8. Updating Your Source Program 79

update report assemble a (ctl
UPDATING 'REPORT ASSEMBLE A1' WITH 'REPORT RTNA A1'.
UPDATING WITH 'REPORT RTNB A1'.
UPDATING WITH 'REPORT UPDTREP1 A1'.
UPDATING WITH 'REPORT FIXOUT A1'.
UPDATING WITH 'REPORT FIXIN A1'.
UPDATING WITH 'REPORT UPDTRPOC A1'.

Figure 10. An Update with a Control File

Because the updating scheme uses only file types to uniquely identify UPDATE files, it is possible to use
the same control file to update different source input files. For example, enter the following command
when using the control file REPORT CNTRL shown in Figure 10 on page 80:

update fica pliopt a report cntrl (ctl

The UPDATE command begins searching for updates to apply to FICA PLIOPT, based on the entries in
REPORT CNTRL. It searches for FICA AUXFIX, which may contain entries pointing to UPDATE files; then it
searches for FICA UPDTREP1, and so on.

As long as all updates and auxiliary files associated with a source file have the same file name as
the source file, the updates are uniquely identifiable. Therefore, the same control file can be used to
update various source files. z/VM takes advantage of this capability in its own updating procedures. By
maintaining strict naming conventions, updates to various CP and CMS modules are easily controlled and
identified.

A control file may point to many AUX files in addition to many UPDT files. You can modify a control file
when you want to control which updates are applied to a program. You may have several control files,
and specify the name of the control file you want to use on the UPDATE command line. There is a lot of
flexibility in the UPDATE command processing. You can implement procedures and conventions for your
individual applications.

Updating Your Source Program

80 z/VM: 7.2 CMS Application Development Guide

Making Multiple Updates to a Source File Using the XEDIT
Command

Similar to the UPDATE command, you can use a control file and an auxiliary control file to apply many
updates at one time using the XEDIT command with the CTL option.

Using a Control File
The XEDIT CTL option creates multiple updates to a source file. First, create a control file listing the
updates to be applied to a source file. Initially, you might have only the MACS record and one UPDATE file
type specified. For example, you can create a file called FICA CNTRL that contains:

TEXT MACS PLILIB
FICA1 UPDTUP1

Next, specify the control file name that you have created after the XEDIT CTL option. For example:

xedit fica pliopt (ctl fica

The editor searches for an UPDATE file called FICA UPDTUP1 and applies all updates contained in this file.
If the UPDATE file does not exist, XEDIT creates a file called FICA UPDTUP1 which will contain all changes
made to the source file during the editing session in addition to the required control statements.

If you wish to add another level of updates to your source file, insert a new UPDATE file type in your
control file after the MACS record, for example:

TEXT MACS PLILIB
FICA2 UPDTUP2
FICA1 UPDTUP1

Then, XEDIT your source file again, specifying the CTL option, for example:

xedit fica pliopt (ctl fica

XEDIT applies all updates contained in FICA UPDTUP1 to the source file FICA PLIOPT. After the resulting
file is displayed, any additional updates and the necessary control statements are automatically inserted
in another UPDATE file called FICA UPDTUP2, consistent with control file processing from the bottom up.

Using an Auxiliary Control File (AUX File)
Auxiliary control files can also be used with XEDIT. You can make your control file point to AUX files that
contain the file types of the actual UPDATE files, or you can combine AUX files and UPDATE files in a
single control file. XEDIT begins applying updates from the bottom up in the control file and references
the AUX files indicated. Any updates to the source file produced during the editing session are inserted in
the topmost UPDATE file type specified in either the control file or in the last AUX file encountered using
the ‘bottom up’ processing rule. More information about the XEDIT CTL option can be found in the z/VM:
XEDIT Commands and Macros Reference.

Preferred Level Updating
There may exist more than one version of an update, each applicable to different versions of the same
module. For example, you may need one version of an update for an unmodified base source module
and another version of that update if a licensed program modified the modules. The AUX file used to
update a particular module must then be selected based on whether or not a licensed program modifies
that module. The AUX files listing the updates applicable to modules modified by a licensed program are
called preferred AUX files because they must be used if they exist rather than the mutually exclusive
updates applicable to unmodified modules. Using this preferred AUX file concept, every module in a
component can be assembled using the one CNTRL file applicable to a user's configuration.

A single AUX file entry in a CNTRL file can specify more than one file type. The first file type indicates a file
that UPDATE uses only on one condition: the files that the second and subsequent file types indicate do

Updating Your Source Program

Chapter 8. Updating Your Source Program 81

not exist. If they do exist, this AUX file entry is ignored and no updating is done. The files that the second
and subsequent file types indicate are preferred because UPDATE does not use the file that the first file
type indicates. Usually, the preferred files appear later in the CNTRL file in a format that causes them to
be used for updating.

UPDATE scans each CNTRL file entry until a preferred file type is found, until there are no more file types
on the entry, or until a comment is found. (A character string less than four or more than eight characters
is assumed to be a comment.)

VMFASM EXEC Procedure
If you are an assembler language programmer and you are using the UPDATE command to update source
programs, you may want to use the VMFASM EXEC procedure. VMFASM is a z/VM update procedure. It
invokes the UPDATE command and uses the ASSEMBLE command to assemble the updated source file.

There are other update procedures. The VMFHASM EXEC is an update procedure for Assembler H
programs. The VMFHLASM EXEC is an update procedure for IBM High Level Assembler programs. See
the z/VM: VMSES/E Introduction and Reference for more information.

If you are not an assembler language programmer, you may wish to create an exec similar to VMFASM
that calls one of the language compilers to compile an updated source file, instead of calling the
assembler.

When you use VMFASM, you specify the source file name, the file name of the control file, and optionally,
parameters for the assembler. (The control file for VMFASM must have a file type of CNTRL). For example,
if you use the file GENERAL CNTRL to update SAMPLE ASSEMBLE, enter:

vmfasm sample general

The VMFASM EXEC uses the MACS card and the update level identifiers in the control file. It reads the
MACS card to determine which macro libraries (MACLIBs) should be searched by the assembler. Then
VMFASM issues the GLOBAL MACLIB command specifying the MACLIBs you name on the MACS card.

VMFASM uses the update level identifier to name the output text file produced by the assembly. If the
update level identifier of the most recent UPDATE file (the last one located and applied) is anything
other than TEXT, the update level identifier is prefixed with the characters TXT to form the file type. For
example, if the file GENERAL CNTRL contains the records:

TEXT MACS DMSGPI MYLIB OSMACRO
UP2 FIX2
UP1 FIX1
TEXT AUXLIST

and updates the file SAMPLE ASSEMBLE, then:

• If the file SAMPLE UPDTFIX2 is found and the updates applied, VMFASM names the output text deck
SAMPLE TXTUP2.

• If the file SAMPLE UPDTFIX1 is found and the updates applied but no SAMPLE UPDTFIX2 is found, the
text deck is named SAMPLE TXTUP1.

• If the file SAMPLE AUXLIST is found but no SAMPLE UPDTFIX1 or SAMPLE UPDTFIX2 files are found,
the text deck is named SAMPLE TEXT.

• If no files are found, the update level identifier on the MACS card is used and the text deck is named
SAMPLE TEXT.

The new fn TEXT or fn TXTxxxxx resides on the A-disk. Because the UPDATE command works from the
bottom of a control file toward the top, it is logical that the text file name be taken from the identifier of
the last update applied.

The VMFASM EXEC does not produce an updated source file, but leaves the original source intact.

VMFASM produces two output files:

• A printed output listing that shows update activity

Updating Your Source Program

82 z/VM: 7.2 CMS Application Development Guide

• The text file that contains the update log as well as the actual object code.

If you use the CMS LOAD command to load a text file produced by VMFASM, records from the update log
are flagged as not valid, but the LOAD operation is not impaired.

Making Updates to Execs and Macros Using the EXECUPDT
Command

If you wish to use the update facility to track changes to execs or macros written for REXX, you need to
use the EXECUPDT command. The EXECUPDT command applies updates to an exec source file (using the
UPDATE command) and removes the sequence numbers from the updated file to produce an executable
version of the file. Using EXECUPDT is very similar to using the VMFASM EXEC to apply updates to an
assembler language source and to assemble it.

Source files for the EXECUPDT command are fixed-length files with sequence numbers just like those for
assembler language or COBOL. Note, the default record length for these files is 80 characters but files
could have record lengths up to 255 characters. The file type of the exec source file has a ‘$’ prefixed to
the normal file type. For example, SAMPLE $EXEC could be the source for an exec procedure and READY
$XEDIT could be a source file for an XEDIT macro.

Updates to the exec source are created using XEDIT in the same manner as updates to programs in other
languages. To apply the updates to the source, use the EXECUPDT command. For a single level update,
enter:

execupdt sample exec

Note that the ‘$’ in the file type is not included in the file type specified on the EXECUPDT command. To
do a multilevel update, you may use the CTL option of EXECUPDT. For example:

execupdt sample exec (ctl general

Writing Your Own Exec to Invoke the UPDATE Command (The STK
Option)

If you are interested in writing your own EXEC procedure to invoke the UPDATE command, you may wish
to use the STK option. The STK (stack) option is valid only with the CTL option and is meaningful only
when the UPDATE command is invoked within an EXEC procedure.

When the STK option is specified, UPDATE stacks the following data lines in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update that was found and applied.
Comments may be specified on MACS records by means of an asterisk (*). Any information beyond the * is
treated as a comment. The comments are not passed on when you specify the STK option.

The following REXX program issues the UPDATE command and then the ASSEMBLE command:

/* Sample REXX program to update */
/* and assemble a source program */
address command
parse upper arg fname cntrl '(' options
'UPDATE' fname 'ASSEMBLE *' cntrl 'CNTRL * (CTL STK'
parse upper pull star txtype .
parse upper pull star maclibs
'GLOBAL MACLIB' maclibs
if txtype ¬= 'TEXT' then
 'FILEDEF TEXT DISK' fname 'TXT'txtype 'A1'
'ASSEMBLE $'fname '(' options
'ERASE $'fname 'ASSEMBLE'

Updating Your Source Program

Chapter 8. Updating Your Source Program 83

If the EXEC that you use is named UPASM EXEC, it is invoked with the line:

upasm fica fica (print noxref

and the file FICA CNTRL contains:

MAC MACS DMSGPI OSMACRO MYTEST * Comments
FIX1 UPDTFIX
LIST AUXLIST

then the REXX exec executes the following:

UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL
GLOBAL MACLIB DMSGPI OSMACRO MYTEST
FILEDEF TEXT DISK FICA TXTFIX1 A1
ASSEMBLE $FICA (PRINT NOXREF
ERASE $FICA ASSEMBLE

The previous example assumes that the UPDATE file FICA UPDTFIX was found and applied.

Example of Updating a FORTRAN Source File
The following is an example of updating a FORTRAN source file. Enter:

type testprog fortran

The result should look like this:

 PROGRAM MYPROG TES00010
 CHARACTER*8 F,S TES00020
 WRITE (6,5) TES00030
 READ (5,2) F TES00040
 WRITE (6,10) TES00050
 READ (5,2) S TES00060
 WRITE (6,15) F,S TES00070
 2 FORMAT (A8) TES00080
 5 FORMAT (' ENTER YOUR FIRST NAME.') TES00090
 10 FORMAT (' AND NOW YOUR LAST NAME.') TES00100
 15 FORMAT (' WELCOME TO CMS, ',A8,1X,A8) TES00110
 STOP TES00120
 END TES00130

There are sequence numbers in columns 73 through 80, which were automatically generated by the
editor. Each sequence number is prefixed with the letters TES, the first three letters of the file name.
The editor generated the sequence numbers in this form because the default file characteristics were in
effect:

• TRUNC was set to 72, allowing serialization in columns 73 to 80.
• SERIAL was set to ON 10 10, meaning that:

– The first three positions of the sequence number would be filled with the first three characters of the
file name.

– The numeric portion of the sequence number (columns 76 through 80) would begin with 10.
– Each subsequent sequence number would be incremented by 10.

To use the UPDATE option of the editor, you have to convert the sequence numbers to all numerics—that
is, all eight characters of the sequence number must be used. The editor makes this task very simple.
First, bring the program into the editor by entering:

x testprog fortran (noprof

Now enter:

serial all 10 10
file

Updating Your Source Program

84 z/VM: 7.2 CMS Application Development Guide

SERIAL ALL means that all eight characters of the sequence field are used for numeric sequencing. Type
the file on the terminal again using the TYPE command. The file should look like this:

 PROGRAM MYPROG 00000010
 CHARACTER*8 F,S 00000020
 WRITE (6,5) 00000030
 READ (5,2) F 00000040
 WRITE (6,10) 00000050
 READ (5,2) S 00000060
 WRITE (6,15) F,S 00000070
2 FORMAT (A8) 00000080
5 FORMAT (' ENTER YOUR FIRST NAME.') 00000090
10 FORMAT (' AND NOW YOUR LAST NAME.') 00000100
15 FORMAT (' WELCOME TO CMS, ',A8,1X,A8) 00000110
 STOP 00000120
 END 00000130

Now the sequence numbers are all numeric.

Suppose you want to make the following changes:

• Add a line between the second and third record of the file (that is, between the CHARACTER*8
statement and the WRITE (6,5) statement. This line contains a comment line giving the programmer's
name.

• Move line 9 to follow line 10.

To make these changes, follow these steps:

1. Call the editor with the update option, by entering:

x testprog fortran (update noprof

Notice that the file type is now UPDATE.
2. Position the cursor in the prefix area of line 2 (the CHARACTER*8 statement), and enter:

==a==

This adds a new line. The cursor is now at the beginning of the new line.
3. Because the comment must begin in column 1, you can now type the comment line:

c author. sam jones.

4. Enter the DOWN 5 command. Now move the cursor to the 10th line, which reads:

5 FORMAT (' ENTER YOUR FIRST NAME.')

and enter:

m====

You need a target to move the line to, so move the cursor to the next line, which reads:

10 FORMAT (' AND NOW YOUR LAST NAME.')

and enter:

f====

The result is that lines 9 and 10 have swapped position.
5. Now, close out the editing session by entering:

file

If you now type the original program, TESTPROG FORTRAN, you will see that none of the changes you
made have taken place in the source file. This is because the update option has created a new file

Updating Your Source Program

Chapter 8. Updating Your Source Program 85

called TESTPROG UPDATE, which contains the changes you made, together with the control statements
necessary to implement the changes again. Now type the TESTPROG UPDATE file. It should look like this:

./ I 00000020 $ 25 5 03/08/01 11:24:11
C AUTHOR. SAM JONES
./ D 00000090 03/08/01 11:24:11
./ I 00000100 $ 105 5 03/08/01 11:24:11
5 FORMAT (' ENTER YOUR FIRST NAME.')
 00000090

Note: The date and time stamp values reflect the time you entered the FILE subcommand.

Now we will use the UPDATE command to update the source. Enter:

update testprog fortran

This updates the source and creates a new file called $TESTPRO FORTRAN and an update log called
TESPTOR UPDLOG. The source file $TESTPRO FORTRAN should look like this:

 PROGRAM MYPROG 00000010
 CHARACTER*8 F,S 00000020
 C AUTHOR. SAM JONES. ********
 WRITE (6,5) 00000030
 READ (5,2) F 00000040
 WRITE (6,10) 00000050
 READ (5,2) S 00000060
 WRITE (6,15) F,S 00000070
 2 FORMAT (A8) 00000080
 10 FORMAT (' AND NOW YOUR LAST NAME.') 00000100
 5 FORMAT (' ENTER YOUR FIRST NAME.') ********
 15 FORMAT (' WELCOME TO CMS, ',A8,1X,A8) 00000110
 STOP 00000120
 END 00000130

The update log file TESTPROG UPDLOG should look like this:

1UPDATING 'TESTPROG FORTRAN A1' WITH 'TESTPROG UPDATE A1'
UPDATE LOG -- PAGE 1 0 ./ I 00000020 $ 25
5 03/08/01 11:24:11 INSERTING... C AUTHOR.
SAM JONES.

 ./ D 00000090
03/08/01 11:24:11 DELETING... 5 FORMAT (' ENTER YOUR FIRST
NAME.')
 00000090
 ./ I 00000100 $ 105 5
03/08/01 11:24:11 INSERTING... 5 FORMAT (' ENTER YOUR FIRST
NAME.')

Updating Your Source Program

86 z/VM: 7.2 CMS Application Development Guide

Chapter 9. Building and Using Dynamic Link Libraries
(DLLs)

A dynamic link library (DLL) is a collection of one or more functions or variables gathered in a load module
and executable or accessible from a separate application load module. The term derives from the fact
that the connection or link between the application that uses the DLL and the DLL functions or variables
is made dynamically while the application is executing rather than statically when the application is built.
You can, therefore, call a function or use a variable in a load module other than the one that contains the
definition. You can use DLLs both implicitly (load-on-call) and explicitly.

When an application implicitly calls a DLL function or references an imported variable, the DLL is
implicitly loaded. This load-on-call use of a DLL is essentially transparent to the application code. All
the connections for the references to the definitions that belong to the DLL are established when the DLL
is first called or referenced.

The use of DLLs can also be explicitly controlled by the application code at the source level. The
application uses explicit source-level calls to one or more execution-time services. The connections for
the reference and the definition are made at run time.

The information in this chapter introduces DLL concepts and describes how to build DLLs and applications
that use DLLs. For additional information about compiler options for DLLs or about prelinking applications,
see the XL C/C++ for z/VM: User's Guide.

DLL Concepts and Terms
This section presents key concepts for understanding DLLs.

DLLs and DLL Applications
A DLL is a load module that exports function or variable definitions to other DLLs or DLL applications.

A DLL application is an application that references imported functions or imported variables. A DLL can
also import functions and variables from other DLLs.

Imported and Exported Functions and Variables
Imported functions and variables are not defined in the load module where the reference to them is
made.

Non-imported functions and variables are defined in the same load module where a reference to them is
made.

Exported functions or variables are defined in one load module and can be referenced from another load
module. If an exported function or variable is also referenced within the load module where it is defined,
the exported function or variable is also non-imported.

DLL Code and Non-DLL Code
DLL code and non-DLL code are types of object code. The difference between them is the way they
reference functions and external variables. In DLL code, special code sequences are always generated by
the compiler for referencing functions, external variables, and using function pointers. With these code
sequences, a DLL application can reference imported functions and imported variables from a DLL as
easily as it can non-imported ones.

The object code generated by the C/C++ compiler with the DLL compiler option is DLL code.

Other types of object code are classified as non-DLL code.

Building and Using Dynamic Link Libraries

© Copyright IBM Corp. 1990, 2022 87

Function and Variable Descriptors
A function descriptor is an internal control block that contains the function address.

A variable descriptor is an internal control block that contains the variable address.

Definition Side-Deck
When you build a DLL, a definition side-deck is created on output by the prelinker. It is a directive file
that contains an IMPORT control statement for each function and variable exported by that DLL. You
must include this definition side-deck when you prelink a DLL application that imports any functions or
variables from the DLL.

Building a DLL or a DLL Application
Building a DLL or a DLL application is similar to creating any C application. It involves three steps:

1. Compiling
2. Prelinking

Note: Although some C applications may not require prelinking, the prelink step is mandatory when
you are building a DLL or a DLL application.

3. Building

To build a DLL or a DLL application, you must pay special attention to the compile and the prelink steps.

The following sections describe how to build simple DLLs or DLL applications. “Building a Complex DLL or
DLL Application” on page 90 discusses how to build a complex DLL or DLL application. A complex DLL
could be any of the following:

• A DLL that consists partially of C source files and C++ source files, and partially of other types of source
files, such as an assembler source file.

• A DLL that contains C source files (compiled with the DLL compiler option) that must also be linked with
additional object text decks, such as C text decks compiled without DLL. For example, to statically link
your DLL to a TEXT library so that you can package them together, you need to create a complex DLL.

• A DLL that is intended to support both DLL and non-DLL applications.

Building a Simple C DLL
You can build a simple C DLL from C source files that contain some defined functions or variables with
external linkage that you want to export to the users of the DLL.

Each function that you want to export from the DLL must be an external function.

To build a simple C DLL:

1. Write code using the #pragma export directive to export specific external functions and variables:

#pragma export(goo)
int foo() {
 ...
}
int goo() {
 ...
}
int kpItHdn() {
 ...
}
 ...
#pragma export(hooVar)
#pragma export(kooVar)
int hooVar;
int kooVar;
int kpItHdnVar;

Building and Using Dynamic Link Libraries

88 z/VM: 7.2 CMS Application Development Guide

For the above example, the functions foo() and goo() and the variables hooVar and kooVar are
exported. The function kpItHdn() and the variable kpItHdnVar are not exported.

Note: If you want to export all defined functions and variables with external linkage in the compilation
unit to the users of the DLL, compile with the EXPORTALL compile option. This means that all defined
functions and variables with external linkage will be accessible from this DLL and by all users of this
DLL.

Using EXPORTALL means that you do not need to include #pragma export(...) in your code.
2. Compile with the DLL compiler option. For example, when using c89:

c89 ... -Wc,dll foogoo.c ...

This option instructs the compiler to generate special code when calling functions and referencing
external variables. For a simple DLL that does not reference any imported functions or imported
variables from other DLLs, specifying the DLL compiler option is not mandatory but it is recommended.
Always compiling a simple DLL as DLL code eliminates the potential compatibility problems that may
occur when linking DLL code with non-DLL code. See “Building a Complex DLL or DLL Application” on
page 90 for more information on compatibility issues.

3. Prelink with the DLL prelinker option. For example, when using c89:

c89 ... -Wb,p,dll ... foogoo.o ...

No special text decks other than those for creating the DLL are required. The prelinker automatically
creates a definition side-deck. For the users of this DLL, the definition side-deck describes the
functions and the variables that can be imported by DLL applications. A DLL provider must provide this
side deck to the users of the DLL, and the users must include it when they prelink a DLL application.

When prelinking the TEXT file for the above source files, the prelinker generates the following
definition side-deck:

IMPORT CODE 'FOOGOO' goo
IMPORT DATA 'FOOGOO' hooVar
IMPORT DATA 'FOOGOO' kooVar

FOOGOO is the name or alias of the load module for the DLL. The prelinker puts out the DLL name
in single quotation marks, and leaves enough extra blanks such that you can change FOOGOO to an
8-character name without moving the function or variable name.

You can edit the definition side-deck to remove any functions or variables that you do not want to
export. For instance, in the above example, if you do not want to expose goo(), remove the control
statement IMPORT CODE 'FOOGOO' goo from the definition side-deck.

Note: You should also provide a header file containing the prototypes for exported functions and
extern variable declarations for exported variables. DLL application writers can then include this
header file in their source files that reference functions or variables in the DLL.

4. Build the DLL as you would any C application. For example, when using c89:

c89 -o foogoo ... foogoo.o ...

Building a Simple C DLL Application
A simple C DLL application contains C source files. Some of the files contain references to imported
functions or imported variables.

To use a load-on-call DLL in your simple C DLL application:

1. Compile with the DLL compile option. It instructs the compiler to generate special code when calling
functions and referencing external variables.

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 89

2. Prelink. Include the definition side-deck from the DLL provider in the set of text decks to prelink. The
prelinker uses the definition side-deck to resolve references to functions and variables defined in the
DLL. If you are referencing multiple DLLs, you must include multiple definition side-decks.

Note: You must use an INCLUDE statement for each definition side-deck unless the DLL application
uses only explicit DLL references. The automatic library call (autocall) process will not resolve these
references if they are not explicit.

3. Build the DLL application as you would any C application.

See Figure 11 on page 93 for a summary of the processing steps required for a DLL application (and
related DLLs).

Building a Complex DLL or DLL Application
A key characteristic of a complex DLL or DLL application is that it is created by linking DLL code with
non-DLL code. Non-DLL code may be used because some of the source files are not written in C, or
because some of the C source files must be compiled with the NODLL compiler option (refer to “Rules for
Compiling DLL Code Versus Non-DLL Code” on page 90). For example, DLL application writers may want
to statically link their applications to a TEXT library that shipped earlier.

These are the general steps for creating a complex DLL or DLL application:

1. Determine the source files that must be compiled as non-DLL code and assume that the rest of the
source files will be compiled as DLL code.

2. Make sure that all the source files meet all the DLL rules. If there are violations, follow the corrective
steps described in “Rules for Modifying DLL Source” on page 91.

3. Compile the source files to produce DLL code and non-DLL code as determined in the previous steps.
4. Prelink. Follow the steps for a simple DLL or DLL application.
5. Build the DLL or DLL application as you would any C application.

Rules for Compiling DLL Code Versus Non-DLL Code
To create a complex DLL or DLL application, you must decide which source files should be compiled as
DLL code and which should be compiled as non-DLL code. The following is a list of the rules for making
that decision:

1. A source file that contains a function call through a pointer that may point to either a function or
function descriptor must be compiled as non-DLL code. For example, the qsort() routine in Figure
19 on page 103 must be compiled as non-DLL code, because qsort() gets a pointer to a function
to call. Because that pointer can be to a function compiled as either DLL code or non-DLL code, the
qsort() routine emitted by the compiler cannot tell whether the routine to invoke is DLL or non-DLL
code. This means that qsort() must be non-DLL. For additional information about function pointers,
see “Pointer Assignment” on page 98.

2. A source file that calls imported functions or imported variables by name must be compiled as DLL
code.

3. A source file that contains a comparison of function pointers that may be DLL function pointers must
be compiled as DLL code.

The comparisons shown in “Function Pointer Comparison in Non-DLL Code” on page 104 are
undefined. To obtain valid comparisons, you must compile the same source files as DLL code.

4. A source file that may pass a function pointer to DLL code through a parameter or a return value must
be compiled as DLL code.

If the qsort() routine in Figure 19 on page 103 is compiled as DLL code instead of non-DLL code,
non-DLL applications can no longer call it. To be able to call the DLL code version of qsort(), the
original non-DLL application must be recompiled as DLL code.

5. A source file that may pass a function pointer to DLL code by linking the references to the definition of
an external variable must be compiled as DLL code.

Building and Using Dynamic Link Libraries

90 z/VM: 7.2 CMS Application Development Guide

In the following examples, if source file 1 has been compiled as DLL code, source file 2 must be
compiled as DLL code as well.

a. File 1:

void main(void) {
 goo(); /* initialize fp to be hello function */
 fp(); /* call hello function */
}

b. File 2:

extern void (*fp)(void);
void hello(void) {
 printf("hello\n");
}
void goo(void) {
 fp = hello;
}

If you do not use the DLL compiler option, fp would contain the address of hello. File 1 would
expect fp to contain a function descriptor for fp, and the execution of fp would abend.

You must comply with all the rules described above when creating a complex DLL or DLL application. The
prelinker flags violations of rule “2” on page 90 as an error, but the compiler and prelinker do not indicate
any other rule violations.

Note: A DLL or DLL application that does not comply with these rules may produce undefined run-
time behavior. For a detailed explanation of incompatibilities between DLL and non-DLL code, see
“Compatibility Issues between DLL and Non-DLL Code” on page 96.

To comply with the DLL rules, you should also be aware of the following:

1. A C source file will be compiled as DLL code if the DLL compiler option is on.
2. A C source file will be compiled as non-DLL code if the NODLL compiler option is on.
3. Other types of source files can be compiled only as non-DLL code.

Rules for Modifying DLL Source
Sometimes, source files of a complex DLL or DLL application do not simultaneously meet all the DLL rules.
For example,

1. If a C++ source file that is automatically compiled as DLL code contains a function call through a
pointer that may be either a DLL function pointer or a non-DLL function pointer, it must be compiled as
non-DLL code by DLL rule “1” on page 90. For example, a user writes the qsort() routine in Figure 19
on page 103.

2. A C source file that contains the qsort() routine (and therefore must be compiled as non-DLL code)
also contains the source for a DLL application that must be compiled as DLL code.

When these situations occur, you can use the following methods to solve the problem:

1. Rewrite the source in C. Only the C source can be compiled as either DLL or non-DLL code. For example
“1” on page 91 above, rewrite the qsort() routine in C.

2. Split a source file into two, so that one of the new files can be compiled as DLL code and the other can
be compiled as non-DLL code. For example “2” on page 91 above, split the source file into two so that
one contains the qsort() routine while the other contains a DLL application.

Note: Sometimes you might have to split a function into two functions before you can successfully split
the file.

Summary Example: Creating and Using DLLs
Figure 11 on page 93 summarizes the use of DLLs for both the DLL provider and for the writer of
applications that use them. In this example, application ABC is referencing functions and variables from

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 91

two DLLs, XYZ and PQR. The connection between DLL preparation and application preparation is shown.
Each DLL shown contains a single compilation unit. The same general scheme applies for DLLs composed
of multiple compilation units, except that they have multiple compiles and a single prelink for each DLL.
For simplicity, this example assumes that ABC exports variables or functions and that XYZ and PQR do not
use other DLLs.

Building and Using Dynamic Link Libraries

92 z/VM: 7.2 CMS Application Development Guide

Figure 11. Summary of DLL and DLL Application Preparation and Usage

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 93

Managing the Use of DLLs when Running DLL Applications
This section describes how the C/C++ compiler manages loading and freeing DLLs when you run a DLL
application.

Loading DLLs
There are four ways to implicitly load a DLL. They are:

1. Statically initializing a variable pointer to the address of an exported DLL variable
2. Calling an exported function
3. Referencing (using, modifying, or taking the address of) an exported variable
4. Calling through a function pointer that points to an exported function

In the first case, the DLL is loaded when writable static is initialized and (in C++) constructors are run
before main() is invoked. In the other cases, the DLL is loaded at the time of the implicit call.

Note: In C++, constructors are run once on initial load and destructors are run once.

When a DLL is called explicitly, writable static is initialized and (in C++) constructors are run when the first
call to dllload() is made. For more information on the library functions that make explicit calls to DLL
services, see “Explicitly Calling a DLL” on page 107 and the XL C/C++ for z/VM: Runtime Library Reference.

When you are running with Language Environment, you can load DLLs from the OpenExtensions byte
file system (BFS) as well as from accessed CMS minidisks and SFS directories. In most cases when the
Language Environment run-time library attempts to load the DLL, it tries to load first from the BFS and
then, if it does not find the DLL, from the CMS search order.

The exception to the above case is if the DLL name is unambiguous, or specifically a BFS path ID or CMS
file ID. For example, if a DLL name starts with two slashes (//), the run-time library looks only in the
accessed CMS search order. If the name starts with a single slash, the library looks only in the BFS.

When the run-time library attempts to load a DLL from the BFS, it will look in the directories specified
by the LIBPATH environment variable. If LIBPATH is not specified, the current working directory is
searched.

Sharing DLLs
DLLs are shared at the enclave level (as defined by Language Environment). A referenced DLL is loaded
only once per enclave, and only one copy of the writable static is created or maintained per DLL per
enclave. Thus, a single copy of a DLL serves all modules in a given enclave regardless of whether the DLL
is loaded implicitly (through a reference to a function or variable) or explicitly (through dllload()). You
can simultaneously access a given DLL within a given enclave both implicitly and by explicit execution-
time services.

All accesses to a given variable in a given DLL in a given enclave refer to the only copy of that variable. All
accesses to a given function in a given DLL in a given enclave refer to the only copy of that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads are counted and used to
determine when the DLL (including its writable static area) is actually deleted. For a given DLL in a given
enclave, there is one logical load of it for the first implicit reference to one of its variables or functions
from a given load module, and one logical load for each explicit dllload() request.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded the DLL can access
functions and variables. For example, if program A loads a DLL and makes a system call to program B,
program B cannot access any of the DLL variables or functions loaded by program A. Program B can
access the DLL variables and functions by loading its own copy of the DLL.

Freeing DLLs
Explicitly-loaded DLLs may be freed with a dllfree() request. This request is optional because the DLLs
are automatically deleted by the run-time library at enclave termination.

Building and Using Dynamic Link Libraries

94 z/VM: 7.2 CMS Application Development Guide

Implicitly-loaded DLLs cannot be deleted from the DLL application code. They are deleted by the run-time
library at enclave termination.

DLL Restrictions
Consider the following restrictions when creating DLLs and DLL applications:

1. CEESTART must exist in the load module.
2. The AMODE of a DLL application must be the same as the AMODE of the DLL that it calls.
3. DLL facilities are not available under the SPC environment.
4. DLL facilities are not available to application programs with main() written in PL/I and that

dynamically call C/C++ functions.
5. DLL facilities are not available to application programs written in COBOL and that dynamically call

C/C++ functions.
6. You cannot implicitly load a DLL while running C++ static destructors.
7. You cannot use DLL static constructors to create new threads. This restriction is to prevent the creation

of a DLL loop, where one DLL loads another, which then tries to load the first. In a single thread, if
you try to create a DLL loop, you will get an error message. However, Language Environment supports
DLLs in a multithreaded environment. If a DLL static constructor could create threads, there might be a
case where DLL A loaded DLL B, whose static constructor created a new thread that tried to load DLL
A before the static constructor for DLL B completed. The run-time library would not recognize this as a
DLL loop. For this reason, DLL static constructors cannot create new threads.

8. You cannot use the functions set_new_handler() or set_unexpected() in a DLL if the DLL
application is expected to invoke the new handler or unexpected function routines.

9. Be very careful when you use the explicit DLL functions in a multithreaded environment. Make sure you
avoid any situation where one thread frees a DLL while another thread calls any of the DLL functions.
Such a situation happens, for example, when a main() function uses dllload() to load a DLL, then
creates a thread that uses the ftw() function. The ftw() target function routine is in the DLL. If the
main() function uses dllfree() to free the DLL, but the created thread uses ftw() at any point,
you will get an abend. There are many scenarios similar to this, all of which can be avoided if you do
either of the following:

• Do not free any DLLs by using dllfree(). (Language Environment will free them when the enclave
is terminated.)

• Have the main() function call dllfree() only after all threads have been terminated.

Performance Considerations
This section contains some hints on using DLLs efficiently.

• Static Initialization in DLL code

Do not use the static initializations that require a DLL to be loaded if the code actually using the DLL may
not be executed.

The static initialization of an external or static pointer variable to the address of an imported variable
implies loading a DLL. Static initialization occurs when a DLL application begins executing, before C++
static constructors are run and before the execution of the main function.

A DLL needed for the static initialization is always loaded at initialization time, even if the code using
those pointers may not be executed later. To minimize unnecessary startup time, use a run-time
initialization so that the DLL is loaded only if it is actually used.

• Group external variables

Group all external variables into one external structure.
• POSIX Run-time Option and Loading DLLs

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 95

When POSIX(ON) is used, Language Environment always tries to load DLLs from the BFS first, then
from the accessed CMS search order. If the DLLs actually reside on CMS minidisks or SFS directories,
this results in unnecessary load attempts. If an application must run with CMS DLLs, you can put two
slashes (//) in front of the CMS DLL names before the application is prelinked, to make the DLL names
in the side-decks unambiguous. If your application uses a DLL in the BFS, you can make the DLL name
unambigious by putting a period and a slash (./) in front of it before you prelink.

• In C, do not compile with the DLL compiler option if the compilation unit does not use imported
symbols.

Compatibility Issues between DLL and Non-DLL Code
This section describes the differences between DLL code and non-DLL code, and discusses the related
compatibility issues for linking them to create complex DLLs.

Referencing Functions and External Variables
Table 5 on page 96, Figure 12 on page 97, and Figure 13 on page 98 show the differences between
DLL and non-DLL code in referencing functions and variables. Undefined references fail during the link
step.

Table 5. Referencing Functions and External Variables

DLL Non-DLL

Imported Functions A function descriptor is created by
the prelinker. The descriptor is in
the writable static area (WSA) and
contains the address of the function
and the address of the writable
static area associated with that
function. The function address is
resolved when the DLL is loaded. 1

Explicit reference is undefined 5

Non-imported Functions Also called by the function
descriptor, but the function address
is resolved at load time. 3

Directly, by function address 7

Imported Variables A variable descriptor is created
in the WSA by the prelinker. It
contains addressing information for
accessing an imported variable. The
address is resolved when the DLL is
loaded. 2

Undefined 6

Non-imported Variables Direct access 4 Direct access 8

Building and Using Dynamic Link Libraries

96 z/VM: 7.2 CMS Application Development Guide

Figure 12. Referencing Functions and External Variables in DLL code

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 97

Figure 13. Reference of Functions and External Variables in non-DLL code

Pointer Assignment

External Variable Pointers
If you assign the address of an imported variable to a variable pointer in non-DLL code, any reference to
that pointer will fail.

In DLL code and non-DLL code, the absolute address of a variable is assigned to a variable pointer.

A valid variable pointer always points to the variable itself and causes no compatibility problems.

Function Pointers
If you assign the address of an imported function to a pointer in non-DLL code, the link step will fail. In
non-DLL code, the absolute address of a non-imported function is assigned to a function pointer. In DLL
code, the address of a function descriptor is assigned to a function pointer.

Building and Using Dynamic Link Libraries

98 z/VM: 7.2 CMS Application Development Guide

In a complex DLL or DLL application, a DLL function pointer may be passed to non-DLL code and a
non-DLL function pointer may be passed to DLL code. (A function pointer can be passed from DLL code
to non-DLL code, or vice versa, by a parameter, a return value, or an external variable through the link
step.) Thus, in a complex DLL or DLL application, a function pointer may point either to a descriptor or
to a function entry, depending on whether the function pointer originates in DLL or non-DLL code. The
different ways of de-referencing a function pointer causes the compatibility problem in linking DLL code
with non-DLL code.

In Figure 14 on page 99, 1 assigns the address of the descriptor for the imported function f to fp.
2 assigns the address of the imported variable x to xp. 3 assigns the address of the descriptor for the
non-imported function g to gp. 4 assigns the address of the non-imported variable y to yp.

Figure 14. Pointer Assignment in DLL Code

In Figure 15 on page 100, 1 causes a link error because the assignment to fp is undefined. 2 causes
a prelink error because the assignment to xp is undefined. 3 assigns gp to the address of the non-
imported function, g. 4 assigns the address of the non-imported variable y to yp.

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 99

Figure 15. Pointer Assignment in Non-DLL Code

DLL Function Pointer Call in Non-DLL Code
The C/C++ compiler supports the DLL function pointer call in non-DLL code. You can, therefore, create a
DLL to support both DLL and non-DLL applications. To make those calls possible, glue code is included at
the beginning of a function descriptor to allow branching to a function descriptor.

A function pointer in non-DLL code points to the function entry, and a function pointer call branches to
the function address. However, when a DLL function pointer is passed from DLL code to non-DLL code,
the pointer points to a function descriptor. A call made through this pointer in non-DLL code results in
branching to the descriptor.

The C/C++ compiler executes a DLL function pointer call in non-DLL code by branching to the descriptor
and executing the glue code that invokes the actual function.

The example below and in Figure 19 on page 103 show a DLL function pointer call in non-DLL code, where
a simplified qsort() routine is used as an example of non-DLL code. Note that the qsort() routine
compiled as non-DLL code can be called from both a DLL application and a non-DLL application.

Building and Using Dynamic Link Libraries

100 z/VM: 7.2 CMS Application Development Guide

C Examples
Figure 16 on page 101 shows an example of C non-DLL code in a DLL.

int qqsort(int* z,int num,int (*comp)(int e1,int e2))
{
 int i,j,temp,rc;

 for(i=0;i<num-1;i++)
 {
 for(j=1;j<num-i;j++)
 {
 rc=(*comp)(z[j-1],z[j]);
 if(rc>0)
 {
 temp=z j ;
 z j =z j-1 ;
 z j-1 =temp;
 }
 }
 }
 return(0);
}

int comp(int e1,int e2)
{
 if(e1==e2){
 return(0);
 }
 else if(e1<e2){
 return(-1);
 }
 else{
 return(1);
 }
}

Figure 16. C Non-DLL Code in a DLL

Figure 17 on page 101 shows an example of C DLL code in a DLL application.

 int (*comp)(int e1, int e2));
int comp(int e1, int e2)
{
 if (e1 == e2)
 return(0);
 else (e1 < e2)
 return(-1);
 else
 return(1);
}
int (*fp)(int e1, int e2);
main()
{
 int a[2] = { 2, 1 };
 fp = comp; /* assign address of function descriptor */
 qsort(a, 2, fp); /* call qsort */
}

Figure 17. C DLL Code in a DLL Application

Figure 18 on page 102 shows an example of C non-DLL code in a non-DLL application.

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 101

 int (*comp)(int e1, int e2));
int comp(int e1, int e2)
{
 if (e1 == e2)
 return(0);
 else if (e1 < e2)
 return(-1);
 else
 return(1);
}
int (*fp)(int e1, int e2);
main()
{
 int a[2&] = { 2, 1 };
 fp = comp; /* assign function address */
 qsort(a, 2, fp); /* call qsort */
}

Figure 18. C Non-DLL Code in a Non-DLL Application

Building and Using Dynamic Link Libraries

102 z/VM: 7.2 CMS Application Development Guide

Figure 19. DLL Function Pointer Call in Non-DLL Code

Non-DLL Function Pointer Call in DLL Code
In DLL code, a function pointer is assumed to point to a function descriptor. A function pointer call is made
by first obtaining the function address through de-referencing the pointer, and then branching to the
function entry. When a non-DLL function pointer is passed to DLL code, it points directly to the function
entry. An attempt to de-reference through such a pointer produces an undefined function address. The
subsequent branching to the undefined address may result in an exception. Below are examples of
passing a non-DLL function pointer to DLL code through an external variable. Its behavior is undefined:

C Examples
• C DLL code:

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 103

void (*fp)(void);
void main (void) {
 goo();
 (*fp)(); /* Expect a descriptor, but get a function address, */
 /* so it de-references to an undefined address and */
 /* call fails */
}

• C Non-DLL code:

extern void (*fp)(void);
void hello(void) {
 printf("hello\n");
}
void goo(void) {
 fp = hello; /* assign address of hello, to fp */
}

Function Pointer Comparison in Non-DLL Code
In non-DLL code, the results of the following function pointer comparisons are undefined:

1. Comparing a DLL function pointer to a non-DLL function pointer, or, in other words, comparing the
address of a function to the address of a function descriptor. In the following examples, both the
DLL function pointer and the non-DLL function pointer point to the same function, but the pointers
themselves compare unequal (refer to Figure 20 on page 104).

• C DLL code:

extern int foo(int (*fp1)(const char *, ...));
main ()
{
 int (*fp)(const char *, ...);
 fp = printf; /* assign address of a descriptor that */
 /* points to printf. */
 if (foo(fp))
 printf("Test result is undefined\n");
}

• C Non-DLL code:

{
 int (*fp2)(const char *, ...);
 fp2 = printf; /* assign the address of printf. */
 if (fp1 == fp2) /* comparing address of descriptor to */
 /* address of printf results in unequal.*/
 return(0);
 else
 return(1);
}

In the preceding example, DLL code and non-DLL code can reside either in the same load module or in
different load modules.

Figure 20. Comparison of Function Pointers in Non-DLL Code

Building and Using Dynamic Link Libraries

104 z/VM: 7.2 CMS Application Development Guide

2. Comparing a DLL function pointer to another DLL function pointer. Here, you are comparing addresses
of function descriptors. In the following examples, both DLL function pointers point to the same
function, but they compare unequal (refer to Figure 21 on page 105).

• C DLL1 code:

extern int goo(int (*fp1)(const char *, ...));
main ()
{
 int (*fp)(const char *, ...);
 fp = printf; /* assign address of a descriptor that */
 /* points to printf. */
 if (goo(fp))
 printf("Test result is undefined\n");
}

• C DLL2 code:

extern int foo(int (*fp1)(const char *, ...),
 int (*fp2)(const char *, ...));
int goo(int (*fp1)(const char *, ...))
{
 int (*fp2)(const char *, ...);
 fp2 = printf; /* assign address of a different */
 /* descriptor that points to printf. */
 return (foo(fp1, fp2));
}

• C Non-DLL code:

 int (*fp2)(const char *, ...))
{
 if (fp1 == fp2) /* comparing the addresses of two */
 /* descriptors results in unequal. */
 return(0);
 else
 return(1);
}

Here, DLL1 code and DLL2 code reside in different load modules. The non-DLL code can reside in the
same load module with DLL1 or DLL2 or in a different load module.

Figure 21. Comparison of Two DLL Function Pointers in Non-DLL Code
3. Comparing a DLL function pointer to a constant function address other than NULL. Here, you are

comparing the constant function address to an address of a function descriptor.

Note: Comparing a DLL function pointer to NULL is well defined, because when a pointer variable is
initialized to NULL in DLL code, it has a value zero.

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 105

Function Pointer Comparison in DLL Code
In DLL code, a function pointer is checked for NULL before it is compared. For a non-NULL pointer, the
pointer is further de-referenced to obtain the function address that is used for the comparison. For an
uninitialized function pointer that actually has a non-zero value, the de-reference can cause an exception
to occur if the storage that the uninitialized pointer points to is read-protected.

Usually, comparing uninitialized function pointers in DLL code results in undefined behavior. You must
initialize a function pointer to NULL or the function address (from source view). Two examples follow.

1. Undefined comparison in DLL code:

int (*fp2)(const char *, ...) /* Initialize to point to the */
 = printf; /* descriptor for printf */
int goo(void);
int (*fp2)(void) = goo;
int goo(void) {
 int (*fp1)(void);
 if (fp1 == fp2)
 return (0);
 else
 return (1);
}
 #include <stdio.h>

 void check_fp(void (*fp)()) {
 /* exception likely when -1 is de-referenced below */
 if (fp == (void (*)())-1)
 printf("Found terminator\n");
 else
 fp();
 }
 void dummy() {
 printf("In function\n");
 }

 main() {
 void (*fa[2])();
 int i;

 fa[0] = dummy;
 fa[1] = (void (*)())-1;

 for(i=0;i<2;i++)
 check_fp(fa[i]);
 }

Figure 22 on page 106 shows that, when fp1 points to a read-protected memory block, an exception
occurs.

Figure 22. Comparison of Function Pointers in DLL Code
2. Valid comparisons in DLL code:

int (*fp1)(const char *, ...); /* An extern variable is implicitly*/
 /* initialized to zero */
 /* if it has not been explicitly */
 /* initialized in source. */

Building and Using Dynamic Link Libraries

106 z/VM: 7.2 CMS Application Development Guide

int (*fp2)(const char *, ...) /* Initialize to point to the */
 = printf; /* descriptor for printf */
int foo(void) {
 if (fp1 != fp2)
 return (0);
 else
 return (1);
}

Explicitly Calling a DLL
DLLs can be explicitly controlled by the application code at the source level. Explicit source-level calls to
one or more execution-time services connect the reference and the definition.

The DLL application writer can explicitly call the following execution-time services:

• dllload()
• dllqueryfn()
• dllqueryvar()
• dllfree()

Apart from these calls, there is no implicit or automatic connection between the application and the DLL.

The following guidelines apply to explicitly calling a DLL in your application:

• Determine the names of the exported functions and variables that you want to use. You can get this
information from the DLL provider's documentation or by looking at the definition side-deck file that
came with the DLL.

• Include the DLL header file, dll.h, in your application.
• Compile your source as usual.
• Prelink your code as usual.

Note: Do not prelink with the definition side-deck if you are calling the DLL explicitly with the callable
services.

• Link your application with the same AMODE value as the DLL.

Figure 23 on page 108 is an example of an application that explicitly uses a DLL:

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 107

#include <stdio.h>
#include <string.h>

#ifdef __cplusplus
 extern "C" {
#endif

 typedef int (DLL_FN)(void);

#ifdef __cplusplus
 }
#endif

#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
 fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"
 " where\n"
 " <DLL-name> is the DLL to load,\n"
 " <type> can be one of FUNCTION or VARIABLE\n"
 " and <identifier> is the function or variable\n"
 " to reference\n", progName);
 return;
}int value;
 int* varPtr;
 char* dll;
 char* type;
 char* id;
 dllhandle* dllHandle;

 if (argc != 4) {
 Syntax(argv[0]);
 return(4);
 }

 dll = argv[1];
 type = argv[2];
 id = argv[3];

Figure 23. Explicit Use of a DLL in an Application Part 1 of 2

Building and Using Dynamic Link Libraries

108 z/VM: 7.2 CMS Application Development Guide

 dllHandle = dllload(dll);
 if (dllHandle == NULL) {
 perror("DLL-Load");
 fprintf(stderr, "Load of DLL %s failed\n", dll);
 return(8);
 } if (strcmp(type, VARIABLE)) {
 fprintf(stderr,
 "Type specified was not " FUNCTION " or " VARIABLE "\n");
 Syntax(argv[0]);
 return(8);
 }
 /*
 * variable request, so get address of variable
 */
 varPtr = (int*)(dllqueryvar(dllHandle, id));
 if (varPtr == NULL) {
 perror("DLL-Query-Var");
 fprintf(stderr, "Variable %s not exported from %s\n", id, dll);
 return(8);
 }
 value = *varPtr;
 printf("Variable %s has a value of %d\n", id, value);
 }
 else {
 /*
 * function request, so get function descriptor and call it
 */
 DLL_FN* fn = (DLL_FN*) (dllqueryfn(dllHandle, id));
 if (fn == NULL) {
 perror("DLL-Query-Fn");
 fprintf(stderr, "Function %s() not exported from %s\n", id, dll);
 return(8);
 }
 value = fn();
 printf("Result of call to %s() is %d\n", id, value);
 }
 dllfree(dllHandle);

 return(0);
}

Figure 24. Explicit Use of a DLL in an Application Part 2 of 2

Building and Using Dynamic Link Libraries

Chapter 9. Building and Using Dynamic Link Libraries (DLLs) 109

Building and Using Dynamic Link Libraries

110 z/VM: 7.2 CMS Application Development Guide

Part 3. Using CMS Services

This part discusses the programming services available in CMS. You will use these services when you
develop your applications.These services are included in the following chapters:

• Chapter 10, “Handling Input and Output,” on page 113
• Chapter 11, “Understanding the CMS File System,” on page 119
• Chapter 12, “Manipulating SFS and Minidisk Files and Directories,” on page 129
• Chapter 13, “Manipulating BFS Files and Directories Using CMS Record File System CSL Routines,” on

page 193
• Chapter 14, “Extracting and Replacing System Information,” on page 209
• Chapter 15, “Using Data Spaces,” on page 217
• Chapter 16, “Your Applications and Data Integrity,” on page 241
• Chapter 17, “Writing a CRR Wait Routine for Multiuser Server Applications,” on page 251
• Chapter 18, “Getting a Resource Manager to Participate in CRR,” on page 255
• Chapter 19, “Creating and Manipulating the CMS Libraries,” on page 305
• Chapter 20, “Using Execs,” on page 333
• Chapter 21, “Passing Commands and Data,” on page 347
• Chapter 22, “Using CMS Pipelines,” on page 353
• Chapter 23, “Using the Batch Facility,” on page 357
• Chapter 24, “Creating an Interactive Program,” on page 369
• Chapter 25, “Developing Commands Using the Parsing Facility,” on page 383
• Chapter 26, “Using Message Repository Files,” on page 405
• Chapter 27, “Using Saved Segments,” on page 419
• Chapter 28, “Using DB2 Server for VM,” on page 425

© Copyright IBM Corp. 1990, 2022 111

112 z/VM: 7.2 CMS Application Development Guide

Chapter 10. Handling Input and Output

This chapter describes the I/O operations your application can perform. These I/O operations include:

• File I/O
• Directory I/O
• Console and Terminal I/O
• Program Stack I/O
• Unit Record I/O
• Tape I/O
• General Tape I/O Services

File I/O
Your application can manipulate CMS files using any of the following methods:

• Use record file system routines to manage SFS and minidisk files. See “File I/O” on page 149 for more
information on these routines.

• Use high-level language statements for opening, reading, writing, and closing files. When using a high-
level language such as FORTRAN, COBOL, or PL/I, operating on files stored in SFS is the same as
operating on files stored on a minidisk.

• Use these CMS FS macros to manage CMS files: FSCB, FSCBD, FSOPEN, FSREAD, FSWRITE, FSPOINT,
FSCLOSE, FSERASE, and FSSTATE.

These macros can manipulate files in SFS or on a minidisk. Applications written in a high-level language
must call assembler subroutines that use these macros. See the z/VM: CMS Application Development
Guide for Assembler for information on using the FS macros.

• Use the EXECIO command or the PIPE command command to read and write information.

The PIPE command can be used from a REXX or EXEC 2 exec. The following stage commands, which are
operands on the PIPE command, read and write records:
<

reads the contents of a CMS file.
>

writes to (replaces or creates) a CMS file.
>>

writes to (appends to or creates) a CMS file.
FILEFAST

reads from or writes to a CMS file.
FILEBACK

reads from a CMS file backwards.
FILERAND

reads specific records from a CMS file.
FILESLOW

reads from or writes to a CMS file beginning at a specified record.
See the z/VM: CMS Pipelines User's Guide and Reference for details on these stage commands.

The EXECIO command is normally issued from a REXX or EXEC 2 exec. See the z/VM: CMS Commands
and Utilities Reference for details on the EXECIO command.

• Use OS and DOS simulated macros to manipulate files in SFS or on a minidisk. These OS and DOS
simulated macros use the same CMS I/O routines that the FS macros do. See the z/VM: CMS Application

Handling Input and Output

© Copyright IBM Corp. 1990, 2022 113

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

Development Guide for Assembler for information on using OS and DOS macros simulated macros to
access files.

Your application can manipulate BFS files using the following methods:

• Use OpenExtensions callable services. For more information about these routines, see the z/VM:
OpenExtensions Callable Services Reference.

• Use the CMS Pipelines PIPE command. The PIPE command runs a series of stage commands called
a pipeline. CMS Pipelines stages <, > and >> for reading and writing disk files transparently use the
proper low-level device driver when the file is a BFS file. The low-level device driver will transparently
transform between BFS data stream and records in the pipeline.

• Use CMS record file system CSL routines. This support is primarily for administration and system-
managed storage purposes. See Chapter 13, “Manipulating BFS Files and Directories Using CMS Record
File System CSL Routines,” on page 193.

Directory I/O
Your application can use CSL routines to perform the following tasks on SFS and minidisk directories:

• Determine if a directory exists
• Open a directory to read it
• Read directory records
• Create or erase a directory
• Close a directory
• Commit your changes.

See “Directory I/O” on page 165 for information on these routines.

To perform I/O on BFS directories, use the OpenExtensions callable services. See the z/VM:
OpenExtensions Callable Services Reference. You can also use CMS record file system routines for
administration and system-managed storage purposes. See Chapter 13, “Manipulating BFS Files and
Directories Using CMS Record File System CSL Routines,” on page 193.

Your application can use CMS Pipelines stage commands to perform the following tasks on BFS
directories:
BFSDIRECTORY

reads from an existing BFS directory file and writes one record for each directory entry.
BFSQUERY

obtains information from OpenExtensions about the current working BFS directory
BFSSTATE

writes records containing status information about byte stream files
BFSXECUTE

reads a record containing a request and sends that request to OpenExtensions services.

Here is a partial list of request tasks:

• Change a directory
• Create a new directory entry
• Create, rename, or remove a directory

Console and Terminal I/O
Your application can use the following methods to create an interactive application:

• Use the XMITMSG command. XMITMSG accesses a message from a CMS message repository file or
your own message repository file and displays the message. For information on using the XMITMSG
command, see “Creating and Using Message Repositories” on page 405.

Handling Input and Output

114 z/VM: 7.2 CMS Application Development Guide

• Use the Interactive System Productivity Facility (ISPF) and the Display Management System for CMS
(DMS/CMS)

ISPF and DMS/CMS provide services to make your application interactive. For details on ISPF and DMS/
CMS, see Chapter 24, “Creating an Interactive Program,” on page 369.

• Use the CONSOLE, LINERD, and LINEWRT macros.
CONSOLE

provides CMS fullscreen console services, which includes 3270 I/O operations. See the z/VM: CMS
Application Development Guide for Assembler for details on using the CONSOLE macro to access
CMS fullscreen console services.

LINERD and LINEWRT
LINERD reads a line of input from the terminal. LINEWRT displays a line of output at a terminal. See
the z/VM: CMS Application Development Guide for Assembler for details on using the LINERD and
LINEWRT macros.

Applications written in a high-level language must call assembler subroutines that use these macros.
• Use the CMS Pipelines stage commands FULLSCREEN, BUILDSCR, CONSOLE, FULLSCRQ, FULLSCRS,

APLENCODE, APLDECODE, 3270ENC, or 3270BFRA, which are operands on the PIPE command.
FULLSCREEN

writes 3270 data streams to the virtual console in fullscreen mode or to a 3270 device.
BUILDSCR

builds 3270 data streams.
CONSOLE

reads from or writes to the terminal in line mode.
FULLSCRQ

provides information about the terminal.
FULLSCRS

processes the output from FULLSCRQ to make it easier to use.
APLENCODE

reads its primary input stream records and translates a single character into a graphic escape
character sequence that can be displayed on a 3270 terminal capable of displaying APL/TEXT
characters.

APLDECODE
reads its primary input stream records that contain data from a 3270 terminal capable of displaying
APL/TEXT characters and translates a graphic escape character sequence into a single character.

3270ENC
prepares a 64 character translate table used to convert binary values in the range B'000000'
through B'111111' (64 values) to displayable 1-byte graphic characters for placement in a 3270
data stream.

3270BFRA
converts a 2-byte unsigned integer (the format of the 14- and 16-bit buffer addresses) to a 12-bit
buffer address, or vice versa.

See the z/VM: CMS Pipelines User's Guide and Reference for details on these stage commands.

OS/MVS™ Simulation provides WTO and WTOR macros to support terminal I/O. See the z/VM: CMS
Application Development Guide for Assembler for more information.

Program Stack I/O
Your application can use these methods to manipulate the CMS program stack.

• CMS commands
SENTRIES

Returns the number of line in the program stack.

Handling Input and Output

Chapter 10. Handling Input and Output 115

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

MAKEBUF
Adds a buffer to the program stack.

DROPBUF
Removes buffers from the top of the program stack.

DESBUF
Deletes all lines in the program stack, lines in the terminal input and output buffers, and pending
terminal input.

• CMS macros
CMSSTACK

Writes a line to the program stack.
LINERD

Reads a line from the program stack or the terminal input buffer.
• CSL routines

StackBufferCreate
Adds a buffer to the program stack.

StackBufferDelete
Removes buffers from the top of the program stack.

StackQuery
Queries the number of lines and number of buffers in the program stack.

StackRead
Reads a line from the program stack.

StackWrite
Writes a line to the program stack.

• CMS Pipelines STACK stage command.

Commands are documented in the z/VM: CMS Commands and Utilities Reference, macros in the z/VM: CMS
Macros and Functions Reference, CSL routines in the z/VM: CMS Callable Services Reference , and CMS
Pipelines in the z/VM: CMS Pipelines User's Guide and Reference.

Unit Record I/O
Your application can use the following methods to write information to a virtual printer, write information
to a virtual punch, or read information from a virtual reader:

• Use the following macros:
PRINTL

writes information to a virtual printer.
PUNCHC

writes information to a virtual punch.
RCARD

reads information from a virtual reader.
Applications written in a high-level language must call assembler subroutines that use these macros.
See the z/VM: CMS Macros and Functions Reference for more information on these macros.

• Use the following stage commands, which are operands on the PIPE command, in a REXX or EXEC 2
exec:
PRINTMC

writes information to a virtual printer.
PUNCH

writes information to a virtual punch.
URO

writes information to a virtual printer or virtual punch.

Handling Input and Output

116 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

READER
reads information from a virtual reader.

See the z/VM: CMS Pipelines User's Guide and Reference for details on these stage commands.

Tape I/O
Your application can use the following methods to use tapes:

• Use the following macros:
WRTAPE

writes a block on a tape drive.
RDTAPE

reads a block from a tape drive.
TAPECTL

positions the tape according to the specified function code.
TAPESL

processes IBM standard HDR1 and EOF1 labels.
Applications written in a high-level language must call assembler subroutines that use these macros.
See the z/VM: CMS Macros and Functions Reference for information on the WRTAPE, RDTAPE, TAPECTL,
and TAPESL macros.

• Use the following commands:
TAPE DUMP

dumps (writes) CMS-formatted files from a disk or directory to tape.
TAPE LOAD

loads (reads) previously dumped files from tape to a disk or directory,
TAPE SCAN

positions the tape at a specified point. Scanning stops upon encountering the file.
TAPE SKIP

positions the tape at a specified point. Skipping stops upon encountering the file.
VMFPLC2

loads files from product tape and service tapes, dumps CMS files to tape, and loads previously
dumped files from tape.

See the z/VM: CMS Commands and Utilities Reference for details on the TAPE and VMFPLC2 commands.
• Use the TAPE stage command, which is an operand on the PIPE command, to read from or write to a

tape.

See the z/VM: CMS Pipelines User's Guide and Reference for details on this stage command.

General Tape I/O Services
CMS OS/MVS Simulation provides several macros and commands to support tape I/O. See the z/VM: CMS
Application Development Guide for Assembler and the z/VM: CMS Commands and Utilities Reference for
more information.

In addition, DFSMS/VM provides a group of Removable Media Services (RMS) Tape Library Dataserver
interface CSL routines (in FSMPPSI CSLLIB). These routines allow applications running under CMS OS
simulation to issue requests for Tape Library Dataserver functions such as mounting or demounting
a tape, querying library information, setting or resetting the device category, and setting the volume
category. For information on using Tape Library Dataservers under OS simulation, see z/VM: CMS
Application Development Guide for Assembler. For descriptions of the DFSMS/VM RMS interface routines,
see z/VM: DFSMS/VM Removable Media Services.

Handling Input and Output

Chapter 10. Handling Input and Output 117

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

Handling Input and Output

118 z/VM: 7.2 CMS Application Development Guide

Chapter 11. Understanding the CMS File System

This chapter discusses:

• The CMS record file system architectures
• CMS support for the Byte File System (BFS)
• The attributes of CMS record files and BFS files in CMS
• The interfaces you can use to manipulate CMS record files and BFS files.

Reviewing these concepts should help you design your applications to make the best use of CMS files and
BFS files.

File System Architectures Supported by CMS
CMS supports two record file system architectures—Enhanced Disk Format (EDF) and Shared File System
(SFS). CMS also supports the OpenExtensions Byte File System (BFS).

Note: CMS clients can access all three CMS file systems using the Network File System (NFS) protocol.
For more information, see z/VM: TCP/IP User's Guide.

Enhanced Disk Format (EDF) Architecture
A virtual disk, or minidisk, is a place where you can collect files. Files are what you use to collect
logically related data or records. CMS manages the data in files and the files placed on disks using a
mapping system. This mapping system is a tree-like structure of pointers and data, where pointers serve
as indexes to pieces of data. The amount of pointers and data possible is based on the physical DASD
block size of the CMS disk.

CMS disks are formatted into blocks that can be 512, 1KB, 2KB, or 4KB bytes. The block size used is
determined when a minidisk, or virtual disk, is formatted. Thus, one disk does not contain a mixture of
block sizes. A file consists of data blocks and pointer blocks, which are this same size. The data in a file is
broken up into fixed size portions, which are stored on data blocks. Pointer blocks chain the data blocks
together. Pointer blocks either point to data blocks or to other pointer blocks.

Choosing an appropriate block size to format a disk depends upon its intended use. A 4KB block size
optimizes the I/O if the disk is to contain large files with no missing records (dense). A block size of 1KB is
more appropriate when creating many small files or files with missing records (sparse). For example, PL/I
regional files are sparse and they may allocate more space on a 4KB disk than on a 1KB disk; therefore,
the smaller block size is preferable.

The block size of the disk can affect the amount of storage required for I/O buffers. When caching is not
in effect, a larger block size will always result in a greater amount of storage required for the I/O buffers.
When caching is in effect, the storage requirements are not determined by the block size of the disk.

Shared File System (SFS) Architecture
SFS files are represented in storage using a pointer block structure that is similar to the EDF structure.
Unlike EDF files, however, SFS files can span minidisks. That is, the blocks that make up an SFS file can
reside on more than one minidisk within a file pool. A file pool is a collection of minidisks that is owned
and manipulated by a file pool server machine. In SFS file architecture, the pointer blocks do not refer to
physical disk locations. Instead, they are relative (or logical) numbers. The file pool server uses control
data, which the server maintains, to find the appropriate minidisk blocks based on these logical numbers.
All SFS files are formatted with 4KB blocks. See Chapter 12, “Manipulating SFS and Minidisk Files and
Directories,” on page 129 for more information on SFS.

Understanding the CMS File System

© Copyright IBM Corp. 1990, 2022 119

OpenExtensions Byte File System (BFS)
OpenExtensions is the VM implementation of IEEE POSIX standards for system interfaces and threads.
Included in OpenExtensions is a POSIX-compliant file system called the Byte File System (BFS). BFS is
a companion to SFS that provides a byte-stream view of files. That is, a BFS file consists of an ordered
sequence of bytes rather than records. The interpretation of BFS files is defined by the applications that
use them. For example, the byte stream may include special characters that control the interpretation of
the file.

CMS supports the generation of byte file systems as file spaces in CMS file pools. Multiple byte file
systems can be enrolled in the same file pool, and byte file systems can reside in the same file
pool as SFS file spaces. The primary programming interface for manipulating BFS files is the set of
OpenExtensions CSL routines documented in the z/VM: OpenExtensions Callable Services Reference.
However, CMS file pools can support BFS data and SFS data with common administration tasks and
system-managed storage. To do this, CMS gives BFS files the appearance of having some CMS file
attributes.

What File Information Does CMS Maintain?
Associated with each CMS disk is a file directory, which contains an entry for every CMS file on the disk.
When you access a disk or SFS directory, a file directory is placed in virtual storage that is available to your
virtual machine. The entries in the file directory for each CMS file are called File Status Tables (FST). The
FST describes the attributes of the file. You can retrieve the attributes of files using the Callable Services
Library (CSL) routines. See the z/VM: CMS Callable Services Reference for information on retrieving file
attributes. Attributes of a file include:

• File name
• File type
• File mode
• Record format
• Logical record length
• Number of records in the file
• File origin pointer
• Number of data blocks
• Number of pointer block levels
• Date and time of last update.

In addition, CMS maintains extended file attributes for files stored in file pools:

• File space type (SFS or BFS)
• Recoverability
• Overwrite
• Date of last reference
• Creation date and time
• Date and time of last change.

These extended file attributes are not maintained in the FSTs. Your programs can retrieve them by using
CSL routines.

BFS files have two sets of file attributes associated with them. The first set consists of the path name,
size in bytes, permission bits, and other attributes associated with the file in accordance with the IEEE
POSIX 1003.1 standard. Because BFS files are stored in a CMS file pool, they also have a set of CMS
record file system attributes associated with them. For example, BFS files have a system-generated CMS
file name and file type, and are presented to the record file system CSL routines that manipulate them as
fixed-length record-format files with a logical record length of 1.

Understanding the CMS File System

120 z/VM: 7.2 CMS Application Development Guide

File Name, File Type, and File Mode
When you create a file in CMS, you name it using a file identifier. The file identifier consists of three fields:
file name, file type, and file mode (or directory name for SFS files). The file name and file type can each
be from one to eight characters. Valid characters are A-Z, a-z, 0-9, #, @, +, $, -(hyphen), :(colon), and
_(underscore). The file mode indicates the file mode letter (A-Z) currently assigned to the SFS directory or
minidisk where you want the file to reside. See the z/VM: CMS User's Guide for a complete discussion of
valid file names, file types, and file modes.

Every CMS file, regardless of whether it resides in an SFS directory or on a minidisk, has a file mode
number associated with it. The file mode number is established when the file is created. Some file mode
numbers have special meanings:
File Mode Number 0

For the minidisk environment, file mode number 0 is used to make files private.1 For the SFS
environment, file mode number 0 means the same as file mode number 1.

File Mode Number 1
File mode number 1 is used for reading and writing files. It is the default file mode number.

File Mode Number 2
File mode number 2 is the same as file mode 1.

File Mode Number 3
File mode number 3 means that files are erased after they are read. You can use file mode number 3 if
you do not want to maintain copies on your minidisks or in your SFS directories.

File Mode Number 4
File mode number 4 means files are in OS simulated data set format. These files are created by OS
macros in programs running in CMS.

File Mode Number 5
File mode number 5 is the same as file mode number 1.

File Mode Number 6
For EDF files, file mode number 6 indicates that the update-in-place attribute of a CMS file is in
effect. This means that the existing records of a file are written back to their previous location on the
minidisk, rather than in a new slot.

Attention: When modifying an existing file mode number 6 file, it is possible to corrupt the file, or
even the entire minidisk on which it resides. This corruption occurs when some of the updates made
to the file or disk by an application are updated in place, but CMS terminates (requiring a re-IPL of
CMS) before it can write all of the data to disk. For more information on the EDF update-in-place
attribute and EDF data integrity, see the z/VM: CMS Application Development Guide for Assembler.

For SFS files, file mode number 6 is the same as file mode number 1. You can also give SFS files the
update-in-place (or INPLACE) attribute. This means that the existing records of a file are written back
to their previous location in the file pool, rather than in a new slot. See “Overwrite” on page 123 for a
description of the methods you could use to specify this attribute.

File Mode Numbers 7-9
Reserved for IBM use.

A BFS file is identified in CMS by a system-generated numeric file name and file type. (The BFS file name,
which is the last component of the path name that identifies the BFS file in the OpenExtensions interface,
cannot be used in the CMS record file interface.) This CMS file ID is guaranteed to be unique within a BFS
file space. You can obtain the CMS file IDs for BFS files by using the DMSOPDIR routine with an intent of
FILEEXT or by using the OPENVM LISTFILE command with the NAMES option.

The CMS file mode number of a BFS file, when it applies, is always 1.

1 Normally, if someone links to your disk in read-only mode and requests a list of all the files on your disk, the
files with file mode number 0 are not accessible unless the ACCESSM0 ON command has been specified.
However, the DDR command could be used to copy a whole minidisk from one disk to another. In this
situation, all files with file mode number 0 are also copied.

Understanding the CMS File System

Chapter 11. Understanding the CMS File System 121

Record Formats
From the user's point of view, a non-empty CMS file consists of one to 2,147,483,647 (231-1) records,
each of which consists of one to 231-1 bytes of data (a record in a file with variable-length records is
further restricted to 65,535 bytes of data). This limit is not normally significant. The amount of space
available on the storage medium is usually the significant limit.

When viewed through the CMS record file system interface, each "record" of a BFS file consists of a single
byte. A BFS file may contain more than 231-1 records (bytes). However, the CMS record file interface
cannot handle a file that large.

A file has one of two record formats:

F-Format: When all records in a file must have the same length, the file is said to be an F-format file and
its records are said to be fixed-length records.

V-Format: When the records in a file may have different lengths, the file is said to be a V-format file and
its records are said to be variable-length records.

The record format of a file is determined when the file is created. For an existing file, the record format
is taken from the file's attribute information. For a new file, the record format is determined from the
parameters specified on the macros or routines that will open the file.

BFS files are always F-format.

Logical Record Length
The length of each record in a new F-format file is the length of the first record written to the file—this
length can not be changed by any subsequent write to the file. The length of each record in a V-format
file is recorded by a 2-byte length prefix stored immediately before the record itself. A record must not be
null, for example, have a length of zero. The length of the longest record in the file is stored in the file's
directory entry (in the logical record length field of the FST) when the file is closed. If the file is written to
later, a longer record may be appended to the file, in which case the length stored in the file's directory
entry will be updated when the file is closed.

For BFS files, the logical record length is always 1.

Record Number and Number of Records
Each record in a file is assigned a number known as its record number or its position number. The first
record in a file has a record number of one and each succeeding record has a record number one greater
than that of the preceding record. Thus, the number of records in a file is the greatest number of any
record written.

An SFS file may be empty (contains zero records). A minidisk file always has at least one record.

For BFS files, the record number attribute has the same interpretation as for CMS record files. Because
each record in a BFS file consists of a single byte, the number of records in a BFS file is equal to the size of
the file in bytes. A BFS file may be empty.

File Origin Pointer, Number of Data Blocks and Pointer Levels
The File Origin Pointer (FOP) identifies the highest level pointer block or data block. The pointer blocks
are used to locate the next lower level of pointer blocks or the data blocks that contain the actual data for
the file. Pointer blocks can go as high as 6 levels (or 6 levels deep on a tree), where level 1 pointer blocks
point directly to the data blocks. The highest number of data blocks per file possible is 231-1. The number
of data blocks depends on how the disk is formatted and on the size of the file.

For BFS files, CMS simulates the pointer blocks. The number of data blocks is equal to the number of
bytes in the file divided by the block size (4096 bytes).

Understanding the CMS File System

122 z/VM: 7.2 CMS Application Development Guide

Date and Time of Last Update
The date and time is stored in 6 bytes (yy mm dd hh mm ss), where each byte holds two decimal digits.
In a flag byte is a bit to indicate the century. A setting of '0' indicates the time frame of 1900 to 1999,
a setting of '1' indicates the time frame of 2000 to 2099. This is the date and time that the accessed
file was last updated. Some CMS commands, such as COPYFILE, that transfer data from one location to
another could copy over the date and time of the existing file. In that case, the date and time would not
actually reflect the last time data was written to the file. A privileged user entering the CP SET TIMEZONE
command alters the time stamps recorded on new or updated files.

For BFS files, these attributes have the same interpretation in CMS as for CMS record files. However, when
stored in the catalogs these two attributes are translated into a single POSIX attribute called MTIME that
consists of the total number of seconds from January 1, 1970.

Recoverability
The recoverability attribute specifies whether the file is recoverable or nonrecoverable. The recoverability
attribute is only valid for files that reside in SFS file pools.

When a file is recoverable, uncommitted changes are backed out as the result of an application initiated
rollback. Files are generally recoverable unless otherwise specified. See “Using the Recoverability and
Overwrite Attributes” on page 142 for information on changing attributes.

Nonrecoverable files are not rolled back in the event of an application initiated rollback. As many updates
as possible are committed.

BFS files are recoverable when using CMS record file interfaces.

Overwrite
The overwrite attribute specifies whether updates to a file are made in place. The overwrite attribute is
valid only for files that reside in CMS file pools.

Most files are not updated in place (NOTINPLACE files). That is, when you change data in a file block, the
original block in the file pool is not changed. Instead, the file pool server allocates a new block to contain
the changed information. This process is known as shadowing.

By using shadowing, the file pool server is able to provide different consistent views of a file to the writer
and any readers. When readers close the unmodified version of the file, the old blocks are made available
for other use and the changed blocks become the new version of the file. SFS always shadows file updates
unless you specify otherwise.

With INPLACE files, updates are made in place where possible. The SFS file pool server does not use
shadowing. When data in a file block is changed, the original block in the file pool is changed. Once the
file pool server writes the block to the file pool, it is immediately available for readers to see. The file
pool server, in this case, does not provide readers with a consistent view of the data from open to close.
A reader of an INPLACE file can read the same record twice while the file is open and see different data.
(This is true regardless of whether the file resides in a file control or in a directory control directory.)

Although blocks are made available to readers as they are written to a file pool, blocks you change may
not be immediately transmitted to the file pool server. By default, CMS maintains a buffer of file blocks in
your virtual storage. Blocks that you change may be temporarily held in the buffer. When the buffer is full
or when you close the file, changed blocks are transmitted to the file pool server. The file pool server then
replaces the file pool blocks and the changes are made available to others.

Because buffers are also used for readers, readers may not immediately see the changed file pool blocks.
CMS does not request a block from the file pool server if the block already exists in the buffer. You
can circumvent the use of buffers on inplace files, using the FORCE parameter when writing records
(DMSWRITE routine) and the REFRESH parameter when reading records (DMSREAD routine). The FORCE
parameter causes a changed block to be immediately transmitted to the file pool server, while REFRESH
causes CMS to get the latest block from the file pool server. Naturally, this does not perform as well as
reading from and writing to a buffer, so you should use FORCE/REFRESH only when necessary.

Understanding the CMS File System

Chapter 11. Understanding the CMS File System 123

To avoid corrupting files, file pool servers always shadow file pointer blocks. One important result of
this is that readers of INPLACE files cannot see file extensions unless they close and reopen the file.
If the file resides in an accessed directory control directory, readers must reaccess the directory to see
the extensions. A file extension is any new block or record that is added to the file. An added record
includes not only records that are appended to the file, but may include those that have written to
previously-unwritten records in the middle of a file.

Example: Suppose you create a file with a fixed-length record format by writing one record to it. That
record happens to be record 30000. Now someone opens the file to read it. That person can read record
30000 and see the data. Reading any record from 1 to 29999 would cause binary zeros to be returned.
If you open the file and write record 5000, the reader who already had the file open would not see what
you have written. Even though the file is an INPLACE file, the reader would still receive binary zeros. The
addition of the record in the middle of the file is considered a file extension, so the reader does not see
the change.

Because the file extensions are shadowed, you may want to avoid extending INPLACE files for certain
applications. Instead, preformat the file for the application by writing blank records. Do not write records
of binary zeros when preformatting files. CMS interprets these as null records and does not write them to
data blocks (that is, they do not occupy physical file space).

BFS files are always NOTINPLACE.

Date of Last Reference
The date of last reference attribute specifies the date on which the file was last read or updated. If the file
has not been read or updated since it was created, the date of last reference is the date of file creation.
CMS maintains the date of last reference only for files that reside in file pools.

The difference between the date of last reference attribute and the date attribute is that the date of last
reference is updated when a file is read—the date attribute is not.

The date in the date of last reference attribute is based on Coordinated Universal Time (UTC) at the time
of the reference. The date in the date attribute, on the other hand, is based on the local time. This can
cause discrepancies between the attributes, depending on the geographic location of your processor.
This difference is important to remember when you are coding an application that uses the date of last
reference. You might, for example, want to convert the local date to the GMT date.

For BFS files, this attribute has the same interpretation in CMS as for CMS record files. However, when
stored in the catalogs this attribute is translated into a POSIX attribute called ATIME that consists of the
total number of seconds from January 1, 1970.

You can use CSL routines to retrieve the date of last reference for a file. You can also use CSL routines
to inhibit the updating of the date of last reference. The date of last reference is intended for use by
application programs. It is also displayed by the FILELIST and LISTFILE commands through the use of the
ALLDATES option. See “Using the Date of Last Reference Attribute” on page 125 for more information.

Creation Date and Time
The creation date and creation time attributes specify the date and time when the file was created. CMS
maintains the creation date and time only for files that reside in file pools.

When determined by the system, the creation date and time are based on Coordinated Universal Time
(UTC). You can, however, specify a creation date and time of your own choosing when you use CSL
routines to create a file. These values will be viewed in Coordinated Universal Time (UTC). Once the file is
created, you cannot change the creation date and time.

For BFS files, these attributes have the same interpretation as for CMS record files. However, there is no
equivalent POSIX attribute.

You can use CSL routines such as DMSEXIFI (Exist - File) and DMSGETDX (Get Directory - File Extended)
to retrieve the creation date and time for a file. The creation date and time are intended for use by
application programs. They are also displayed by the FILELIST and LISTFILE commands through the use
of the ALLDATES option.

Understanding the CMS File System

124 z/VM: 7.2 CMS Application Development Guide

Date and Time of Last Change
The date of last change and time of last change attributes specify when the status or attributes of an
object were changed. The SFS server records these attributes for file spaces, directories, files, aliases,
and external objects. The attributes cannot be controlled by a user or SFS administrator, but administrator
authority is not required to read the attributes.

The following additional rules apply:

• The date and time of last change are updated when authorizations are granted or revoked.
• The date and time of last change for the top directory are updated when space limits are changed

(storage is added or deleted).
• The date and time of last change are updated by the restore function.
• The date and time of last change are not updated when a file is migrated or recalled using DFSMS/VM.
• The date and time of last change for a parent directory are not updated when an object is added to or

deleted from that directory.
• The date and time of last change for an alias are not updated when the base file is updated. Only Create

Alias (DMSCRALI) sets the date and time of last change for an alias.
• The date and time of last change are not updated when commands are issued that do not alter the

object. For example, granting authority to a user who already has the granted authority does not update
these attributes. Nor does opening and closing a file without writing to the file. However, if existing data
in a file is overwritten with exactly the same data, this is perceived by the server as an update, and the
date and time of last change are updated.

For BFS files, these attributes have the same interpretation as for CMS record files. However, when stored
in the catalogs these two attributes are translated into a single POSIX attribute called CTIME that consists
of the total number of seconds from January 1, 1970.

You can use CSL routines such as DMSEXIST (Exist), DMSEXIDI (Exist - Directory), and DMSEXIFI (Exist
- File) to retrieve the date of last change and time of last change for a file. If you open a directory with
the FILEEXT intent on the DMSOPDIR (Open Directory) routine, you can use routines such as DMSGETDI
(Get Directory) and DMSGETDX (Get Directory - File Extended) to retrieve these attributes. They are also
displayed by the LISTFILE command through the use of the ALLDATES option.

Using the Date of Last Reference Attribute
This section describes how SFS maintains the date of last reference attribute and how your program can
use it. If you are not familiar with the date of last reference attribute, read the definition in “Date of Last
Reference” on page 124 before proceeding.

How SFS Maintains the Date of Last Reference
The date of last reference is for applications that automatically archive files. Such applications would
archive and optionally erase files that have not been referenced since a certain date. Although other
applications can use the attribute, the method SFS uses to maintain it is oriented toward archiving
applications.

One result of this orientation is that the file pool server seldom updates the date of last reference
immediately after the reference is made. Instead, it waits until a number of files in the file pool have been
referenced. Then the file pool server updates its catalog data with the new dates for all the referenced
files. By grouping the updates together, the file pool server performs better than it would if it updated the
catalogs as the references occurred.

While this design optimizes the file pool server performance, there may be some delay between the time
the file is referenced and the time the attribute is updated. If you retrieve the date of last reference
before the catalogs are updated, you will see the old date of last reference. This delay is not important for
archiving applications—in most cases, the attribute would be updated by the time the archive job is run. If
the update does not occur until after the archive, the next archive would see the update.

Understanding the CMS File System

Chapter 11. Understanding the CMS File System 125

Also for improved performance, the file pool server does not do any extra work to ensure that scheduled
attribute updates are made in the event of a system failure. If server processing ends abnormally, any
scheduled updates to the attributes are lost. The file pool server makes the updates frequently, however,
so only a dozen updates (at most) might be lost.

If your application fails or rolls back the work unit associated with the file reference, the date of last
reference is still updated. The file pool server considers a file to be referenced when it is successfully
opened, regardless of whether the file is later closed or committed. In most cases, the date of last
reference is the date the file was opened. If, however, the file is closed on a later date than the open,
the server uses the date the file was closed. The file pool server never records the dates of commits and
rollbacks.

Any number of CMS commands, macros, and CSL routines can cause a file to be opened. For maintaining
the date of last reference, the file pool server does not distinguish among them. No matter what caused
the file to be opened, the file pool server still considers it a reference.

For an alias, the date of last reference is not updated when either the alias or its base file is referenced.
A reference to an alias updates the date of last reference of its base file without altering the date of last
reference of the alias. At the time of its creation, an alias acquires the date of last reference of its base file,
and this value does not change.

Note that the file pool server never back-dates the date of last reference. That is, it never changes the
date of last reference to an earlier date.

How to Retrieve the Date of Last Reference
There are two ways to retrieve the date of last reference attribute for a file:

• Testing for existence of the file
• Retrieving directory information for the file.

Both ways involve the CSL routines such as DMSEXIFI and DMSGETDX. Another way to retrieve the
information is with the FILELIST or LISTFILE command with the ALLDATES option.

How to Inhibit the Updating of the Date of Last Reference
There are four CSL routines that let you inhibit the updating of the date of last reference. Unless you
use these routines to reference the file, there is no way to inhibit the updating of the date of last
reference. The routines are DMSFILEC (Filecopy), DMSOPEN (Open), DMSOPDBK (Open Data Blocks) and
DMSOPBLK (Open Blocks). Each of these routines have an OLDDATEREF parameter that, when specified,
inhibits the updating of the date of last reference.

For DMSOPEN, DMSOPDBK, and DMSOPBLK, the OLDDATEREF parameter can be specified only when the
file is being opened for reading. For DMSFILEC, the OLDDATEREF parameter applies only to the source
file. There is no way to inhibit the updating of the attribute when a file is opened for any kind of write
activity.

Application Interfaces
CMS provides three interfaces (sets of routines or macros) that allow applications to create and
manipulate CMS files and BFS files:

• Record file system CSL routines work on minidisk and SFS files; they also work, with limitations, on BFS
files.

• FS macros can manipulate minidisk and SFS files but not BFS files.
• OpenExtensions CSL routines work only on BFS files.

CMS also simulates OS and DOS/VSE macros that manipulate CMS files.

For additional information, see the following sources:

• For information on file I/O, see Chapter 10, “Handling Input and Output,” on page 113.

Understanding the CMS File System

126 z/VM: 7.2 CMS Application Development Guide

• For information on using the CMS file system, see Chapter 12, “Manipulating SFS and Minidisk Files and
Directories,” on page 129.

• For a comparison of using CSL routines or FS macros, see the z/VM: CMS Application Development Guide
for Assembler.

• For general information on the OpenExtensions Byte File System, see the z/VM: OpenExtensions User's
Guide.

• For information on the OpenExtensions CSL routines, see the z/VM: OpenExtensions Callable Services
Reference.

• For information on using the CMS record file system interface for BFS objects, see Chapter 13,
“Manipulating BFS Files and Directories Using CMS Record File System CSL Routines,” on page 193.

• For information on using OS and DOS/VSE macros, see the z/VM: CMS Application Development Guide for
Assembler.

Understanding the CMS File System

Chapter 11. Understanding the CMS File System 127

Understanding the CMS File System

128 z/VM: 7.2 CMS Application Development Guide

Chapter 12. Manipulating SFS and Minidisk Files and
Directories

The Shared File System (SFS) is a CMS file system for storing and managing files and for sharing CMS
programs and data among users. SFS data is kept by a CMS file pool server virtual machine on server-
owned disk space, which is shared among all owners of files in that file pool. Requests for data from a
CMS user virtual machine are sent across an APPC/VM link to the server machine. Requests can originate
either as commands or routine calls.

This chapter describes the following features and functions of the CMS file system:

• Considering the effects of DFSMS/VM*, a storage management facility of z/VM
• Default considerations for directory identifiers
• Reading and writing CMS files
• Reading and creating directories
• Sharing files and directories.

Along with SFS, files can also be stored on CMS minidisks. Minidisk files cannot be shared as easily as
SFS files. In fact, CMS does not control multiple access to minidisk files by more than one user. The CSL
routines allow applications to access both minidisk and SFS files. They also allow read access to the
contents of minidisk directories. These routines also allow users to utilize the extended functions of SFS.

SFS and minidisks comprise the CMS record file system. Data may also be stored in the OpenExtensions
Byte File System (BFS). BFS files also reside in CMS file pools. See Chapter 13, “Manipulating BFS Files
and Directories Using CMS Record File System CSL Routines,” on page 193.

CMS Record File System Programming Interface
The programming interface for SFS and minidisk files is a call interface composed of CSL routines in
VMLIB CSLLIB. The routines can be called from high-level languages such as COBOL, VS FORTRAN,
PL/I, VS Pascal, and C, as well as REXX and assembler. (Assembler language macros are not provided.
However, the file system macros (FS macros) can be used in certain nonsharing and sharing cases. For
more information, see the z/VM: CMS Application Development Guide for Assembler.)

The programming interface for SFS has the following general characteristics:

• It accepts either file names, directory names, file mode letters, or namedefs.
• It does not automatically commit changes at file close time. All changes must be explicitly committed or

rolled back. See “Committing and Rolling Back Changes in Application Programs” on page 141 for more
details.

• It provides recovery in the event of system or program abends. Applications can rollback (undo)
changes for SFS files.

The programming interface for minidisks has the following general characteristics:

• It accepts file names, file types, file mode letters, or namedefs.
• Changes to minidisk files are "committed" when the last file that was opened for output (new, write or

replace) is closed. See “Committing and Rolling Back Changes in Application Programs” on page 141 for
more details.

• Changes to minidisk files are not associated with CMS workunits thus they may not be rolled back after
they are made.

Before using the CSL routines in VMLIB, DMSCSL must be linked to the program using the LOAD/INCLUDE
command or the LKED commands. When using the CSL routines in VMLIB, remember that they must
be linked to your program. Additional language-specific statements may be necessary so that language

Manipulating SFS and Minidisk Files and Directories

© Copyright IBM Corp. 1990, 2022 129

compilers can provide the proper assembler interface. Other programming notation, such as variable
declarations, are also language-dependent. For an example of how to link to DMSCSL from each specific
language, see the appropriate appendix.

Note: Some examples in this chapter are written in pseudo-code to show you the general sequence of
operations. When you code your program, be aware of the requirements of the programming language
that you are using.

In this chapter, the example calls to DMSCSL use the actual CSL routine name and the following variables:
retcode

The return code from CMS (a signed fullword). The return code is also placed in register 15. The return
code can be:
0

Normal—the routine executed successfully.
4

Warning—the routine executed, but the result may or may not be as intended.
8

Error—If the commit parameter was specified on the routine call, a return code of 8, reason code
of 50500 means that the routine did execute, but the commit was not performed. Otherwise a
return code of 8 means that the routine did not execute.

12
Error—the routine did not execute and work within the work unit ID was rolled back.

16
Severe Error—the commit was performed, but the state of coordinated resources may not be
consistent.

20
Severe Error—the work was rolled back, but the state of coordinated resources may not be
consistent.

Return codes that are greater than 8 can only be received when there is an error in an operation to the
Shared File System or other CRR participant. Errors that apply to a minidisk will return an error code of
8. You may also receive return codes from DMSCSL that are negative values. For more information on
these return codes, see the z/VM: CMS Callable Services Reference.

reascode
The reason code from CMS (a signed fullword). The reason code explains the warning or error and is
also placed in register 0. For a description of the reason codes, see the specific routines in the z/VM:
CMS Callable Services Reference.

length
The fullword length parameter specifies the length of the preceding character parameter.

DFSMS/VM and SFS File Management
DFSMS/VM is an optionally-installed facility of z/VM that can help automate storage management tasks
for SFS files. Files can be assigned attributes that tell DFSMS/VM how long to maintain the file. Files can
be automatically deleted or moved to DFSMS/VM-owned storage automatically, to more efficiently use the
available storage.

You may want to ask your SFS administrator if DFSMS/VM has been installed on your system and is being
used to manage SFS files, because this can affect the behavior of files in an SFS file pool. (See z/VM:
DFSMS/VM Planning Guide for an explanation of how this product is used.)

Movement of SFS Files by DFSMS/VM
Some SFS files that appear to reside in your file pool may actually have had their data moved into a
storage repository managed by DFSMS/VM. (Note that such files still are considered by SFS to consume
their usual amount of room in your file space.) These files are said to be in migrated status in your file

Manipulating SFS and Minidisk Files and Directories

130 z/VM: 7.2 CMS Application Development Guide

pool. (Files in directory control directories are never moved by DFSMS/VM.) You can identify files that
have been placed in migrated status by using the SHARE option with FILELIST or LISTFILE. Files shown
with an asterisk in the 'type' column are in DFSMS/VM migrated status.

These files behave exactly like regular SFS files, but they must be recalled (either automatically or
explicitly) into your actual file pool before you can reference the data. This may cause a delay, depending
on your system configuration and workload. Automatic recall is governed by the CMS SET RECALL
command. If SET RECALL is ON (the default), recall happens automatically when the file data is
referenced. If SET RECALL is OFF, the file is not recalled. You receive an error indicating that the file
is migrated and not available. You can add the SET RECALL setting to your PROFILE EXEC. Explicit recall
is performed with the DFSMS RECALL command. (See z/VM: CMS Commands and Utilities Reference for
more information about SET RECALL and z/VM: DFSMS/VM Storage Administration for information about
DFSMS RECALL.)

A file does not need to be recalled unless you need to access the file data itself (for example, with the
XEDIT command). For example, you may create aliases on a file, and query or change a file's attributes
(LISTFILE, FILELIST, FILEATTR, GRANT AUTHORITY, etc.) without recalling the file. The file also does not
need to be recalled to be erased or to have its data replaced with COPYFILE (REPLACE.

Automatic File Movement and Erasure by DFSMS/VM
You should be aware that DFSMS/VM can automatically cause SFS files to be placed in migrated status
(that is, move the file data into its storage repository) or erased at certain predetermined times, without
advance warning, according to your installation's storage management policies. (Files in directory control
directories may be erased.) File erasure criteria are usually related to how long the file has existed, or the
length of time since it has last been referenced. The entire file may be erased, or only the data in the file.
See z/VM: DFSMS/VM Storage Administration for more information about DFSMS/VM.

Determining the File Pool Server Level
Additional CMS file pool server function was added in newer releases of VM/ESA. The file pool server
does not have to be at the same CMS release level as the virtual machine running an application which
uses data residing in that file pool. (Different levels of CMS can be used in the same system, or the
application and the file pool server may be in different systems which are using different levels of CMS.)
If the application is using a function that was not in the initial release of the file pool server, the function
may not work as expected or may not work at all. The DMSQSFSL CSL routine tells which level of the file
pool server is being used. The application must know which parameters and functions are supported for
the level of the file pool server.

Design Considerations
When designing your application program to manipulate files and directories, consider the following:

• Use a name definition, or namedef, to identify a file, directory or file mode letter to your program
• Acquire work unit IDs for work units
• Process SFS requests on behalf of other user IDs.
• Commit changes in application programs as you complete a task.
• Handle unexpected conditions in your program.

This section discusses these topics.

Using a Namedef
Many CSL routines require file names and file types, directory identifiers, file mode letters or some
combination of these in their parameter lists. For any of these routines, you can specify a namedef
instead. A namedef is a 1- to 16-character string that represents either:

• a file name and file type

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 131

• a directory ID or file mode letter.

By using namedefs in your parameter lists, you can run a program to process different files, file mode
letters and directories without changing the code and recompiling the program. The file and directory
names or file mode letters are defined externally to the program.

To associate a namedef with the name of a file, directory, or file mode letter, you issue a CREATE
NAMEDEF command before running the program. The first character of the namedef must be alphabetic,
and the remaining characters must be alphabetic or numeric. When the program runs, CMS does the
operations on the file, directory, or file mode letter that the namedef represents.

You can use namedefs in three different ways depending on the operations that your program is going to
perform.

• If your program uses different files within the same directory or accessed minidisk, you could use a
namedef for the file name and file type and code the directory ID or file mode letter directly in the
parameter list. This lets you process different files in the same directory.

• If your program uses the same file name and file type but different directories or accessed file mode
letters, code the file name and file type directly but use a namedef for the directory ID or file mode
letter. This lets you process different versions of the same file that reside in separate directories or
accessed file modes.

• For the most flexibility, use namedefs for the file name, file type, and directory ID or file mode letter. In
this case, the program can process any file name and file type as well as any directory ID or file mode
letter.

Because a namedef is resolved at run time, you do not need to have them defined before compiling your
program. If you run a program without defining the namedef, however, the program may fail because the
namedef is not defined.

A namedef continues until the end of the CMS session (or until an abend occurs) unless you change the
definition of the namedef or delete it altogether.

Creating a Namedef
Suppose you code your parameter list using the namedef FNAME for the file name and file type and
DIRNAME for the directory ID. To process the file TEMP DATA in the directory POOLA:MARK.SURVEY, the
user would have to enter two CREATE NAMEDEF commands before running your program:

create namedef temp data fname
create namedef poola:mark.survey dirname

If the file TEMP DATA was on an accessed file mode, (B for example), and could be either a minidisk or
SFS directory, you could create a namedef for the file mode letter by issuing:

create namedef b fmname

To change the definition, you would enter a CREATE NAMEDEF command with a REPLACE option. For
example, to change FNAME to refer to the file MYFILE DATA, you would enter:

create namedef myfile data fname (replace

See the sample program in Appendix F, “REXX Examples,” on page 545 for an example of using namedefs.
See z/VM: CMS Commands and Utilities Reference for details on the CREATE NAMEDEF command.

Deleting a Namedef
To delete the namedef, enter a DELETE NAMEDEF command:

delete namedef fname

To delete all namedefs you have defined in this CMS session, enter:

Manipulating SFS and Minidisk Files and Directories

132 z/VM: 7.2 CMS Application Development Guide

delete namedef *

See z/VM: CMS Commands and Utilities Reference for details on the DELETE NAMEDEF command.

Additional Considerations for Directory ID
Many SFS commands and routines require directory identifiers as a part of their syntax and parameter
lists. CMS allows the user or application to let the user ID and the file pool ID default. For example, in
the command ACCESS filepool:.B, the user ID has not been specified. Before sending the request to
the SFS server for this file pool, CMS fills in the user ID. This has several implications for the way your
application program manipulates SFS files and directories:

Distributed Environments: When using SFS in a distributed environment, the user ID known locally may
be different than the user ID known in the remote SFS file pool server. The virtual machine ID, which is the
default, may not be the correct user ID.

Alternate User ID Support (DIAGNOSE X'D4'): In an application that uses DIAGNOSE X'D4' support, the
application can imitate or act on behalf of an end-user who is not the user ID where the application is
executing. Similar to the distributed environment case, CMS will fill in the default.

Multiple User ID Support: Applications making use of the multiple user ID support with the DMSGETWU
routine have the same problem as alternate user ID support when they use the default user ID.

The CMS SET FILESPACE command allows the application to specify the correct user ID. For example, if
an application uses DIAGNOSE X'D4' support to act as the user ID, MYNAME, the application could then
issue 'SET FILESPACE MYNAME'. Any commands or CSL routines that follow could use the default user ID.

Note: If no CMS SET FILESPACE command was issued, or if it was issued but without any operands, the
default user ID will be set to the virtual machine ID.

Use the CMS QUERY FILESPACE command to query the current default file space ID.

For more information on the CMS SET FILESPACE and CMS QUERY FILESPACE commands, see the z/VM:
CMS Commands and Utilities Reference.

Using Work Units in Application Programs
A work unit identifies related SFS server requests that can be committed or rolled back concurrently.
Some of the server requests identified with a work unit may make changes to one or more files or
directories. These changes are what actually need to be committed. The work unit serves as a vehicle
to ensure that all the changes are committed (or rolled back, if all the changes cannot be committed) in
unison.

The changes identified by a work unit can be viewed as a logical unit of work, a set of related actions
whose results (changes) are to be treated as a single update. Only one set of related changes (logical unit
of work) can be identified with a particular work unit at one time. When we refer to issuing a commit on
a work unit, we are talking about committing the logical unit of work (the set of changes associated by
that work unit). Once a commit has been done on the work unit, it can be used to associate another set of
changes. It is rather like a wagon that can hold only one project at a time. Once the project is finished, you
take it out of the wagon (commit the work), and then you can put another project into it to work on.

A work unit is identified by a fullword number called a work unit ID. An application can have many active
work units at any given time. Data can be committed whenever appropriate for your application. The
files and directories associated with a particular work unit need not be closed in order for changes to be
committed.

A work unit can be associated with multiple SFS file pool servers or multiple work units can be associated
with one SFS file pool server. In addition, other resource managers can be accessed on the same work
unit as SFS file pool servers.

A work unit can also be associated with a specific user ID, by using the DMSGETWU CSL routine. A service
virtual machine with administration authority can issue file pool requests on behalf of disconnected user

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 133

IDs, or user IDs that differ from the VM ID of the service virtual machine, and all SFS authorizations will
remain in force.

When you issue a COMMIT, CMS, through its Coordinated Resource Recovery (CRR), coordinates the
commit of all protected resources accessed on the work unit. Protected resources are resources that
conform to a set of requirements for participating in CRR. For more information on what CRR is and how it
works, see Chapter 16, “Your Applications and Data Integrity,” on page 241.

Use the routines in the following table to manage work units:

Table 6. Routines for Managing Work Units

CSL Call Function Description

DMSGETWU Get Work Unit ID Obtains a unique work unit ID if the default is not to be used.

DMSPOPWU Pop Default Work Unit ID Removes the latest default work unit ID from the work unit ID
stack.

DMSPURWU Purge Work Unit ID Returns all work unit IDs to CMS; therefore, ends
communication to all file pools.

DMSPUSWU Push Default Work Unit ID Identifies a specified work unit ID as the default work unit ID
that will be used whenever a work unit ID is not specified. Puts
default work unit ID on the work unit ID stack.

DMSQWUID Query Work Unit ID Returns the current default work unit identifier.

DMSRETWU Return Work Unit ID Returns to CMS the specified work unit. SFS files and
directories open under the work unit are closed and an
attempt is made to commit any outstanding work on the work
unit.

When you IPL CMS, a default work unit ID is defined that will be used if you do not explicitly obtain one.
You may want to obtain unique work unit IDs to:

• Separate the commit of data within your program
• Allow your program to call other programs or CMS commands and have those operations execute

independently of your program.

Each work unit is independent of the other. That is, the changes made to files in a given work unit can be
committed or rolled back independent of any other work unit.

When you enter CMS subset mode, CMS defines a new default work unit ID. When returning from subset
mode, CMS returns the work unit(s) for the application. In other words, all local open files and directories
are closed, a commit is done for all subset work units, and end-of-work unit processing is performed for
all subset work units. Note that work unit IDs obtained outside of subset mode cannot be used in subset
mode, and work unit IDs obtained in subset mode cannot be used outside of subset mode.

When files on minidisks get committed, it is not related to the COMMIT and NOCOMMIT parameters on
CSL routines that operate on minidisk files. The work unit is part of the CSL interface, but it only applies
to work being done to the Shared File System. Many CSL routines that operate on minidisk and SFS files
(such as DMSCLOSE) require you to specify whether or not you want to commit the changes to the work
unit or leave them in an uncommitted state (NOCOMMIT). When operating on minidisk files, the COMMIT
and NOCOMMIT parameters refer solely to the work unit and have no effect on when the minidisk gets
committed. Work done to a minidisk is not associated with a work unit.

For example, if you create a minidisk file using DMSOPEN and DMSWRITE, you must close the file using
DMSCLOSE. The file will be committed when the close is completed (unless there are other files on that
minidisk that remain open for output). If COMMIT was specified on DMSCLOSE, all uncommitted work
associated with the work unit that was specified when the minidisk file was opened (DMSOPEN), will then
be committed. If NOCOMMIT was specified, the work on the work unit will remain unchanged. See the
explanation for DMSCLOSE in the z/VM: CMS Callable Services Reference for more details on closing SFS
and minidisk files.

Manipulating SFS and Minidisk Files and Directories

134 z/VM: 7.2 CMS Application Development Guide

The same is true when using the CSL routines that allow you to commit and roll back work units. See
“Committing and Rolling Back Changes in Application Programs” on page 141 for more details.

Obtaining Work Unit IDs
To get a work unit ID that is unique within a virtual machine you must use the DMSGETWU routine (Get
Work unit ID). In the workunitid parameter you pass a 4-byte numeric field in which you want the work
unit ID to be placed. It is this 4-byte field that you pass to other SFS program functions when you want
to use a specific work unit ID. Work unit IDs obtained with DMSGETWU persist for the duration of the
program.

When you enter CMS subset mode, CMS defines a new default work unit ID. If no unique work unit IDs
are available, the retcode parameter contains a return code of 8. When you exit from CMS subset mode, all
work units defined in subset mode are returned to CMS.

Example: To obtain a unique work unit ID, code:

CALL DMSCSL (DMSGETWU, RETCODE, REASCODE, WORKUNITID)

Returning the Work Unit ID
The DMSRETWU routine (Return Work Unit ID) returns a work unit ID to CMS that was previously obtained
with the DMSGETWU routine. Returning the work unit ID informs CMS that your application has completed
all work on the specified work unit and that the system can commit all outstanding work and free
its storage associated with that work unit. You should explicitly commit all work before returning the
work unit. DMSRETWU does not check or modify the work unit stack. Therefore, you should use the
DMSPOPWU (Pop Default Work Unit ID) routine to remove the work units from the stack before returning
them.

You need to return only those work unit IDs obtained by DMSGETWU. DMSRETWU closes all SFS files
and directories that are open under the work unit and commits any outstanding work on the work unit.
For more information on committing work, see “Committing and Rolling Back Changes in Application
Programs” on page 141.

The workunitid parameter is a 4-byte numeric field for specifying the work unit ID.

Example: To return the work unit ID previously obtained using DMSGETWU, code:

CALL DMSCSL (DMSRETWU, RETCODE, REASCODE, WORKUNITID)

Changing the Default Work Unit ID
You can change the default work unit ID for a CMS session using the DMSPUSWU routine (Push Default
Work Unit ID) and DMSPOPWU routine (Pop Default Work Unit ID). After you have obtained a work unit ID,
use DMSPUSWU to place it on the work unit ID stack and identify it as the default work unit ID for the CMS
session. The new default will be used whenever a work unit ID is not specified. You can only push those
work unit IDs that you have obtained using DMSGETWU; you cannot push the system-generated default
work unit ID.

You can find out what the current default work unit ID is by issuing the DMSQWUID (Query Work Unit ID)
routine.

The DMSPOPWU routine (Pop Default Work Unit ID) removes a work unit ID from the work unit ID stack.
The top default work unit ID is removed from the stack and the next one becomes the active default. You
can specify the ALL parameter to remove all work unit IDs except for the CMS default one. In CMS Subset
mode, only those work unit IDs obtained in Subset mode are removed. You should exercise care when
using the ALL parameter. A called program, or subprogram, may have placed a work unit ID on the stack,
planning to use it again at a later time.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 135

Example: The following example obtains a work unit ID, places it on the work unit ID stack as the new
default, and then later removes it from the work unit ID stack.

CALL DMSCSL (DMSGETWU, RETCODE, REASCODE, WORKUNITID)
CALL DMSCSL (DMSPUSWU, RETCODE, REASCODE, WORKUNITID)
/* The work unit ID in WORKUNITID is the new default */
⋮
/* To find out if the work unit ID you want is on the */
/* top of the stack. */
CALL DMSCSL (DMSQWUID, RETCODE, REASCODE, WORKUNITID)
⋮
/* Remove the work unit ID from the work unit ID stack. */
/* The previous work unit ID becomes the default. */
CALL DMSCSL (DMSPOPWU, RETCODE, REASCODE)
/* Return the work unit ID. */
CALL DMSCSL (DMSRETWU, RETCODE, REASCODE, WORKUNITID)

Using Multiple Work Units in a Program
To achieve greater system performance and throughput, a program should open SFS files or directories
at the last possible moment, and should commit the changes and close the files as soon as possible. By
doing so, the program uses the least amount of SFS file pool server machine resources and helps keep
shared files and directories available for other users.

To have greater control over how and when work is committed, you can use several concurrent work
units. That is, you can have more than one work unit in process at a time. The programming interface
lets applications use multiple work units to separate the commit of data, or for a called program to be
independent of the calling program. This can be done by obtaining more than one work unit ID. You can
group routine calls together by specifying the appropriate work unit IDs in the parameter lists of the
routine.

Each work unit is independent of the other. That is, the changes made to SFS files in a given work unit
can be committed or rolled back independent of any other work unit. For example, suppose your program
does the following:

WORK1 = buffer for first work unit ID
WORK2 = buffer for second work unit ID

CALL DMSCSL (DMSGETWU, RETCODE, REASCODE, WORK1)
CALL DMSCSL (DMSGETWU, RETCODE, REASCODE, WORK2)

OPEN FILE1 using workunitid=WORK1
OPEN FILE2 using workunitid=WORK2
OPEN FILE3 using workunitid=WORK1
⋮
WRITE FILE1
WRITE FILE2
⋮
WRITE FILE3
⋮
CLOSE FILE2 using the COMMIT parameter to COMMIT work unit WORK2
⋮
CLOSE FILE1
⋮
----- System Failure -----

The changes to FILE2 were committed before the system failure, so even though the application did not
complete, FILE2 was, in fact, changed. FILE1 is not changed because, even though it was closed, the
system failed before the changes were committed. (This example assumes that FILE1 is recoverable).

If the COMMIT parameter was used when FILE1 was closed, the changes made to FILE1 and FILE3 would
be made. Changes to both files would be made because they are on the same work unit. However, FILE3
would not be closed.

CMS resets the work unit environment at normal end-of-command or if an abend occurs. This means that
any work units obtained using the DMSGETWU routine are no longer available.

Manipulating SFS and Minidisk Files and Directories

136 z/VM: 7.2 CMS Application Development Guide

Issuing CMS Commands in a Work Unit
So far we have discussed work units as they are used in CSL routines. There are, however, ways to
update files maintained by SFS without using the routines. For example, in high-level languages, you can
execute CMS commands that operate on a file in the Shared File System by calling the routine DMSCCE
to issue a command from an exec (you can issue the command directly from REXX). In assembler, you
can execute CMS commands by issuing a macro such as CMSCALL or SUBCOM, or by issuing SVC 202
or SVC 204. There is no way to specify a work unit when issuing CMS commands from a program or
exec directly, so SFS uses the default work unit. You can, however, alter the default work unit with
DMSGETWU, DMSPUSWU, DMSPOPWU, and DMSRETWU and, thereby, indirectly specify the work unit for
CMS commands.

The default work unit for CMS commands issued from programs and execs is the same as that used for
CSL routines. (XEDIT and session services use their own work units for output files.) This assures updates
are committed. Using the same default has several important implications for your programs.

Suppose you have written a conversational application that updates files in the SFS file pool based on
responses to your prompts. Most of the time your users respond normally to the prompts, and you
continue to update the file. You did, however, decide to allow them to issue one of a subset of CMS
commands in response to any prompt. This allows the user to issue ad hoc CMS commands without
having to end the application. Here, in pseudo-code, is how it might be done:

Use DMSOPEN routine to open OUTFILE for output using default work unit ID
DO FOREVER:
 prompt user for input
 parse response
 is response a CMS command we can execute?
 Yes
 Issue the command
 No
 If a valid response
 Use DMSWRITE routine to write an appropriate record to OUTFILE
 else
 If end-of-conversation indicator
 Use DMSCLOSE routine to close OUTFILE with the COMMIT option
 end program
 else
 write message
 endif
 endif
END DO;

Suppose the user enters a CMS command. The program decides if it is valid and, if so, issues the
command. If the command does not operate on a file in a SFS file pool, it does not matter to the program
whether it succeeds or fails (unless it fails so dismally that it brings the program down with it). If it
succeeds, the processing of OUTFILE is unaffected. If it fails, the same is true. Because the command
does not operate on a file in a SFS file pool, no work unit ID is assigned to it. SFS does not know or care
about the command.

Now, suppose the CMS command does operate on a file in an SFS file pool. In this case, SFS uses
a default work unit ID. By coincidence, you have allowed the OPEN OUTFILE to default as well. They
both have the same work unit ID, and the success or failure of both are linked together. Typically, CMS
commands perform a commit, even on errors. If the CMS command fails in such a way that you roll back
(receive return code 31) the changes, all changes in the work unit are rolled back. This includes both the
changes caused by the CMS command before it failed and the changes previously made to OUTFILE — not
necessarily the desired result, especially if many changes were already made to OUTFILE.

This situation may be avoided in one of the following ways:

1. If you wish OUTFILE updates to be unaffected by the commits and roll backs caused by CMS command
processing, but require the capability of rolling back OUTFILE updates explicitly, you must specify
different work unit IDs for the files used directly by your application (OUTFILE in the previous example)
and for those files accessed by CMS commands issued through an exec, macro, or SVC. Because a
default work unit ID is always used for CMS commands issued from a program or exec, you should
obtain a different work unit ID to use with the SFS routines. To fix the previous example, we would not

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 137

let the work unit ID default when we opened OUTFILE. Instead, we would obtain a work unit ID for the
SFS routines by adding the following to the beginning of the program:

WORK1 = buffer for work unit ID

CALL DMSCSL (DMSGETWU, RETCODE, REASCODE, WORK1)
Use DMSOPEN routine to open OUTFILE for output using workunitid=WORK1

2. If do not wish updates to OUTFILE to be rolled back even if your application experiences a failure, you
should define OUTFILE as a nonrecoverable file. Using this approach, commits and rollbacks of the
work unit caused by both CMS command processing and by your program will cause OUTFILE updates
to be committed (where possible). Using this approach, you may fix the previous example by recoding
the OPEN statement to include the NORECOVER option.

Note: There are a number of ways to define files with the attribute of NORECOVER. Some of them
may be used in conjunction with compatibility interfaces (such as EXECIO and FSWRITE). See “Using
the Recoverability and Overwrite Attributes” on page 142 for a further discussion of the recoverability
attribute.

Calling Modules or Execs in a Work Unit
When an application invokes a MODULE file that resides in an SFS directory, CMS uses the same default
work unit used for SFS routines and CMS commands. CMS also implicitly opens the file, reads the file,
closes the file, and may issue a commit, depending on whether other files are open. If the commit is
issued, any uncommitted changes made on the default work unit before invoking the module are also
committed.

For example, suppose you have an application that makes changes to a file and then calls another module
to process some information. Your application is also using the default work unit and is not obtaining a
different work unit before calling the other module. If the module resides in an SFS directory, then as a
result of reading the module, CMS implicitly commits the updates made by your application before calling
the module.

One way to avoid these implicit system commits is to obtain and push a new work unit before calling the
module. See “Obtaining Work Unit IDs” on page 135 for information on obtaining a new work unit. Also, if
your application uses only SFS resources, you can specify explicit work units on CSL calls. For information
on how to specify these work units, see the description of the individual CSL routines in the z/VM: CMS
Callable Services Reference.

When an application invokes an exec that resides in an SFS directory, CMS does not use the same default
work unit. Exec processing uses a separate work unit to read an exec that resides in an SFS directory.
Therefore, if your application invokes an exec that resides in an SFS directory, any uncommitted changes
made by your application prior to calling the exec will not be committed.

Other Uses of Work Units
Although this chapter describes work units as they are used by SFS, work units may be used by other
applications as well. A work unit is really just a token that is unique within a virtual machine. Work units
are, however, intended to define a commit scope for program operations. That is, all operations associated
with a single work unit should be able to be committed or rolled back as a unit. So long as your application
adheres to that intent, the application can use work units for its own work.

Suppose, for example, you have an application that accesses a database. The database manager could
associate related database operations just as actions taken by SFS CSL routines are associated with work
unit IDs. The database manager would use its equivalent of work units to keep track of which operations
must succeed or fail as a unit. When the database manager does its equivalent of a commit operation, all
associated changes would be made permanent in the database.

Suppose that same application also updates SFS files using the CSL routines supplied with z/VM. If the
database manager participates in CRR, changes on a work unit to both the database and the SFS files are
coordinated. In other words, whether you use DMSCOMM or the database's equivalent of a commit, all

Manipulating SFS and Minidisk Files and Directories

138 z/VM: 7.2 CMS Application Development Guide

changes to both resources will be committed in unison for the work unit. For more information on CRR,
see Chapter 16, “Your Applications and Data Integrity,” on page 241.

If the database does not participate in CRR, CMS cannot guarantee that updates to both resources will
be committed simultaneously. The reason for this is that when updates are made to a nonparticipating
resource on a work unit containing protected resources, CMS does not count the nonparticipating
resource as a part of the work unit. Therefore, it is possible for the protected resources to be committed
while the nonparticipating resource is left unchanged. You must issue a commit for that resource using
the product-specific commit verb. To reduce problems, code your application to issue a resource-specific
commit first to make the changes permanent to resources not participating in CRR. Then, if that commit
succeeds, issue a coordinated commit for the protected resources. A commit verb of any protected
resource causes a coordinated commit.

If you intend the SFS file pool and database operations to be separate, unrelated units of work, it is
strongly recommended that you use different work unit IDs for those operations. If you do not, your
application is not adhering to the intended use of CMS work units.

Atomic Requests
An atomic request is an SFS command or program function (CSL routine) that has immediate results. That
is, any file pool updates that occur as a result of an atomic request are committed by the time the file pool
server has finished processing the request.

Atomic requests do not participate in, or interfere with, Coordinated Resource Recovery. To keep atomic
requests from interfering with coordinated work, SFS enforces the following rule:

Do not issue an atomic request if there is outstanding (that is, uncommitted) work in the affected file
pool for the specified (or default) work unit. If an atomic request is issued under this condition, the
request is rejected with the appropriate return and reason codes.

Outstanding work in other SFS file pools (or other non-SFS resources) for the same work unit does
not prevent an atomic request from being issued. The atomic request has no effect on the outstanding
work for the other resources. Conversely, issuing DMSCOMM (Commit) or DMSROLLB (Rollback) while an
atomic request is outstanding has no effect on the atomic request.

Note: An atomic request is "outstanding" only if the particular request supports and uses asynchronous
communication by specifying the requestid parameter. This is the only case where the application can get
control before the atomic request is complete. Again, issuing DMSCOMM or DMSROLLB at this point does
not affect the atomic request. A subsequent check request for the outstanding asynchronous request will
succeed.

The following is a list of atomic commands and routines for general use:

Table 7. General Use Atomic Commands and Routines

Commands Routines Task

CREATE LOCK DMSCRLOC Creates Lock

DELETE LOCK DMSDELOC Deletes Lock

DIRATTR DMSDIRAT Sets Directory Attributes

FILEATTR DMSCATTR Changes File Attributes

QUERY FILEPOOL DISABLE DMSQFPDS Querys a file space to determine if the file space or its
owning storage group is disabled

QUERY LIMITS DMSQLIMU Displays Your Storage Space Limits

RELOCATE DMSRELOC Relocates Files/Directories

DMSUDATA Passes Information to an External Security Manager

QUERY ACCESSORS Displays Information on Accessors of Directory Control
Directories

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 139

Table 7. General Use Atomic Commands and Routines (continued)

Commands Routines Task

QUERY ENROLL Displays Enrolled Users

SET THRESHOLD Sets File Space Threshold Value

The following is a list of atomic commands and routines that require administration authority or that are
intended for restricted use.

Table 8. Administration Atomic Commands and Routines

Commands Routines Task

DELETE USER DMSDEUSR Deletes User

ENROLL USER DMSENUSR Enrolls User

DMSQLIMA Displays User File Pool Information

DMSRELBK Releases Blocks

DMSWRACC Writes Accounting

DATASPACE Makes a Directory Eligible For Use In a Data Space

DELETE ADMINISTRATOR Deletes Administration Authority

DELETE PUBLIC Deletes Connect Authority on All Users

ENROLL ADMINISTRATOR Grants Administration Authority

ENROLL PUBLIC Grants Connect Authority to All Users

FILEPOOL ENABLE DMSENAFS
DMSENASG

Enables use of a file space or storage group
Enables Storage Group

FILEPOOL DISABLE DMSDISFS
DMSDISSG

Disables use of a file space or storage group
Disables Storage Group

FILEPOOL RENAME Renames the file space of an SFS user

MODIFY USER Changes Space Allocation

QUERY ACCESSORS Displays Information on Accessors of Directory Control
Directories in Data Spaces

QUERY DATASPACE Displays the Directory Control Directories Eligible for Data
Space Use

QUERY FILEPOOL AGENT Displays Information on Users or Internal Processes
Running on an SFS File Pool Server

QUERY FILEPOOL CATALOG Displays Information on File Pool Catalog Space

QUERY FILEPOOL COUNTER Displays Information on SFS File Pool and CRR Recovery
Server Counters

QUERY FILEPOOL CRR Displays Information on CRR Recovery Server Counters

QUERY FILEPOOL DISABLE DMSQFPDS Queries a storage group, a file space, or all file spaces and
all storage groups in a file pool to determine if they have
been previously disabled

QUERY FILEPOOL LOG Displays Information on SFS Log Minidisks

QUERY FILEPOOL MINIDISK Displays Information on File Pool Minidisks

Manipulating SFS and Minidisk Files and Directories

140 z/VM: 7.2 CMS Application Development Guide

Table 8. Administration Atomic Commands and Routines (continued)

Commands Routines Task

QUERY FILEPOOL
OVERVIEW

Displays Overview Information on a File Pool

QUERY FILEPOOL REPORT Displays Information on an SFS File Pool and Server, and
CRR Recovery Server

QUERY FILEPOOL STORGRP Displays Information on Storage Groups

QUERY FILEPOOL STATUS Displays File Pool Information

Committing and Rolling Back Changes in Application Programs
When you complete a work unit, you need to tell CMS what to do with the changes you made on the work
unit. The changes can be saved, or committed, or they can be discarded, or rolled back. There are several
ways to commit changes made in programs:

• Supply a COMMIT parameter in the parameter list of a CSL routine that operates on the work unit.
• Call the DMSCOMM (Commit) CSL routine.
• Call the SRRCMIT (Commit) SAA resource recovery (also known as CPI resource recovery) routine.
• Execute a commit verb of a resource that participates in CRR.
• Invoke the FSCLOSE macro. FSCLOSE can cause an implicit commit. For more information on FSCLOSE,

see the z/VM: CMS Application Development Guide for Assembler.

To roll back changes made in programs, either:

• Call the DMSROLLB (Rollback) CSL routine
• Call the SRRBACK (Backout) SAA resource recovery routine
• Issue a rollback verb of a resource that participates in CRR.

Note: Changes to minidisk files can not be explicitly committed or rolled back. Changes are committed
when the last file on the minidisk that is opened for output is closed. See Chapter 16, “Your Applications
and Data Integrity,” on page 241 for details of how CRR coordinates commits and rollbacks for protected
resources (those that participate in CRR).

It is important to commit your work even if you have not made any changes. For example, suppose you
open a file, read a few records, and then close the file. You should commit your work because the work
unit is still active, and subsequent atomic requests on the same SFS file pool and work unit ID will fail.
Most often, the atomic routine issues a return code of 8 for work units left active. Committing also frees
SFS file pool server resources when the accessed files have been previously closed.

If your application uses high-level language statements to update data controlled by a resource that
participates in CRR, be sure to flush all data from the buffers (for example, close the files) before issuing
a commit. This may be required because some high-level languages and assembler programs use OS/MVS
queued sequential access method (QSAM) for output files. For example, if a program uses OS/MVS QSAM
with blocked records for an SFS output file, some of the most recently written output records may not
be committed if the program issues a commit without first closing the QSAM file. These records will
subsequently be committed when the program closes the file and either commits the work unit or allows
end-of-command processing to commit the work unit. Using only CSL routines, FS macros, or the EXECIO
command to write to SFS files avoids this situation.

Committing Your Work When You Have Exceeded a File Space Limit
During the course of your application, you may have written more blocks to a file space than are allocated.
If you attempt to commit the work unit explicitly using SFS routines when the file space limit is exceeded,
the commit will fail, but the work unit will not be rolled back. This is a situation called a state check. For
example, if you have issued the DMSCOMM CSL routine to commit your work unit, a state check will be
reflected back to you by a return code of 8 and reason code of 79061.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 141

Your application must either delete unneeded file blocks that are above the file space limit and attempt to
commit the work again, or explicitly roll back the changes if there is not sufficient space to hold them.

Using the COMMIT Parameter in SFS Routines
When you specify the COMMIT parameter as input to an SFS routine, (use DMSCLOSE as an example),
you are, in effect, requesting two separate actions. Thus, there are situations in which you may be able to
successfully perform the initial action of closing the file but unable to commit the work unit. This may be
reflected as a state check, which implies that the work unit has been neither committed nor rolled back.

Your application can detect that a state check has occurred by checking for a return code of 8 (ERROR)
and a reason code of 50500 after an SFS routine has been issued with the COMMIT parameter.

If you are only writing to a single file pool and your application does not use non-SFS CRR protected
resources, a state check will only occur if you have exceeded your file space limit. In this case, your
application may attempt to recover by erasing temporary files and attempting to commit the work unit, or
by rolling back the work unit.

If you are using multiple file pools or CRR protected resources, there are a variety of errors you may
encounter when attempting to commit the work unit. Your application must examine FPERROR data
to further diagnose the cause of the COMMIT error. If there is sufficient space available in WUERROR,
FPERROR will reflect all SFS error information. This will include an FPERROR block that has been created
as follows:

• FPERETCD is set to 8
• FPEREAS is set to 50500
• FPEAUGMT is set to the reason code for the commit failure documented for the DMSCOMM routine (see

z/VM: CMS Callable Services Reference for details).

Because multiple FPERROR blocks may be created, the cause of the state check may not be available
unless the WUERROR parameter was coded such that it could contain more than one FPERROR block.

Note that if your application uses non-SFS protected resources, WUERROR will not return error
information specific to those resources. Use the DMSGETSP CSL routine to retrieve all error blocks for
all errors since the start of the last commit or rollback for the work unit.

Using the Recoverability and Overwrite Attributes
The recoverability and overwrite attributes of a file effect how a file is rolled back, updated, and
recovered.

There are two extended file attributes that you can manipulate to control your program files. These two
attributes are:

• Recoverability
• Overwrite.

These attributes apply to both minidisk and SFS files. In the case of minidisk files, the rules that govern
these attributes are more restrictive.

Recoverability
The recoverability file attribute has two states, RECOVER and NORECOVER.
RECOVER

means that the file is recoverable in the sense of CMS commit and rollback support. A rollback to a
recoverable file backs out all updates made since the last commit. RECOVER is the system default
recoverability attribute.

NORECOVER
means that the file is nonrecoverable, in that it is not subject to CMS rollback support. Generally,
a rollback causes updates to nonrecoverable files to be committed. However, in the event of an

Manipulating SFS and Minidisk Files and Directories

142 z/VM: 7.2 CMS Application Development Guide

abnormal termination of either the user machine or server, some updates to the file may be lost. Since
minidisk files are not associated with a work unit, all minidisk files are considered as nonrecoverable.

For example, you may want to use nonrecoverable files if you have data, such as transaction logging
data, that you want committed in the event of an ABEND. You can then keep track of any failing
transaction.

Overwrite
The overwrite attribute can have two states: NOTINPLACE and INPLACE.
NOTINPLACE

means that readers of the file see a consistent version of the file between open and close, because file
writes are shadowed. NOTINPLACE is the system default overwrite attribute.

INPLACE
means that read consistency is not required and updates to existing blocks of the file do not always
require additional blocks to be allocated to store the modified data. With the INPLACE attribute,
readers of the file might not see a consistent version of the file between open and close, and may
see updates that have not yet been committed. For minidisk files, file mode 6 files have the INPLACE
attribute.

There are a set of integrity exposures associated with the INPLACE file support. In general, they are
similar to the exposures experienced with file mode 6 files on minidisks:

• Any exception condition that might occur during the writing process can cause only part of the data
to be written to the file if:

– The record being written is larger than a CMS block (4KB).
– The record being written spans a CMS block. This could happen for any LRECL if records span

blocks.
• Even if individual records are not exposed to partial writes, file integrity may still be compromised

if only a subset of the records written is actually updated in the SFS file pool. This is particularly
dangerous for an application where the meaning of one record is dependent on the value contained
in another record.

You may use the FORCE option of DMSWRITE or frequent COMMITs by the writer or both, in
conjunction with the REFRESH option of DMSREAD, to control when updates to an SFS INPLACE
file are seen by a reader. This enables one or more readers to access the data as it is being written to
an SFS INPLACE file. For more information see, “Seeing Uncommitted Updates” on page 145.

Manipulating Extended File Attributes
You can use the following CSL routines and CMS commands to create, change, or query the overwrite and
recoverability file attributes for SFS files.

Table 9. CSL Routines

CSL Routine Function Description

DMSCATTR Change Attributes Modifies the recoverability and overwrite attributes of an SFS
file.

DMSCRFIL Create File Creates a new empty file in an SFS directory. You can specify
recoverability and overwrite attributes.

DMSEXIST Exist Checks on the existence of a file or directory and returns
information about it (if it exists) in a buffer.

DMSGETDI Get Directory Reads directory records containing extended file attributes
when opened with intent FILEEXT.

DMSGETDX Get Directory - File Extended Reads one directory record of extended file attributes.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 143

Table 9. CSL Routines (continued)

CSL Routine Function Description

DMSPOPA Pop Attributes Removes a set of recoverability and overwrite attributes
previously defined with DMSPUSHA.

DMSOPEN Open Opens a file for subsequent reading or writing. You can specify
recoverability and overwrite attributes.

DMSPUSHA Push Attributes Defines a set of default recoverability and overwrite attributes
for each file mode number.

Table 10. CMS Commands

CMS
Command

CSL Routine Description

CREATE FILE DMSCRFIL Creates a new empty file in an SFS directory.

FILEATTR DMSCATTR Modifies the recoverability and overwrite attributes of file(s)
residing on an SFS directory.

QUERY
FILEATTR

DMSGETDI or DMSGETDX Retrieves the recoverability and overwrite attributes of a file
residing on an SFS directory. The QUERY FILEATTR command
also displays the attributes of a file. DMSGETDI returns the
extended file attributes when the directory is opened with
intent FILEEXT.

The routines are described in the z/VM: CMS Callable Services Reference. The commands are described in
the z/VM: CMS Commands and Utilities Reference.

Committing SFS Changes in Application Programs
Supplying a commit parameter on a CSL routine has two distinct advantages. When you use commit
parameters, you can attempt to request two functions using a single communication, which is much
more efficient, and you can commit a group of related changes all at the same time. A typical approach
would be to use the commit parameter when you are closing the last file or directory. The following is
pseudo-code for a typical close and commit.

GET WORKUNITID unit1

OPEN FILEA DATA POOL1: for write using workunitid=UNIT1
OPEN FILEB DATA POOL1: for read using workunitid=UNIT1
OPEN FILEC DATA POOL1: for read using workunitid=UNIT1
⋮
CLOSE FILEA DATA POOL1:
CLOSE FILEB DATA POOL1:
CLOSE FILEC DATA POOL1: and COMMIT workunitid UNIT1

Executing a DMSCOMM routine can separate the commit from another routine. This is necessary if, for
example, your program calls a subroutine that, because it is a general-purpose routine, does not issue
its own commits. In this case, you may want to enter a DMSCOMM before continuing with your own
program's work. For example,

OPEN FILEA DATA (let work unit ID default)
⋮
WRITE to FILEA DATA
⋮
COMMIT the default work unit
⋮
⋮
CALL other_prog (subroutine that does not issue COMMITs)
COMMIT the default work unit
⋮

Manipulating SFS and Minidisk Files and Directories

144 z/VM: 7.2 CMS Application Development Guide

In this example, all work unit IDs are allowed to default. The main routine issues a commit before calling
the subroutine while the file is open. The subroutine does some work using the default work unit ID, but
does not issue a commit. On return, the caller issues a commit for the general purpose subroutine, then
continues work. This result in a coordinated commit of all protected resources.

Although it may be necessary to issue separate DMSCOMM requests, for best performance, you should
use the commit parameter instead of the DMSCOMM routine.

If an SFS file or directory is open when you use a commit parameter, the commit updates the open file
or directory. Committing changes while the file or directory is open, lets you save updates at intervening
points before you are done processing. For example:

OPEN FILEA DATA (let work unit ID default)
⋮
WRITE
⋮
COMMIT
⋮
WRITE
⋮
COMMIT
⋮
WRITE
⋮
CLOSE and COMMIT FILEA DATA

Although not recommended, yet another way to commit work is to let CMS implicitly commit the changes.
That is, you use a NOCOMMIT parameter or you do not use a DMSCOMM routine (or other commit verb).
In this case, CMS automatically closes any open files and commits the changes upon successful end of
command. This method also results in a coordinated commit of all protected resources.

End of command can be thought of as the point at which you see the CMS Ready; message. If you create a
MODULE for a program and then invoke that program from the CMS command line, the program executes,
returns control to CMS, and you see a Ready; message. In this case, the end of program is also the end of
command.

Suppose, on the other hand, you call three programs, one after another, from within an exec, and
the programs do not commit work. The "end of command" is after all three programs execute and
the exec ends, not after each program ends. In this case, changes are not committed until all three
programs successfully run and the exec ends. Furthermore, if your program does not commit its work,
it could prevent atomic requests from executing in the exec that calls your program. However, when an
application invokes a MODULE file that resides in an SFS directory, CMS implicitly issues a commit as
a result of reading the module. See “Calling Modules or Execs in a Work Unit” on page 138 for more
information about invoking a MODULE file.

The problem is that you cannot always predict how users run your program. While you may want it to run
stand-alone, there is no guarantee that a user will not put it in an exec with other programs or call it using
some other mechanism. It is recommended that you close your files and commit your work units rather
than relying on the system to commit for you.

Seeing Uncommitted Updates
Your program may or may not see uncommitted updates to the SFS file pool, depending on whether the
program files are INPLACE or NOTINPLACE. Some rules to remember are:

1. If your program files have the NOTINPLACE attribute, other users see only your committed updates.
(NOTINPLACE is the default setting of the overwrite attribute if NOTINPLACE or INPLACE is not used
on the DMSOPEN routine or if the DMSPUSHA routine was not issued.) If the file resides in a file
control directory, users will not see the changes until they close the file and reopen it. If the file resides
in a directory control directory, the access status of the directory determines, in part, when a user
sees the data. When the directory is not accessed (the user is directly referencing the file using CSL
routines), the user does not see your committed changes until he or she closes and reopens the file. If,
however, the user has the directory accessed, he or she will not see the changes until the directory is
reaccessed.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 145

2. If the files have the INPLACE attribute, readers might not see a consistent version of the file between
open and close. Again, the rules vary slightly for files residing in file control and directory control
directories. For file control directories, users can see updates to existing records as soon as they are
written, regardless of whether you committed the data. They cannot see extensions to the file unless
they close and reopen the file.

3. Users can also see uncommitted updates to existing records in INPLACE files in directory control
directories. If the directory control directory is accessed, however, they can see file extensions only if
they reaccess the directory. If the directory is not accessed, they see any extensions when they close
and reopen the file.

4. In all cases, users can read your updates to existing records (committed or uncommitted) in SFS
INPLACE files as soon as they are written to the file pool. Due to the cache that CMS maintains in your
virtual machine, however, changes may not be immediately transmitted to or from the file pool server.
That is, changed records may be momentarily held in the writer's cache while existing records in the
reader's cache may prevent CMS from retrieving current records from the file pool.

If it is important to your application to have changed records immediately written and the latest
records read, use the FORCE option on DMSWRITE and the REFRESH option on DMSREAD. This
circumvents the use of the cache. While performance is impaired when the cache is not used, you have
greater control of your data.

5. You can commit while your file is open, regardless of whether your file is INPLACE or NOTINPLACE.
6. You can see uncommitted updates for your own work when you close the file and then reopen it in

the same work unit. If you open a NOTINPLACE file in a different work unit, you will not see the
uncommitted updates. For INPLACE files, even if you open the file in a different work unit, you may see
some updated portions of the file.

7. For NOTINPLACE files, you never see someone else's uncommitted updates, even if they closed the
file.

8. For NOTINPLACE files, programs operating on one work unit cannot see uncommitted changes on
another work unit.

Rule 3 is most interesting for your own programs. You can open a file, make changes to it, and close it. In
the same work unit, you can reopen the file and read it to verify the changes (or write additional changes),
then close and commit file. When reopening the file, it does not matter whether you use the name of the
base file, or an alias for it, or a NAMEDEF that points to it. If you reopen the file in the same work unit, you
see the uncommitted updates. The changes are not permanently made until you commit the work. You
may run into the lock already held by the work unit making the changes.

If you open an INPLACE file with the intent of REPLACE, updates to the file are not written in place. They
are shadowed.

After you commit the work unit, others can see the changes you made. Any user who opened the file
before you committed the changes would see the old copy of the file. They would not see the new copy
of the file unless they closed and reopened the file (regardless of whether they start a new work unit).
The exception to this is if the file is update-in-place (has the INPLACE file attribute). With an INPLACE file,
the user may see some updates as they occur. In addition, for SFS INPLACE files the REFRESH option of
DMSREAD and the FORCE option of DMSWRITE lets you specify when INPLACE updates are made visible
to readers.

Note that many SFS operations, such as granting authority or erasing a file, are not final until the work
unit is committed. In addition, atomic functions, notably Create Lock (DMSCRLOC) and Delete Lock
(DMSDELOC), are rejected if any uncommitted functions exist in the affected SFS file pool on the same
work unit.

Rolling Back SFS Changes in an Application Program
Recoverable Files: Use the DMSROLLB routine (Rollback) to discard, or roll back, any changes made to
recoverable files within a work unit. The changes may have been to one or more files or other objects,
such as directories and subdirectories, in one or more SFS file pools or other resources that participate
in CRR. For example, suppose your program writes to a file in each of two SFS file pools within a work

Manipulating SFS and Minidisk Files and Directories

146 z/VM: 7.2 CMS Application Development Guide

unit, and then it encounters an error. Depending on the severity of the error, you may want to roll back all
the changes in the work unit to ensure the integrity of the data in the updated file or directory. You would
issue the DMSROLLB routine similar to the following:

WORK1 = WORKUNITID

CALL DMSCSL (DMSROLLB, RETCODE, REASCODE, WORK1)

You have rolled back all the changes within the work unit. You can continue processing with the work unit
ID if you want.

Rollbacks, like commits, are coordinated in that they discard all the changes to all protected resources
modified on the work unit. As in the case of commits, coordinated rollbacks can also be issued by using:

• SRRBACK (Backout) or DMSROLLB (Rollback) routine
• Rollback verb from a resource that participates in CRR.

Note: A rollback closes all SFS files and directories in the work unit.

Nonrecoverable Files: Updates to files that have the NORECOVER attribute are not rolled back in the
event of an application initiated rollback or abnormal application termination. As much data as possible is
committed.

The permanent state of an updated NORECOVER file would be unpredictable following:

• Abnormal virtual machine terminations
• Abnormal communications link terminations
• Abnormal SFS server terminations.

In any of these cases, the file is readable, but some updates between the last commit and the abnormal
termination may not be committed.

Handling Unexpected Conditions in SFS
When a program encounters an unexpected condition, it can do one of three things:

• Use DMSROLLB to roll back changes made to a file since the last commit. This will ensure the integrity
of the data in the updated file or directory. Once you have rolled back all the changes, you can continue
processing with the work unit ID.

• Terminate processing or set a return code or issue a message and return code to the user or all. For this
case, the commit will be attempted at end of command (when the Ready; message is displayed).

• Use DMSPURWU with the FORCE option and end the program (or, if written in assembler, issue the
DMSABN macro to terminate the program). In this case, a roll back will be issued. When writing your
program, examine the available error information to decide what type of error handling routines you
need to provide.

Collecting Error Information
The CSL routines for CMS file and directory manipulation provide three sources of error information:

• Return codes
• Reason codes
• Workunit extended error information.

The first two sources are required parameters for every routine; the last source is optional.

The return code provides general error information for a routine. The return code is placed in the return
code variable that you provide and in general register 15. (The return code variable is a signed fullword.)
SFS routines may have one of the following return codes:
0

Normal—the routine executed successfully.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 147

4
Warning—the routine executed, but the result may or may not be as intended.

8
Error—If the commit parameter was specified on the routine call, a return code of 8, reason code of
50500 means that the routine did execute, but the commit was not performed. Otherwise a return
code 8 means that the routine did not execute.

12
Error—the routine did not execute and work within the work unit ID was rolled back.

16
Severe Error—the commit was performed, but the state of coordinated resources may not be
consistent.

20
Severe Error—the work was rolled back, but the state of coordinated resources may not be consistent.

Return codes that are greater than 8 can only be received when there is an error in an operation to the
Shared File System or other CRR participant. Errors that apply to a minidisk will return an error code of 8.

You may also receive return codes from DMSCSL that are negative values. For more information on these
return codes, see the z/VM: CMS Callable Services Reference.

For many conditions where you receive a return code of 8, the state of the work unit stays the same. For
example, if you are in a work unit, issue a routine, and receive a return code of 8, you are still in the work
unit, and you must commit or roll back any work before you issue an atomic request or before you try to
write to another SFS file pool.

Return codes 4, 8, 12, 16, and 20 have reason codes associated with them to further describe the
warning or error condition. The reason code for a routine is placed in the reason code variable that you
provide and in general register 0. (The reason code variable is a signed fullword.) Return code 0 does have
an associated reason code of 0. For a list of the return codes and associated reason codes, see the z/VM:
CMS Callable Services Reference.

Workunit extended error information (wuerror parameter) is an optional source of error information.
It contains additional error information from the Shared File System. No minidisk error information
is contained in wuerror. On input, the wuerror parameter is a character string followed by a length
parameter. If you omit it or if the variable has a length field with a value of 0, only the return code and
reason code are returned. The following information is returned by wuerror:

• Length of the wuerror parameter
• Number of SFS file pool error information areas returned
• Total number of errors for which information is available
• One or more groups of SFS file pool error information.

The SFS file pool error information contains information about errors that have occurred. This information
includes: error reason codes, warning reason codes (up to 16 possible), and user ID index. The routine,
DMSWUERR, converts the wuerror output to data placed in individual variables. Macros WUERROR and
FPERROR let routines map into the work unit (WUERROR) and SFS file pool (FPERROR) data areas. For
more information, see the z/VM: CMS Callable Services Reference and the z/VM: CMS Macros and Functions
Reference.

Abend Recovery
Your application can call the Purge Work Unit IDs (DMSPURWU) CSL routine with the FORCE option to
perform some recovery operations for SFS and any other protected resources accessed on the work units.
DMSPURWU performs the following SFS and CRR activity:

• Closes all SFS files and directories.
• Rolls back all uncommitted changes to recoverable SFS files and directories and to other protected

resources accessed on all work units. (Rollback of nonrecoverable files may cause updates to be
committed to DASD.)

Manipulating SFS and Minidisk Files and Directories

148 z/VM: 7.2 CMS Application Development Guide

• Deallocates all protected conversations.
• Returns all work unit IDs.
• Ends communications to all SFS file pools and releases all session length locks in the SFS file pools for

the issuer.
• Clears all nondefault file attributes.

For details on the DMSPURWU (Purge Work Unit IDs) routine, see the z/VM: CMS Callable Services
Reference.

An assembler program can issue the DMSABN macro (or the OS ABEND macro if using simulation) to
perform recovery operations in a program that manipulates SFS files and directories (and any other
protected resources). DMSABN performs the following SFS and CRR activity:

• Closes all files and directories. (This includes files on a minidisk and in an SFS file pool.)
• Rolls back all uncommitted changes to recoverable SFS files and directories and to other protected

resources accessed on all work units. (Rollback of nonrecoverable files may cause updates to be
committed to DASD.)

• Deallocates all protected conversations.
• Returns all work unit IDs.
• Clears all defined namedefs.
• Resets default file attributes.

For details on the DMSABN macro, see z/VM: CMS Macros and Functions Reference.

File I/O
This section describes how to use CSL routines in VMLIB to manage SFS and minidisk files. The routines
that let you manage files are collectively known as File I/O routines. Here are some of the File I/O routines
that you can use for file I/O:

Table 11. CSL Routines for File I/O

CSL Call CSL Function Description

DMSCATTR Change Attributes Modifies the recoverability and overwrite attributes of the
specified SFS file.

DMSCLOSE Close Closes a file (logically disconnects an application program
from a specific file).

DMSCLDBK Close Blocks Closes a file for reading and writing data blocks (logically
disconnects an application program from a specific file).

DMSCOMM Commit Commits changes to the work unit.

DMSCRFIL Create File Creates a new, empty file in a SFS directory.

DMSERASE Erase Erases files (minidisk, base files and aliases) and directories.

DMSEXIFI Exist - File Checks for an existing file and return the file information in
variables.

DMSEXIST Exist Checks for an existing file (or directory) and return the file
information in a buffer.

DMSOPDBK Open Data Blocks Opens a file for reading and writing file data blocks (logically
connects an application program to a specific file).

DMSOPEN Open Opens a file (logically connects an application program to a
specific file).

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 149

Table 11. CSL Routines for File I/O (continued)

CSL Call CSL Function Description

DMSPOINT Point Alters the read and write record pointers in a file opened by
DMSOPEN.

DMSPOPA Pop Attributes Removes the most recent recoverability and overwrite default
attributes set by DMSPUSHA.

DMSPUSHA Push Attributes Defines a set of default attributes for each file mode number.

DMSRDDBK Read Data Blocks Reads one or more file data blocks.

DMSREAD Read Reads one or more records from a file.

DMSRELOC Relocate Moves a file, subdirectory or external object from one SFS
directory to another.

DMSRENAM Rename Renames a file, subdirectory or external object.

DMSROLLB Rollback Rolls back uncommitted changes to recoverable SFS files
changed in the work unit. The changes made since the
start of the work unit are rolled back. Changes made to
nonrecoverable SFS files are committed.

DMSTRUNC Truncate Truncates a file to a specified record.

DMSVALDT Validate Checks validity of a file identifier.

DMSWRDBK Write Data Blocks Writes one or more file data blocks.

DMSWRITE Write Writes one or more records to a file.

Using CSL Routines and Existing FS Macros
CSL routines that perform file I/O can work on both SFS and minidisk files. You can have programs that
are accessing the same minidisk and SFS files using both the CSL routines and FS macros. You cannot mix
calls between the two interfaces. For example, you cannot open a file using DMSOPEN and read it using
FSREAD. You can open the file using FSOPEN and open it again using DMSOPEN. Each interface has it's
own restrictions that apply. This is true for both minidisk and SFS files. Some of these restrictions are:

• A file (minidisk or SFS) may only be opened once using FSOPEN.
• Files may be opened multiple times using DMSOPEN:

– For an SFS file, you can open the file more than once for input (read) AND only once for output (new,
write, or replace).

– For a minidisk file, you can open the file more than once for input (read) OR once for output (new,
write, or replace).

Because there is no native file sharing capability for minidisk files, the file system must keep track of
which minidisk files are being opened and what interface is being used. A minidisk file may only be
opened for output once per virtual machine. If the FSOPEN macro is used to open the file for output,
DMSOPEN can not open the file for output. If DMSOPEN opens the file for input, FSOPEN could still open
the file for input also. In fact, DMSOPEN could open the file many times for input, but FSOPEN can only
open it once. Once a minidisk file is opened for output, it must be closed before either interface can open
it again.

The CSL interface allows applications to use work units to commit and roll back work for SFS files. When
using minidisk files, no work is associated with a work unit. Minidisk files are committed when the last file
that is opened for output on a given file mode is closed. Minidisk files are typically committed by using
the FINIS command or FSCLOSE macro. This is considered to be part of the FS macro interface but does
affect minidisk files that have been opened using CSL routines. If you close all files on a file mode using
FINIS or FSCLOSE (FINIS * *):

Manipulating SFS and Minidisk Files and Directories

150 z/VM: 7.2 CMS Application Development Guide

• all files opened using FSOPEN are closed
• all files opened using DMSOPEN and DMSOPDBK are temporarily closed.

After this has completed, the minidisk files have been committed but the files opened by the CSL routines
remain open. This allows applications that use FINIS to commit the minidisk changes regardless of
the interface used to open the file. SFS files opened using the CSL routines will not be committed by
using FSCLOSE or FINIS. The files opened using the CSL routines remain open so the FINIS invocation
is transparent to these files. All files opened using the CSL routines must be closed explicitly by the
appropriate CSL routine. There is no CSL routine that has the equivalent function of “FINIS * *”.

The most general rule that can be applied to using the CSL and FS macro interfaces is:

• For SFS files, the SFS rules of file sharing apply. A file may be opened once for output and multiple times
for input. FSOPEN will only allow the file to be opened once.

• For minidisk files, the file can only be opened once for output by either interface. It can be opened
multiple times for input by DMSOPEN and only once for FSOPEN.

Handling Files and Directories Opened Using File Mode
The file mode actually associated with a specific open file or directory may not be the file mode specified
by your application. This can occur when the file mode you have specified has read-only extensions.

When File Mode is Associated with a Minidisk
Files and directories opened on minidisks are always associated with a specific file mode. When that
file mode is no longer accessed, all files and directories related to that file mode will be closed and
committed regardless of the interface by which they were opened.

When File Mode is Associated with a FILECONTROL Directory
Files and directories opened on SFS directories have been opened via either a file mode or directory id.
Regardless of the mechanism used to identify the directory id, on SFS directories with the FILECONTROL
attribute, only SFS files opened using FS macros will be closed when the file mode is released. The
others will remain open until they are explicitly closed, or rolled back by either the application or system
processing.

When File Mode is Associated with a DIRCONTROL Directory
Open files and directories on SFS directories with the DIRCONTROL attribute are handled differently.
When the last accessed instance of a particular DIRCONTROL directory is released, all open files and
directories open with the intent of FILE for that directory are closed and committed.

Determining If a File Exists
To determine if a file exists and the status of a file, use the DMSEXIFI or DMSEXIST routine. However, if
this is an SFS file and you plan to do subsequent reads or writes to the file and share the file with other
users, you should not bother with determining if the file exists. You should begin file I/O by opening the
file with an intent other than READ. This assures that no other users could erase or revoke the file before
you get a chance to open the file. Once you have the file opened, other users cannot erase the file.

DMSEXIFI returns file information in variables. If the file does not exist or you are not authorized to read
from the directory, DMSEXIFI returns a return code of 8 as the value of the return code parameter and a
reason code of 44000 as the value of the reason code parameter. If the file does exist, DMSEXIFI returns
a return code of 0 and places the file information in the variables that you provide. Check the authority
information passed back to make sure you have the correct authority. If the file resides on a minidisk,
check the authority information to determine how the minidisk was accessed.

DMSEXIST returns file information in a specified buffer. If the file does not exist or you are not authorized
to read from the directory, DMSEXIST returns a return code of 8 as the value of the return code parameter
and a reason code of 90220 as the value of the reason code parameter. If the file does exist, DMSEXIST

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 151

returns a return code of 0 in the return code parameter and places the file information in the specified
buffer. Check the authority information passed back to make sure you have the correct authority. If the file
resides on a minidisk, check the authority information to determine how the minidisk was accessed.

You can map the output with the EXSBUFF assembler mapping macro. For more information on EXSBUFF,
see the z/VM: CMS Macros and Functions Reference.

Creating Empty SFS Files
There are many ways to create empty SFS files. Some of these are discussed here, using the:

• XEDIT command
• CREATE FILE command
• ERASE command with the DATAONLY option
• DMSOPEN CSL routine
• DMSCRFIL CSL routine
• DMSOPEN CSL routine with the ALLOWEMPTY option.

Using the XEDIT command: If you enter

XEDIT fn ft fm

and the file identified by fn ft fm does not exist, a new empty file is created. You can then put some data in
the file and SAVE or FILE it. You can also save an empty file, if the directory is in a file pool that supports
empty files. However, you must use SSAVE or FFILE to write the empty file to the directory.

Using the CREATE FILE command: Entering

CREATE FILE fn ft dirid

creates an empty file in an SFS directory. CREATE FILE cannot be used to create files on minidisks.

Using the ERASE Command with the DATAONLY Option: Erases all the data in an SFS file without
deleting the file from the directory. All existing authorizations and aliases are retained.

Using the DMSOPEN CSL routine: As described in “Opening Files” on page 152, if you open a file with
intent NEW, a new file is created. Also, if you open a file with intent WRITE or REPLACE, a new file will be
created if one by that name does not exist. You can explicitly specify that an empty file may be created
by specifying the ALLOWEMPTY parameter with DMSOPEN or DMSOPDBK CSL routines. If you do not
specify ALLOWEMPTY and you also do not write any records to the new file before closing it, no file will be
created.

Using the DMSCRFIL CSL routine: DMSCRFIL creates a new empty file in an SFS directory.

Using DMSOPEN CSL Routine with the ALLOWEMPTY Option: Can create an empty SFS file if there are
no records in the file when a DMSCLOSE or COMMIT is issued. Either a new empty file is created or an
existing file is replaced with a empty file.

Opening Files
To open a file, that is, establish a logical connection to the file for subsequent reading or writing of
records, or both, use DMSOPEN. If you want to perform data block I/O operations on a file, see “Data
Block I/O” on page 163 for more details. The DMSOPEN routine lets you open a file and specify the intent,
or the type of operation that you are performing, and the type of I/O that you want performed.

You can indicate the intent by specifying one of the following parameters:

• READ
• NEW
• REPLACE
• WRITE.

Manipulating SFS and Minidisk Files and Directories

152 z/VM: 7.2 CMS Application Development Guide

READ means that the file will only be read. You cannot open a file with READ if it does not exist.

NEW indicates that the file does not exist and it will be created. You can write to the new file or read from
it. Use the F or V parameter to create a fixed- or variable-length record format; if not specified, the default
is fixed (F).

REPLACE indicates that if the file exists, you will replace it with only the added records. If the file does
not exist, it will be created. When you have opened a file for replace, you can only read records that you
have written. Attempting to read records before writing any results in an end-of-file condition (return code
= 4). If you close the file before writing any records, the records in the file before the open are available
for a future open.

When an SFS file is replaced, the old version of the file is shadowed by the SFS server. If no records are
written to the file or you do not want to actually replace it, this operation can be rolled back later on. For
a minidisk file when REPLACE is specified, the file is erased when it is opened. If no records are written to
the file, it will no longer exist.

Use the F or V parameter to create a fixed- or variable-length record format; if not specified, the default is
fixed (F).

WRITE indicates that you will write to and read from the file. All changed and added records are written;
other records remain unchanged. A new file is created if the specified one does not exist.

If the file exists, use the record format of the file when adding records. If the file does not exist, use the F
or V parameter to create a fixed or variable-length record format; if not specified, the default is fixed (F).

You can also indicate the type of I/O you want to be performed when you open a file. Specify one of the
following parameters:

• CACHE should be specified when the caller intends to read the data sequentially most of the time.
Specifying this parameter causes the file system to cache several data blocks for the file, performing I/O
only when the cache buffer is full (for writing) or empty (for reading). This generally reduces the number
of separate I/O operations performed on the file.

• NOCACHE should be specified when the caller intends to read the data in random order most of the
time.

If you do not specify CACHE or NOCACHE, the system chooses a method that it considers appropriate.

You may specify whether the file is recoverable or nonrecoverable. The RECOVER attribute specifies
that uncommitted changes are backed out as the result of an application initiated rollback. NORECOVER
specifies that changes are not rolled back by an application initiated rollback. Instead, a rollback causes
the updates to be committed (in most cases). All minidisk files are considered nonrecoverable.

The overwrite attribute may also be specified. If the file is NOTINPLACE, writes are to be shadowed such
that readers see a consistent version of the file from open to close. If the file is INPLACE, updates are
made in place where possible, for reduced DASD utilization. If you have an INPLACE file open for READ,
you may see some uncommitted file updates. However, you have to reopen the file to see extensions
(new blocks and records) that have been written and committed to the file. For files residing in accessed
directory control directories, you must reaccess the directory to see extensions. The overwrite attribute
for minidisk files is determined by the file mode number. If the file mode number is 6, the file is treated as
INPLACE. For all other file mode numbers, the file is treated as NOTINPLACE.

You cannot change file attributes using DMSOPEN unless you open with the intent of REPLACE.

The OPENRECOVER parameter can indicate that all updates to the file resulting from this open are treated
as if the file had the attributes RECOVER and NOTINPLACE. This does not mean that these two attributes
are stored with the file. Once the file is closed and committed, the changes to the file, and any subsequent
activity to the file, are handled in a manner consistent with the attributes assigned to the file.

When you open a file, CMS passes a token back to your program. The token is an 8-byte field that
identifies the file. You will pass this token on to other routines for reading, writing, and closing the same
file.

After a file is open, you may need to determine certain attributes of the file, such as the number of records
in the file, record length, record format, and the date and time the file was last modified. You can use

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 153

the extract function of the DMSERP routine to obtain this type of information. See the z/VM: CMS Callable
Services Reference for more information on DMSERP and the extract functions that are available.

Example—Opening a File: The following REXX program uses the DMSOPEN routine to open, with the
intent to read, the GETFILE EXEC file residing in SERVER8:FAIRLIEA.:

/* Opens a file. */
retcode=0
reascode=0
fileid1.fname = 'GETFILE'
fileid1.ftype = 'EXEC'
fileid1.dirname = 'SERVER8:FAIRLIEA.'
fileid1 = fileid1.fname fileid1.ftype fileid1.dirname
fileid1len = length(fileid1)
opentype = 'READ'
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid1 fileid1len opentype',
 'opentypelen token'
exit

Reading and Writing Files
This section contains examples illustrating how to use the following CSL routines to read and write files.
These routines are:

• DMSREAD -- Reads data sequentially or specifically by position
• DMSWRITE -- Writes data sequentially or specifically by position.

Reading Files
DMSREAD (Read) obtains one or more records from a file. The records can be fixed or variable, and they
can be read sequentially or specifically by position in the file.

By default the first read operation begins with record number 1, and subsequent reads start at the next
sequential record. In addition to the retcode and reascode parameters, specify the following parameters:

• token
• records
• datalength
• buffer
• bytesread.

The following parameters are optional:

• position
• wuerror
• REFRESH | NOREFRESH
• requestid.

Token
Token, returned on a previous DMSOPEN, identifies the file to be read.

Records
Records specifies the number of records to be read.

Datalength
Datalength specifies the maximum number of bytes to be read. The value must be less than or equal to
the size of buffer in bytes.

Manipulating SFS and Minidisk Files and Directories

154 z/VM: 7.2 CMS Application Development Guide

To avoid a truncation warning, datalength must be specified, for fixed-length records, as the product of
the number of records to be read and the logical record length (lrecl):

datalength=records x lrecl

However, it is not considered an error if datalength is not equal to this product. When it is not, it is
possible to skip data in the file during sequential reads. For example, suppose a file has twenty 80-byte,
fixed-length records. If the first read from the file requests five records (5 x 80 = 400) and specifies a
datalength of 300, the data from the first three records (3 x 80 = 240) and the first 60 bytes of the fourth
record are placed in the buffer (240 + 60 = 300), and a truncation warning is returned (return code = 4). If
the next read does not specify a position number, reading begins with record six, thereby skipping the last
20 bytes in record four and all of record five.

For variable-length records, the datalength is equal to the maximum logical record length, or

datalength = 1 x lrecl

Buffer
Buffer specifies the area into which data will be placed.

Bytesread
After the read operation, bytesread is set to the number of bytes of data actually placed in the buffer. It is
set to 0 if the read fails with a return code of 8 or 12.

Position
Position specifies the number of the next record to be read relative to the beginning of the file (record 1).
The next sequential record is read if position is not specified or if 0 is specified (0 is the default).

An end-of-file warning (return code of 4) is returned only when no data is placed in the buffer.

CMS supports sparse files for fixed-length records only. A sparse file is a file with missing, or skipped,
records. If you attempt to read a record that has never been written, CMS returns a record of all X'00'.

Wuerror
Wuerror indicates for CMS to return SFS extended error information.

REFRESH | NOREFRESH
REFRESH indicates that the most recent version of data requested from update in place files is retrieved.
NOREFRESH means data is retrieved from CMS file buffers. REFRESH can be used in conjunction with the
FORCE option of DMSWRITE to enable a reader or readers to see the updates made to an update in place
file by a concurrent writer. REFRESH and NOREFRESH have no meaning for minidisk files.

requestid
Requestid is used to identify an asynchronous request. If it contains a binary 1 on input, then the request
is to be asynchronous, and CMS generates an integer to identify the asynchronous request. If it is omitted
or contains a binary 0 on input, the request is to be synchronous. This integer is placed in requestid which
is passed on a later Check (DMSCHECK) request. All minidisk requests are done synchronously.

Writing Files
The DMSWRITE routine (Write) writes one or more records to a file. The file must have already been
opened using DMSOPEN with the NEW, REPLACE, or WRITE parameter.

For a new file, writing begins with record one. For existing files, writing begins with the first record
following the last record in the file. In both cases, you can indicate the number of the record to be written
by using the position parameter.

In addition to the retcode and reascode parameters, specify the following parameters:

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 155

• token
• records
• datalength
• buffer.

The following parameters are optional:

• position
• wuerror
• FORCE | NOFORCE
• requestid.

Token
Token, returned from DMSOPEN, identifies the file to which you are writing.

Records
Records specifies the number of records to be written. This must be 1 for a file with variable-length
records.

Datalength
Datalength specifies the maximum number of bytes to be written.

For fixed-length records, datalength must be specified as the product of records and the logical record
length (lrecl):

datalength=records x lrecl

For variable-length records, it is the length of the record to be written:

datalength = 1 x lrecl

Variable-length records can be up to 65,535 bytes long. If you update an existing file of variable-length
records, the replacement record must be the same length as the original record. If it is not the same
length, then the write will fail and the file will remain as it was before the write.

Buffer
Buffer is the area containing the data to be written. Buffer must be large enough to handle the largest
record to be written.

Position
Position specifies the record number of the first record to be written relative to the beginning of the file
(record 1). The next sequential record is written if position is not specified or if 0 is specified (0 is the
default).

If a file has fixed-length records, you can write a record beyond the current last record, including a record
with a position number more than one greater than the number of the last record. If the skipped records
are not written before the file is closed, the file is termed a sparse file. A skipped record may be written
when the file is subsequently reopened. If a skipped record is read, it is retrieved as allX'00' bytes.

Wuerror
Wuerror indicates for CMS to return SFS extended error information.

FORCE | NOFORCE
FORCE causes updates of nonrecoverable files to be transmitted to SFS immediately. (FORCE is ignored
for recoverable files.) NOFORCE lets CMS, not the application, control the transfer of data. FORCE can
be used in conjunction with the REFRESH option of DMSREAD to enable a reader or readers to see the

Manipulating SFS and Minidisk Files and Directories

156 z/VM: 7.2 CMS Application Development Guide

updates made to an update in place file by a concurrent writer. FORCE and NOFORCE have no meaning to
minidisk files.

requestid
Requestid is used to identify an asynchronous request. If it contains a binary 1 on input, then the request
is to be asynchronous, and CMS generates an integer to identify the asynchronous request. If it is omitted
or contains a binary 0 on input, the request is to be synchronous. This integer is placed in requestid which
is passed on a later Check (DMSCHECK) request. All minidisk requests are done synchronously.

Altering Record Pointers
Another way to change the current read and write pointers in an open file is to use the DMSPOINT routine.
This allows an application to change the read and write pointers for the next DMSREAD and DMSWRITE
operations.

In addition to the retcode and reascode parameters, specify the following parameters:

• token
• read_offset
• write_offset
• method
• new_read_pointer
• new_write_pointer

Token
Token, returned from DMSOPEN, identifies the file to which you are changing.

Read Offset
Read Offset specifies where you want to move the read pointer (or if it is to be moved at all). If the value is
zero, the pointer is not moved. See Method for more information.

Write Offset
Write Offset specifies where you want to move the write pointer (or if it is to be moved at all). If the value
is zero, the pointer is not moved. See Method for more information.

Method
Method specifies how the read and write offsets should be applied to the current record pointers. The
values for method are:

• 0 means that the offsets are absolute record pointers. The read and/or write pointers will be moved to
these values. The exceptions are if the offset is a zero, then the pointer will not be changed. If the offset
is -1, then the pointer is moved to the end of the file.

• 1 means that the values in read_offset and/or write_offset will be added to the current record pointers.
• 2 means that the values in read_offset and/or write_offset will be subtracted from the end of the file.

This allows an application to move the record pointer based on the end of the file.

New Read Pointer
New Read Pointer provides the resulting read pointer when DMSPOINT completes.

New Write Pointer
New Write Pointer provides the resulting write pointer when DMSPOINT completes.

The various uses of method allow applications to adjust the read and write pointers anywhere in the file.
Some examples of this are:

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 157

• To move only the write pointer to the end of file (past the last record):

– Set the write_offset to -1
– Set the read_offset to 0
– Set the methodto 0

• To move the read pointer ahead 10 records and the write pointer back 5 records:

– Set the write_offset to -5
– Set the read_offset to 10
– Set the method to 1

• To move the read pointer 2 records from the end of the file and the write pointer 20 records past the
end of the file:

– Set the write_offset to -20
– Set the read_offset to 2
– Set the method to 2

Example: SFS Reading and Writing Records Sequentially
The following example shows how to use DMSREAD and DMSWRITE to read a record from one file and
write it into another within the same work unit. The CACHE parameter on the DMSOPEN routine indicates
that the data is read and written sequentially. Since it is within the same work unit, you do not have
to specify the workunitid. Even though all of the examples in the following sections are SFS examples,
changing the dirname to a file mode letter of an accessed minidisk would allow these programs to work
on minidisk files.

/* REXX example of SFS read/write */
retcode=0
reascode=0
fileid1.fname = 'PROFILE'
fileid1.ftype = 'GIVE'
fileid1.dirname = 'SERVER8:FAIRLIEA.'
fileid1 = fileid1.fname fileid1.ftype fileid1.dirname
fileid1len = length(fileid1)
opentype.1 = 'READ'
opentype.2 = 'CACHE'
opentype = opentype.1 opentype.2
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid1 fileid1len opentype',
 'opentypelen tokenr'

records=1
datalen=80
buffer=0
bufferlen=80
bytesread=80

call csl 'DMSREAD retcode reascode tokenr records datalen buffer',
 'bufferlen bytesread'
⋮
fileid2.fname = 'PROFILE'
fileid2.ftype = 'GET'
fileid2.dirname = 'SERVER8:FAIRLIEA.'
fileid2 = fileid2.fname fileid2.ftype fileid2.dirname
fileid2len = length(fileid2)
opentype.1 = 'NEW'
opentype.2 = 'CACHE'
opentype = opentype.1 opentype.2
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid2 fileid2len opentype',
 'opentypelen tokenw'

call csl 'DMSWRITE retcode reascode tokenw records datalen buffer',
 'bufferlen'
⋮
exit

Manipulating SFS and Minidisk Files and Directories

158 z/VM: 7.2 CMS Application Development Guide

Example: SFS Reading and Writing of Variable-Length Records
When you read or write variable-length records, you must read one record at a time. The read/write buffer
should be large enough to accommodate the largest record you read or write. Variable-length records can
be up to 65,535 bytes long; if the record is longer than the buffer length, it is truncated. You cannot use
null variable-length records.

When you read variable-length records, the datalength parameter should be equal to the maximum logical
record length to avoid truncating the record, or

datalength=lrecl x 1

Buffer contains the data that was read and bytesread contains the number of bytes actually read.
Bytesread contains 0 if the read failed with a return code of 8 or 12.

When you write variable-length records to a new file, writing begins with record one by default. When you
write variable-length records to an existing file, writing begins with the first record following the end of
the file by default. When you update a file of variable-length records, the replacement record must be the
same length as the original record. An attempt to write a record longer or shorter than the original record
results in a return code of 8 and a reason code of 90121.

The following example shows how you could read and write a variable-length file. The "V" value, specified
by opentype.3 indicates that variable-length data is read or written.

/* */
retcode=0
reascode=0
fileid1.fname = 'GIVEFILE'
fileid1.ftype = 'EXEC'
fileid1.dirname = 'SERVER8:FAIRLIEA.'
fileid1 = fileid1.fname fileid1.ftype fileid1.dirname
fileid1len = length(fileid1)
opentype.1 = 'READ'
opentype.2 = 'CACHE'
opentype.3 = 'V'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid1 fileid1len opentype',
 'opentypelen tokenr'

records=1
datalen=130
buffer=0
bufferlen=130
bytesread=16

call csl 'DMSREAD retcode reascode tokenr records datalen buffer',
 'bufferlen bytesread'
⋮
fileid2.fname = 'GETFILE'
fileid2.ftype = 'EXEC'
fileid2.dirname = 'SERVER8:FAIRLIEA.'
fileid2 = fileid2.fname fileid2.ftype fileid2.dirname
fileid2len = length(fileid2)
opentype.1 = 'NEW'
opentype.2 = 'CACHE'
opentype.3 = 'V'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid2 fileid2len opentype',
 'opentypelen tokenw'

call csl 'DMSWRITE retcode reascode tokenw records datalen buffer',
 'bufferlen'
⋮
exit

Example: SFS Reading and Writing of Specific Records
CMS keeps pointers to keep track of which records were last written and read. To read or write a specific
record, you can specify the position parameter of the DMSREAD or DMSWRITE routines.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 159

To read a specific record declare the position parameter as a signed binary integer and initialize it as the
value of the record number that you want to read. If the record is beyond the end of the file, no data is
placed in the buffer and a return code of 4 is returned to warn you that the end of the file was reached.

To write a specific record, declare the position parameter as a signed binary integer and initialize it as the
value of the record number that you want to write. You can write a record beyond the current last record in
the file by specifying a record number that is one or more than the number of the last record. If you do not
write the skipped records before you close the file, the file is considered a sparse file. You can write the
skipped records when the file is subsequently reopened. Reading a skipped record places all X'00' bytes
in the buffer.

The following example shows how you could read record 5 in ONE FILE and then write it as record 8 in
TWO FILE. The NOCACHE option indicates that the data is read and written randomly (not sequentially).

/* */
retcode=0
reascode=0
fileid1.fname = 'ONE'
fileid1.ftype = 'FILE'
fileid1.dirname = 'SERVER8:FAIRLIEA.'
fileid1 = fileid1.fname fileid1.ftype fileid1.dirname
fileid1len = length(fileid1)
opentype.1 = 'READ'
opentype.2 = 'NOCACHE'
opentype.3 = 'F'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid1 fileid1len opentype',
 'opentypelen tokenr'

records=1
datalen=80
buffer=0
bufferlen=80
bytesread=5
position=5

call csl 'DMSREAD retcode reascode tokenr records datalen buffer',
 'bufferlen bytesread position'
⋮
fileid2.fname = 'TWO'
fileid2.ftype = 'FILE'
fileid2.dirname = 'SERVER8:FAIRLIEA.'
fileid2 = fileid2.fname fileid2.ftype fileid2.dirname
fileid2len = length(fileid1)
opentype.1 = 'WRITE'
opentype.2 = 'NOCACHE'
opentype.3 = 'F'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)
position = 8

call csl 'DMSOPEN retcode reascode fileid2 fileid2len opentype',
 'opentypelen tokenw'

call csl 'DMSWRITE retcode reascode tokenw records datalen buffer',
 'bufferlen position'
⋮
exit

Example: SFS Reading and Writing of Specific Records Using DMSPOINT
This example is identical to the previous example except that it uses DMSPOINT to manipulate the record
pointers.

/* */
retcode=0
reascode=0
fileid1.fname = 'ONE'
fileid1.ftype = 'FILE'
fileid1.dirname = 'SERVER8:FAIRLIEA.'
fileid1 = fileid1.fname fileid1.ftype fileid1.dirname
fileid1len = length(fileid1)
opentype.1 = 'READ'

Manipulating SFS and Minidisk Files and Directories

160 z/VM: 7.2 CMS Application Development Guide

opentype.2 = 'NOCACHE'
opentype.3 = 'F'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid1 fileid1len opentype',
 'opentypelen tokenr'

writeoffset=0
readoffset=5
method=0
newwritepointer=0
newreadpointer=0

call csl 'DMSPOINT retcode reascode tokenr writeoffset readoffset',
 'method newwritepointer newreadpointer'
records=1
datalen=80
buffer=0
bufferlen=80
bytesread=5
position=0

call csl 'DMSREAD retcode reascode tokenr records datalen buffer',
 'bufferlen bytesread position'
⋮
fileid2.fname = 'TWO'
fileid2.ftype = 'FILE'
fileid2.dirname = 'SERVER8:FAIRLIEA.'
fileid2 = fileid2.fname fileid2.ftype fileid2.dirname
fileid2len = length(fileid1)
opentype.1 = 'WRITE'
opentype.2 = 'NOCACHE'
opentype.3 = 'F'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)
position = 0

call csl 'DMSOPEN retcode reascode fileid2 fileid2len opentype',
 'opentypelen tokenw'

writeoffset=8
readoffset=0
method=0
newwritepointer=0
newreadpointer=0

call csl 'DMSPOINT retcode reascode tokenw writeoffset readoffset',
 'method newwritepointer newreadpointer'

call csl 'DMSWRITE retcode reascode tokenw records datalen buffer',
 'bufferlen position'
⋮
exit

Closing Files
It is important to close files you are working with as soon as you are finished with them. This minimizes
the amount of user virtual machine resources required and helps keep shared files and directories
available for other users. Closing a file means logically disconnecting it from the application program.

Note that closing a file in an SFS directory control directory does not always make the file available to
other users for writing. If you have a directory control directory accessed in read/write status, no other
user can write to any file in the directory so long as you have the directory accessed. Closing the file, in
this case, does not make the file available to others for writing.

The DMSCLOSE routine (Close) closes files previously opened by using the DMSOPEN routine. You pass
the token from DMSOPEN to identify the files that you are closing. You may also want to include the
COMMIT parameter to commit the changes made to the files after they are closed, if you want to ensure
any uncommitted changes.

Example: To close and commit an output file that has been updated, issue:

commit='COMMIT'
comlen=length(commit)

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 161

call csl 'DMSCLOSE retcode reascode tokenw commit comlen'

Truncating Files
The CSL routine, DMSTRUNC, allows programs to delete records from the end of a file. DMSTRUNC returns
a file that has the number of records that was specified by the program on input. Truncation can only be
done on a closed file. For example, if the file TOOBIG FORME in the POOLA:SCOTT.TEST directory has
1000 records and you want to truncate it to 500 records, you can specify the following REXX statements:

fileid.fname = 'TOOBIG'
fileid.ftype = 'FORME'
fileid.dirname = 'POOLA:SCOTT.TEST.'
fileid = fileid.fname fileid.ftype fileid.dirname
fileidlen = length(fileid)
numrecs = 500
commit='COMMIT'
comlen=length(commit)

call csl 'DMSTRUNC retcode reascode fileid fileidlen numrecs commit comlen'

exit

You can also specify an optional date and time parameter on the call to DMSTRUNC. This gives the
program the ability to set the file's update date and update time to something different than the current
system date and time.

You can also produce an empty SFS file using DMSTRUNC. This can be accomplished by setting the
number of input records to zero and by specifying ALLOWEMPTY. If ALLOWEMPTY is not specified or the
file is on a minidisk, this will fail with an error return code and reason code.

Erasing Files
Use the DMSERASE routine to delete a minidisk file, Shared File System base file, alias, external object,
or directory; or to delete the data in an SFS file. For example, to delete the file GETRID OFITNOW in the
POOLA:JOHN.TEST directory, use the following REXX statements:

fileid.fname = 'GETRID'
fileid.ftype = 'OFITNOW'
fileid.dirname = 'POOLA:JOHN.TEST.'
fileid = fileid.fname fileid.ftype fileid.dirname
fileidlen = length(fileid)
options='COMMIT ENTIRE'
optlen=length(options)

call csl 'DMSERASE retcode reascode fileid fileidlen options',
 'optlen'

exit

The authorities that you have to a file and a directory affect whether you can use the ENTIRE and
DATAONLY options to erase another user's files and aliases. This table summarizes the interactions for
both files and aliases:

Table 12. Using the DMSERASE routine with the ENTIRE and DATAONLY options

Call DMSERASE
against Option

Necessary authorities
ResultsFile

write
Directory

write
File
read

File in file control
directory ENTIRE • • File and all related authorizations, aliases,

and control data are erased.

File in file control
directory DATAONLY •

Only contents of file are deleted; aliases,
authorizations, control data, and empty file
remain.

Manipulating SFS and Minidisk Files and Directories

162 z/VM: 7.2 CMS Application Development Guide

Table 12. Using the DMSERASE routine with the ENTIRE and DATAONLY options (continued)

Call DMSERASE
against Option

Necessary authorities
ResultsFile

write
Directory

write
File
read

Alias ENTIRE • • Alias is deleted; base file is unaffected.

Alias DATAONLY • Contents of base file are deleted.

File in directory
control directory ENTIRE • File and all related authorizations, aliases,

and control data are erased.

File in directory
control directory DATAONLY •

Only contents of file are deleted; aliases,
authorizations, control data, and empty file
remain.

You cannot erase a file under the following conditions:

• You have the file open
• The file is locked by another user
• You are not authorized to the file or directory
• Any user (including the issuer of your program) has a SHARE lock on the file.

If the issuer of your program has an UPDATE or EXCLUSIVE lock on a file, the file can be erased.

For more information on aliases and sharing files, see “SFS File Sharing” on page 172. For more
information on locks for files and directories, see “Locking SFS Files and Directories” on page 176.

Committing Your Changes
When you complete your file SFS I/O, you need to tell CMS what to do with the changes you made to the
file. The changes can be saved, or committed, or they can be discarded, or rolled back. There are several
ways to commit changes made in programs:

• Supply a COMMIT parameter in the parameter list of the DMSCLOSE.
• Call the DMSCOMM (Commit) CSL routine.
• Call the SRRCMIT (Commit) SAA resource recovery routine.
• Execute a commit verb of a resource participating in CRR.

The preferable way of committing changes is to supply a COMMIT parameter on the DMSCLOSE
routine. However, if you issue the DMSCOMM and DMSCLOSE routines individually and receive any error
messages, you can determine which routine generated the error.

To roll back the changes to a recoverable file, execute a SRRBACK (Backout) SAA resource recovery
routine, DMSROLLB (Rollback) CSL routine, or a rollback verb of a resource participating in CRR.

Changes to minidisk files can not be explicitly committed or rolled back. Changes are committed when
the last file on the minidisk that is opened for output is closed. Using the COMMIT and NOCOMMIT
parameters (as well as DMSCOMM and DMSROLLB) apply only to changes made to SFS and other
resources participating in CRR for that work unit. For more information on committing and rolling back
changes, see “Committing and Rolling Back Changes in Application Programs” on page 141. See Chapter
16, “Your Applications and Data Integrity,” on page 241 for details of how CRR coordinates commits and
rollbacks for protected resources (those that participate in CRR).

Data Block I/O
The File I/O routines that have been previously discussed do all I/O to CMS files (minidisk and SFS) at
the record level. That is, all reading and writing to CMS files are done with record lengths and number of
records in mind. A file record is the lowest unit of file I/O that can be performed to a CMS file. While this

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 163

is adequate in most cases, it can be inefficient to use this interface to transfer large files. For example,
DMSREAD allows an application to read 1 or more records from a file. If the file has a fixed record format,
the number of records that can be read is determined by the size of the application's storage buffer. In
the case of a variable record format file, only one record can be read at a time. This can cause significant
overhead for the system to read or write a large file.

The data block interface can be used to provide a high performance general interface for data transfer
to and from CMS files (both minidisk and SFS). This is not intended for applications that wish to
modify existing CMS files. Applications wishing to modify CMS files should use the DMSOPEN/DMSREAD/
DMSWRITE/DMSCLOSE routines.

Using this interface, an application can read and write data blocks to CMS files. For fixed format files, a
data block contains only the file data. In variable format files, a data block contains records made up of
a two byte length prefix which contains the length of the record, then the data itself. The CMS file system
uses these record lengths in variable format files to know where and how long the next record is. If an
application modifies these record lengths incorrectly, it may cause unpredictable results when the file is
read later by the file system.

There are four CSL routines that are used for data block I/O:

• DMSOPDBK - Open Data Block
• DMSRDDBK - Read Data Block
• DMSWRDBK - Write Data Block
• DMSCLDBK - Close Data Block

The data block I/O routines work in much the same manner as the corresponding record I/O routines.
When a file has been opened using the data block I/O interface, you must use the corresponding data
block I/O routines to read, write and close the file. You could not, for example, use DMSREAD to read a
block when the file was opened using DMSOPDBK.

One primary use of the data block I/O interface is to transfer CMS files. This can be done between:

• Minidisks
• Minidisks and SFS file pools
• SFS file pools

When the file is opened using DMSOPDBK, the block size of the file is returned. For SFS files, this is always
4096 (4KB). For minidisk files, this can be 512, 1KB, 2KB or 4KB. The application can use the Read Data
Block (DMSRDDBK) routine to read a source file into a buffer. The application can open a target file for
output (New or Replace) and use the Write Data Block (DMSWRDBK) routine to write the data from the
buffer used by DMSRDDBK. The buffer being written must be as least as large as the block size of the
output file. If it is larger, the file system will correctly adjust the blocks for the target file. As you can see, if
you use data buffers in multiples of 4KB, all blocking will be handled by the file system and does not have
to be handled by the application.

One significant difference between the record interface and data block interface is what happens when
the file is closed. Using the record interface the file system knows how many records have been written.
When the file is closed, the number of records written and the appropriate record size is saved as
attributes of the file. When using the data block interface, the file system only knows the number of
blocks that have been written. It isn't until the file is closed (using DMSCLDBK), that the application has
to provide the number of records and record length of the file. The file system uses this to compute where
the application wants the end of the file to be. This may not agree with the number of data blocks that
have been written to the file.

In the case of a variable format file, the file system determines where the last record of the file ends. This
is indicated when a record length prefix of zero is found. If this does not agree with the number of records
that was given by the application to DMSCLDBK, a warning return code and the correct number of records
and record length is returned.

In the case of a fixed format file, the file system uses the input to DMSCLDBK to determine where the
actual end of the file is. If the number of records and record length from the application is less than the

Manipulating SFS and Minidisk Files and Directories

164 z/VM: 7.2 CMS Application Development Guide

number of blocks written, the file will be truncated to that size. If the applications indicates the end of
the file is past where the last data block has been written, the file will be extended with sparse blocks
(data blocks containing binary zeroes). Another difference between the data block and record interfaces is
when SFS data is committed. Using the record interface, you can commit changes to the file while the file
is open. For the data block interface, the file system knows less about the file so the file must be closed
before the changes can be committed. In fact, there can not be any file open using DMSOPDBK on the
work unit in order to commit the changes to the work unit.

You can operate on files simultaneously using both FS macros and data block I/O routines. The following
describes how each method can be used for both minidisk and SFS files.

• When using DMSOPDBK:

– For an SFS file, you can open the file more than once for input (read) AND only once for output (new
or replace).

– For a minidisk file, you can open the file more than once for input (read) OR once for output (new or
replace).

• When using FSOPEN:

– For both a minidisk and SFS file, the file may only be opened once for either input or output.

Notice that CSL and non-CSL statements use the same default work unit ID.

Directory I/O
This section describes how to use CMS routines to manage SFS and minidisk directories. The following
program functions are provided for SFS directory manipulation:

Table 13. Program Functions for SFS Directory Manipulation

CSL Call Function Description

DMSCLDIR Close Directory Logically disconnects an application program from a specific
SFS directory.

DMSCRDIR Create Directory Creates a new directory

DMSDIRAT Set Directory Attribute Sets or changes the directory attribute.

DMSERASE Erase Erases directories (files, and aliases) and external objects.

DMSEXIDI Exist - Directory Checks for an existing directory and return the directory
information in variables.

DMSEXIST Exist Checks for an existing directory (or file) and return the
directory information in a buffer.

DMSGETDA Get Directory - Searchall Reads one or more directory records into variables when a
directory has been opened with an intent of SEARCHALL.

DMSGETDD Get Directory - Dir Reads one or more directory records into variables when a
directory has been opened with an intent of DIR.

DMSGETDF Get Directory - File Reads one or more directory records into variables when a
directory has been opened with an intent of FILE.

DMSGETDI Get Directory Reads one or more directory records into a buffer.

DMSGETDK Get Directory - Lock Reads one or more directory records into variables when a
directory has been opened with an intent of LOCK.

DMSGETDL Get Directory - Alias Reads one or more directory records into variables when a
directory has been opened with an intent of ALIAS.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 165

Table 13. Program Functions for SFS Directory Manipulation (continued)

CSL Call Function Description

DMSGETDS Get Directory - Searchauth Reads one or more directory records into variables when a
directory has been opened with an intent of SEARCHAUTH.

DMSGETDT Get Directory - Auth Reads one or more directory records into variables when a
directory has been opened with an intent of AUTH.

DMSOPDIR Open Directory Logically connects an application program to a specific SFS
directory for subsequent reading.

DMSRELOC Relocate Moves a subdirectory (or file) from one directory to another.

DMSRENAM Rename Renames a subdirectory (or file).

Here is a list of some of the tasks you can perform on SFS directories:

• Determine if the SFS directory exists — You can use the DMSEXIST or DMSEXIDI routines to determine
if the SFS directory you want to work with already exists or whether you need to create a new one. You
may want to skip this step and just open the directory; the status of the directory could change from the
time you determine its existence to the time you actually open it.

• Open a directory to read it — Use the DMSOPDIR routine to logically connect your program to a specific
directory. You can open the directory more than once.

• Read directory records — The Get Directory routines allow you to scan files and subdirectories by
reading records in the directory (previously opened using DMSOPDIR). You can also scan for lock,
authority, and alias information.

• Create or erase an SFS directory — The DMSCRDIR allows you to create a new directory. DMSERASE
erases directories.

• Close a directory — The DMSCLDIR routine logically disconnects your application program from a
specific directory (previously opened using DMSOPDIR).

• Commit your changes — Use the DMSCOMM routine to commit changes that you have made to the work
unit, or use the COMMIT parameter on the DMSCLDIR routine.

Minidisks also have a directory, known as the "Master File Directory" that holds information about CMS
files. This directory can be scanned to find information about the files on the minidisk. The following are
the CSL routines that you can use to reference minidisk directories.

Table 14. CSL Routines for Manipulating Minidisk Directories

CSL Call Function Description

DMSCLDIR Close Directory Logically disconnects an application program from a specific
directory.

DMSGETDF Get Directory - File Reads one or more directory records into variables when a
directory has been opened with an intent of FILE.

DMSGETDI Get Directory Reads one or more directory records into a buffer.

DMSOPDIR Open Directory Logically connects an application program to a specific
directory for subsequent reading (open intent of FILE only).

Here is a list of some of the tasks you can perform on minidisk directories:

• Open a directory to read it — Use the DMSOPDIR routine to logically connect your program to a specific
minidisk directory. The FILE intent is the only intent that can be used with a minidisk directory.

• Read directory records — The Get Directory routines allow you to scan files by reading records in the
directory (previously opened using DMSOPDIR). You can also use DMSGETDF (Get Directory for FILE) to
retrieve this information

Manipulating SFS and Minidisk Files and Directories

166 z/VM: 7.2 CMS Application Development Guide

• Close a directory — The DMSCLDIR routine logically disconnects your application program from a
specific directory (previously opened using DMSOPDIR).

Determining If an SFS Directory Exists
To determine if a directory exists in the Shared File System, and the status of the directory, use the
DMSEXIDI or DMSEXIST routine. However; if you plan to do subsequent reads or writes to the directory
and share the directory with other users, you should not bother with determining if the directory exists.
You should begin directory I/O by opening the directory. This assures that no other users could erase or
revoke the directory before you get a chance to open the directory. Once you have the directory opened,
other users can not erase the directory.

DMSEXIDI returns directory information in variables. If the directory does not exist or you do not have
authority on the directory, DMSEXIDI returns a return code of 8 as the value of the return code parameter
and a reason code of 44000 as the value of the reason code parameter. If the directory does exist,
DMSEXIDI returns a return code of 0 in the return code parameter and places the directory information in
the variables that you provide.

DMSEXIST returns directory information in a specified buffer. If the directory does not exist or you do
not have authority on the directory, DMSEXIST returns a return code of 8 as the value of the return
code parameter and a reason code of 90230 as the value of the reason code parameter. If the directory
does exist, DMSEXIST returns a return code of 0 in the return code parameter and places the directory
information in the specified buffer.

You can map the output of DMSEXIST with the EXSBUFF assembler mapping macro. For more information
on EXSBUFF, see the z/VM: CMS Macros and Functions Reference.

Opening and Reading SFS Directories
Once you know that a directory exists, you can open it; that is, you can establish a logical connection
to the directory for subsequent reading. When you open a directory, CMS passes a token back to your
program. The token is an 8-byte field that you pass on to other routines for reading the directory entries
and closing the directory. A minidisk directory may be opened and read in the same manner as an SFS
directory. This only applies to the Open Directory intent of FILE. All other Open Directory intents are for
SFS directories only.

Opening Directories
The DMSOPDIR routine lets you open a directory and specify the intent, or the type of read that you
will perform. The parameter that you specify determines the type of information that will be available on
subsequent Get Directory routines.

Specify one of the following parameters to indicate the intent:

• FILE
• FILEEXT
• SEARCHALL
• SEARCHAUTH
• ALIAS
• AUTH
• LOCK
• DIR.

Position is set to the top of the directory. If a directory is open for anything except FILE, you may not
call any atomic requests on that work unit for that file pool until the work unit is committed. (For more
information on atomic requests, see page “Atomic Requests” on page 139.)

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 167

FILE
Specify the file name and file type (or namedef) parameter with the directory name, file mode letter (or
namedef) and FILE; you must have READ authority, WRITE authority, or both on the SFS directory to use
FILE. A minidisk must be accessed in order to issue the directory functions. Only the FILE intent may be
used to scan a minidisk directory. Information returned in later DMSGETDI and DMSGETDF calls consists
of:

• File identifier
• File mode letter
• File mode number
• Record format
• Logical record length
• Number of blocks
• Number of records
• Date of last update
• Time of last update
• User ID of the owner
• Type (base, alias, erased, revoked, directory, or external object or minidisk file)
• Authority
• Directory attribute
• Unique ID
• Migration indicator.

DMSGETDI also returns the type of open (has a value of 1 for FILE).

Opening a directory with intent FILE causes CMS to access the SFS directory implicitly. Regular ACCESS
command default rules are used to determine whether the access is read-only or read/write, unless the
FORCERO or FORCERW options are specified when DMSOPDIR is done. Note that a read-only access of
directory control directory prevents you from writing to that directory or to the files it contains (even if
you are an administrator). If you need to write, access the directory control directory in read/write status
before you execute DMSOPDIR with intent FILE.

FILEEXT
Specify the file name and file type (or namedef) parameter and FILEEXT. Information returned from a
later DMSGETDI and DMSGETDX consists of everything that is returned when FILE is specified, plus the:

• File space type (0 = SFS)
• Date of last reference
• Creation date
• Creation time
• Recoverability attribute
• Overwrite attribute
• Number of data blocks used for the file
• Number of system blocks used for the file
• Maximum blocks used for the file
• DFSMS/VM related attributes

DMSGETDI also returns the type of open (has a value of 8 for FILEEXT).

Manipulating SFS and Minidisk Files and Directories

168 z/VM: 7.2 CMS Application Development Guide

SEARCHALL and SEARCHAUTH
Specify the file name and file type (or namedef) parameter with the directory name, file mode, or
namedef and SEARCHALL or SEARCHAUTH. The directory and all associated subdirectories are searched.
SEARCHAUTH only searches and returns files for which the issuer is authorized. Information returned in
later DMSGETDI, DMSGETDA, and DMSGETDS calls consists of:

• File identifier
• File mode number
• Record format
• Logical record length
• Number of blocks
• Number of records
• Date of last update
• Time of last update
• User ID of the owner
• Type (base, alias, erased, revoked, directory, or external object)
• Authority (only for SEARCHAUTH)
• External protection (only for SEARCHAUTH)
• Directory name and length
• Directory attribute
• Migration indicator.

DMSGETDI also returns the type of open (has a value of 2 for SEARCHALL and 3 for SEARCHAUTH).

ALIAS
Specify the file name and file type (or namedef) parameter with the directory name, file mode, or namedef
and ALIAS. You must have read authority on the file name specified. If special characters (* and %) are
specified to designate a set of files, you must have read authority on the directory. Information returned
from later DMSGETDI and DMSGETDL calls consists of:

• Input file identifier
• Input file mode number
• Type (base, alias, erased, revoked)
• Number of aliases
• Directory name and length
• Output file identifier
• Output file mode number
• User ID of the owner
• Migration indicator.

If the input file on the open directory is a base file, then the file's aliases are returned. If the input file on
the open directory is an alias, then the file's base file information is returned. DMSGETDI also returns the
type of open (has a value of 4 for ALIAS).

AUTH
Specify the directory name, file mode, or namedef and AUTH. The file name and file type (or namedef)
parameter is optional. When you use AUTH, later DMSGETDI calls only returns information about
authorizations that the issuer has and those that the issuer has granted.

You must have read authority on the file name specified. If special characters (* and %) are specified to
designate a set of files, you must have read authority on the directory.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 169

Information returned in later DMSGETDI and DMSGETDT calls consists of:

• File identifier (can be a file name and file type or a subdirectory)
• File mode number
• Type (base, alias, erased, revoked, or directory)
• Read authority
• Write authority
• External protection
• User ID of the owner
• Directory attribute.
• Migration indicator.

DMSGETDI also returns the type of open (has a value of 5 for AUTH).

LOCK
Specify the directory name, file mode, or namedef and LOCK. The file name and file type (or namedef)
parameter is optional. You must have read authority on the file name specified. If special characters (*
and %) are specified, information returned from later DMSGETDI and DMSGETDK calls consists of:

• File space type (0 = SFS)
• File identifier (can be a file name and file type or a subdirectory)
• File mode number
• Type (base, alias, erased, revoked, or directory)
• Lock type (share, exclusive, or update)
• Lock length (session or lasting)
• Lock user ID.
• Migration indicator.

DMSGETDI also returns the type of open (has a value of 6 for LOCK).

DIR
Specify the directory name, file mode, or namedef and DIR. The file name and file type (or namedef)
must not be specified. Each subdirectory is returned on later GET DIRECTORY calls. The directory name
consists of the file pool ID, user ID, and up to 8 subdirectory names. Information returned from later
DMSGETDI and DMSGETDD calls consists of:

• Directory length
• Directory name
• Directory attribute.

DMSGETDI also returns the type of open (has a value of 7 for DIR).

For the exact output information for each of the intent parameters, see the DMSGETDI routine (Get
Directory) in the z/VM: CMS Callable Services Reference.

Reading Directories
Once the directory is open, use the Get Directory routines to read one or more records. The first Get
Directory call reads the first record; subsequent calls read the next records. Remember to specify the
token from the DMSOPDIR routine to uniquely identify the open directory.

When reading records, you can choose between two methods: you can have the entries returned into a
buffer or they can be returned in variables.

Manipulating SFS and Minidisk Files and Directories

170 z/VM: 7.2 CMS Application Development Guide

Use DMSGETDI to read the record into a buffer. The type and length of directory record(s) read into the
buffer depend on the type of intent specified on DMSOPDIR. All records are fixed-length. Fields that are
not used are set to blanks (if a character field) or zero (if a numeric field). Use the DIRBUFF assembler
macro to map the output. For more information on DIRBUFF, see the z/VM: CMS Macros and Functions
Reference.

If, due to a language restriction, you cannot or do not want to provide a structure to handle the data
returned in a buffer, you can use Get Directory routines that return the available information in variables.
The routine that you use corresponds to the type of intent specified on DMSOPDIR.

Use For DMSOPDIR with an intent of

DMSGETDF FILE

DMSGETDX FILEEXT

DMSGETDA SEARCHALL

DMSGETDS SEARCHAUTH

DMSGETDL ALIAS

DMSGETDT AUTH

DMSGETDK LOCK

DMSGETDD DIR

No implicit SFS locks are held across the Open Directory (DMSOPDIR), Get Directory (DMSGETDD,
DMSGETDF, DMSGETDI, and so on), and Close Directory (DMSCLDIR) sequence. This means that while a
directory is open, if the issuer or another user changes information in the directory, the change may or
may not be reflected in subsequent Get Directory requests.

When a directory is open, for an intent other than FILE, 16KB of data is sent to the user’s virtual machine
for use by Get Directory. If changes are made while the directory is open, (for example, a file is erased)
those changes are not reflected in the data in the user machine. However, if Get Directory needs to get
another block of data from the server, the changes may be reflected in the new set of data.

An exception to this rule is when the directory is open for intent FILE. In this case, changes may be
immediately reflected and subsequent Get Directory requests will reflect those changes. For example,
if the directory is opened for intent FILE and a file in the directory is erased, subsequent Get Directory
requests will not return an entry for that file.

An exception to this exception is when the intent is FILE and the work unit it used was gotten for another
user ID (see DMSGETWU in the z/VM: CMS Callable Services Reference for more details.) In this case,
changes are not immediately reflected and subsequent Get Directory requests work in the same manner
as for intents other than FILE.

Closing Directories
Use the DMSCLDIR routine (Close Directory) to close a directory that has been opened using DMSOPDIR
(Open Directory). Closing a directory logically disconnects your program from a specific directory so that
you can no longer read records in it. You identify the directory by passing the token from the DMSOPDIR
routine (Open Directory).

Creating a Directory in SFS
You can create a directory or subdirectory in a file pool using the DMSCRDIR routine (Create Directory).
Remember the following rules when creating directories:

• You cannot create a top directory using DMSCRDIR. A top directory is automatically created when you
are enrolled in a SFS file pool.

• Including the top directory, nine levels of directories are the maximum that can be created.
• You can only create a directory structure one level at a time.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 171

• You cannot create a directory in another user's directory structure. However, the SFS administrator can
create a directory in another user's directory structure.

You can commit the newly created directory by including the commit parameter in the routine.

Erasing a Directory in SFS
The DMSERASE routine (Erase) erases base files, aliases, directories, and external objects. Remember the
following rules when erasing directories:

• Only the directory owner or the SFS administrator can erase a directory.
• To erase a directory that contains files, you need to use the FILES parameter on the DMSERASE routine

and to be sure that all the files are closed. If there are files in the directory, they are erased also. If the
directory does not contain any files, you can omit the FILES parameter.

• A directory cannot be erased if:

– The directory is open as a result of a DMSOPDIR call. However, if the directory is open with an intent
of FILE, but the FILE and NOCOMMIT parameters are not specified together on the erase request,
then the directory, even though open, will be erased. You can also erase files in a directory that is
open.

– The directory is locked by another user.
– Any user (including the issuer of DMSERASE) has a SHARE lock on the directory. If the issuer of

DMSERASE has an UPDATE or EXCLUSIVE lock on the directory, the directory can be erased.
– The directory contains subdirectories.

For information on erasing directories, see the DMSERASE routine in the z/VM: CMS Callable Services
Reference.

Committing Your Changes
When you complete your directory I/O, you need to tell the SFS file pool server what to do with the
changes you made to the directory on the work unit. The changes can be saved, or committed, or they can
be discarded, or rolled back. There are several ways to commit changes made in programs:

• Supply a COMMIT parameter in the parameter list of the DMSCLDIR, DMSCRDIR, or DMSERASE routine.
• Call the DMSCOMM (Commit) CSL routine.
• Call the SRRCMIT (Commit) SAA resource recovery routine.
• Execute a commit verb of a resource participating in CRR.

The preferred way of committing changes is to supply a COMMIT parameter on the DMSCLDIR,
DMSCRDIR, or DMSERASE routine. However, if you issue the DMSCOMM and DMSCLDIR, DMSCRDIR,
or DMSERASE routines individually and receive any error messages, you can determine which routine
generated the error.

To roll back changes made to the directory, execute a SRRBACK (Backout) SAA resource recovery routine,
DMSROLLB (Rollback) CSL routine, or a rollback verb of a protected resource. For more information
on committing and rolling back changes, see “Committing and Rolling Back Changes in Application
Programs” on page 141. See Chapter 16, “Your Applications and Data Integrity,” on page 241 for details
of how CRR coordinates commits and rollbacks for protected resources (those that participate in CRR).

Changes to minidisks are done when the last file opened for output on a file mode is closed. Minidisk
operations are not associated with work units. The COMMIT and ROLLBACK functions affect the specified
work unit, and have no effect on the minidisk operations that have been completed.

SFS File Sharing
When writing application programs using SFS, you can share files and directories in several ways.
However, remember, file sharing is invoked by the owner authorizing other users to read or modify a
file or directory.

Manipulating SFS and Minidisk Files and Directories

172 z/VM: 7.2 CMS Application Development Guide

Files may be shared using three different mechanisms:

• Create aliases to files
• Access directories (using the ACCESS command)
• Reference files directly using the File I/O routines in VMLIB.

Following are some of the File I/O routines that you will use when sharing files and directories.

Table 15. SFS Routines for Sharing Files and Directories

CSL Call Function Description

DMSGRANT Grant Authority Permits another user to use a file or directory.

DMSCRALI Create Alias Places an additional name for a file in a directory.

DMSERASE Erase Erases aliases, files, directories, and external objects.

DMSREVOK Revoke Authority Revokes use of a file or directory.

Granting Authority for Files and Directories
To share files using any of the three methods just mentioned, you first need to grant authority to other
users to use a file or directory. Use the DMSGRANT routine (Grant Authority) to grant authority to other
users.

When granting authority in application programs, keep the following rules in mind to avoid confusion
about authorizations:

• The issuer must own the file or directory to grant authority on it. The SFS administrator can also grant
authority on any file or directory.

• If the issuer grants authority on an alias, the authority refers to the base file.
• An authority on a file in a file control directory does not imply that you have any authority on the

directory in which the file resides.
• Authorizations cannot be granted on individual files within directory control directories or on aliases

that refer to base files in directory control directories.
• READ or WRITE authority on a file control directory does not imply that you have any authority on any
file within the directory. For example, READ authority on a file control directory allows another user to
see the names of a file in the directory but not to read a file.

• Authority can be granted to a file in a file control directory even if the file is open or if the file or directory
is locked, except when the file is locked exclusively by someone else.

To specify the name of the file or directory, use the actual identifiers or use namedefs. If you specify a
file name or namedef for a file, you must also specify the directory in which it resides. If you omit the
file name and file type or namedef for the file, then the name or namedef specified is assumed to be the
directory to which authority is being granted.

Use the READ, WRITE, NEWREAD, NEWWRITE, DIRREAD, DIRWRITE, and READDIRREAD parameters in
DMSGRANT to specify the type of authority being granted. For files in file control directories, you can
grant READ and WRITE authority. For file control directories, you can grant READ, WRITE, NEWREAD, or
NEWWRITE authority. For directory control directories you can grant DIRREAD and DIRWRITE authority.
You cannot grant authority to individual files in directory control directories. For more information about
these authorities, see the DMSGRANT routine description in z/VM: CMS Callable Services Reference.

All users must be authorized to communicate with an SFS file pool server. This may be done on an
individual user basis or by specifying that anyone may communicate with it.

The file pool administrator controls authorization to an SFS file pool server. The file pool administrator
allows anyone to communicate with an SFS server by issuing the ENROLL PUBLIC command. The file
pool administrator allows an individual to communicate with an SFS server through the ENROLL USER

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 173

command. ENROLL USER gives an individual a top directory. ENROLL PUBLIC and ENROLL USER allow a
user to read or modify any file or directory for which he has those authorizations.

Additionally, the user may be authorized to use a specified amount of logical space in a particular SFS file
pool or may not be allocated any space. The file pool administrator also does this through the ENROLL
USER command on which the amount of space authorized can be specified. The space usage limit may be
modified through the MODIFY USER command. This user may then create directories and files, and may
authorize other users to use those files.

An alternative to using the DMSGRANT or DMSREVOK routines, is to use an external security program to
determine who may read or modify your files.

An external security program may coexist with SFS base authorizations. This means that if the program
does not know about the object, SFS authorizations are used. Optionally, an external security program
may be brought up to respond "unauthorized" if it does not know about the object.

Creating Aliases to Files
One way of sharing files is by creating an alias to a file. An alias provides a means of getting to information
in a base file without moving any data or without creating a copy of the file. The alias is simply a pointer to
the base file. It may be in the same directory as the base file or in a different one. You can also create an
alias on an alias.

Aliases cannot be created in directory control directories, on minidisks or to minidisk files. They must
reside in file control directories. Aliases can, however, refer to files that reside in directory control
directories. You cannot create an alias on a file that is open for write.

Use the DMSCRALI routine (Create Alias) to create an alias. You can use namedefs to specify the:

• Base file
• Base file directory
• Alias
• Directory that will contain an alias.

To have your program create an alias:

• The issuer must be the owner of the base file or must have been granted the proper authorization. For
base files in file control directories, READ or WRITE authority to the file is required. For base files in
directory control directories, DIRREAD or DIRWRITE authority on the directory in which the base file
resides is required.

• The issuer must have WRITE authority on the file control directory where the alias is being created.
• The directory owner of the directory that will contain the alias must have authority to the base file.

When creating aliases, they may not cross SFS file pools.

For more information on creating aliases, see the z/VM: CMS Callable Services Reference and the z/VM:
CMS User's Guide.

External Objects
While aliases cannot cross file pools, external objects can refer to objects in different file pools. An
external object is another type of entity managed by SFS, in addition to files and aliases to files. An
external object is an SFS directory entry containing the name (called the remote name) of some object.
This object may be a file, but does not have to be. Like a file or alias, an external object has a unique
name, appears on a FILELIST screen, and can be renamed, relocated and erased (but not locked). Unlike
a file or alias, however, the actual data referenced by the remote name in an external object is not
managed by your local SFS server. You cannot directly manipulate it. It may reside in another file pool,
minidisk or data base. SFS external object support is an application-enabling facility. External objects are
intended for CMS applications which have requirements for mapping SFS file IDs to objects outside of the
file pool. The meaning of the information stored in an SFS external object is entirely application-defined.

Manipulating SFS and Minidisk Files and Directories

174 z/VM: 7.2 CMS Application Development Guide

You can create an external object using the DMSCROB routine. You can query the remote name contained
in an external object using the DMSQOBJ routine. For more information on DMSCROB and DMSQOBJ, see
the z/VM: CMS Callable Services Reference.

Accessing Directories
Another way to share files is by using the ACCESS command. Using this method, you would grant authority
for a directory to another user, such as USERA. That user would then use the ACCESS command to use the
directories and the files in it.

Once the directory is accessed, USERA can issue commands on that directory. By default, the CMS File
System treats access to another user's directory as an access in read-only mode. (Otherwise, programs
using STATEW would assume that they could create a new file on that directory.)

When you access directory control directory in read-only status, you cannot write to anything in the
directory, even if you own the directory or have DIRWRITE authority to it. Commands, CSL routines, or
macros that try to write to the directory will fail.

When you access a file control directory in read-only status, however, you can write to files in the directory
if you are properly authorized. To write to the files, you can use CSL routines or a few CMS commands.
Most CMS commands and assembler language macros require the directory to be accessed in read/write
status. XEDIT and COPYFILE commands do not. You can use XEDIT to edit another user’s file in a
directory that you have accessed read-only. You can also use COPYFILE. In either case, you must have
WRITE authority to the file in order to write to it. To have XEDIT and COPYFILE respect the read-only
access, use the SET RORESPECT ON command.

If you want to execute commands that require a read/write file mode, you can force another user's
directory to be accessed in read/write status. To do so, specify the FORCERW option on the ACCESS
command.

You can force a file control directory into read/write status even if you have only READ authority to the
directory. Naturally, if you try to do something (such as creating a file) that requires WRITE authority, the
operation will fail. You cannot circumvent SFS authority checking by forcing a read/write access.

When forcing a read/write access to a another user's file control directory, keep in mind that some
programs may have compatibility problems. A program might, for example, assume that it can create new
files when, in fact, the user has only READ authority on the directory.

Unlike file control directories, you cannot force a directory control directory into read/write status without
being authorized to write. You must have DIRWRITE authority to the directory control directory or your
attempt to force it into read/write status will fail. Because of this authorization requirement, forcing
another user's directory control directory into read/write status does not cause program compatibility
problems. Programs can safely assume that they can create or erase files in the directory, and that they
can write to any file in the directory.

For more information on the FORCERW option on the ACCESS command, see z/VM: CMS Commands and
Utilities Reference.

Direct File Reference
The third method of sharing a file is direct file reference through the direct file reference routines for SFS
in VMLIB. Your program can request a specific file in a specific directory which need not be accessed.
However, note that the user running the program must be authorized to use that file.

You can also add a file to another user's directory if you are properly authorized. For file control
directories, you must have WRITE authority to the directory. For directory control directories, you must
have DIRWRITE authority. When you create a file in another user's file control directory, you have WRITE
authority to the file, but the directory owner owns the file. The directory owner can revoke your WRITE
authority.

When you create a file in another user's directory control directory, you can write to the file by virtue
of your DIRWRITE authority on the directory in which the file resides. But, if the owner of the directory
decides to revoke DIRWRITE authority, you lose your ability to write to the file.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 175

By using direct reference you can avoid having your application access directories. With file control
directories, it does not matter whether the directory is or is not accessed. If it is accessed, it does not
matter if it is accessed read-only or read/write.

With directory control directories, however, it does matter. To successfully write to a directory control
directory using direct reference, you must either not have the directory accessed at all, or you must
have the directory accessed in read/write status. A read-only access will prevent you from writing to the
directory.

Using direct reference to write to a file in a directory control directory will also fail if another user has
the directory accessed in read/write status. Once anyone has a directory control directory accessed in
read/write status, no other user can write to it.

Sharing Files and Directories
If your program creates files or directories or both, consider the following when determining how to share
them:

• Sharing through an alias is most appropriate where:

– There are multiple users authorized to write.
– The people sharing wish to have different names for the files or to group them differently.

• Sharing by the ACCESS command is most appropriate where:

– A group of people wish to share an entire directory (using the ACCESS command)
– A user wants to edit a file (through XEDIT) but does not want a permanent alias.

• Sharing through direct file reference is appropriate for:

– An application written to use the CSL routines.

Removing Authority for Shared Files and Directories
Use the DMSREVOK routine (Revoke Authority) to remove authority that has been granted using
DMSGRANT. You can also change a use DMSREVOK to downgrade a user's authority (from WRITE
to READ, for example). Remember the following rules when using DMSREVOK to remove or change
authorities within a program:

• The issuer must be the SFS administrator or the owner of the file or directory to revoke or change
authority.

• The issuer cannot revoke authority from himself.
• Authority can be revoked from a file that is open; it takes effect when the file is closed.
• Authority cannot be revoked from a directory if there are files open within that directory.
• Authority cannot be revoked on a file or directory if another user has locked the file or directory.
• Authority cannot be revoked on a file or directory if the issuer has locked the file or directory using

SHARE.

Locking SFS Files and Directories
This section describes locking in SFS and how to use CMS routines to lock SFS files and directories. The
following routines are provided for file and directory locking:

CSL Call Function Description

DMSCRLOC Create Lock Creates an explicit lock on a file or directory.

DMSDELOC Delete Lock Deletes an explicit lock on a file or directory.

Manipulating SFS and Minidisk Files and Directories

176 z/VM: 7.2 CMS Application Development Guide

Locking
When more than one person can write to a file or directory, there must be some way to ensure that
two people do not update the same object at the same time. The SFS locking mechanism provides as
much concurrency as possible. To prevent simultaneous updates, SFS uses a locking scheme composed
of implicit and explicit locks.

An implicit lock is one that SFS acquires and releases automatically. Whenever someone has a file open,
SFS internally associates an implicit lock with that object. If someone else tries to read or write to that
file, SFS first checks whether it is locked before allowing access. An explicit lock is one that you create by
issuing a CMS command or routine that forces an object to be locked. Both kinds of locks are discussed in
the next two sections.

Locks have two important characteristics: duration and type. Lock duration, simply, is the length of time
the lock exists. The lock type determines whether others can share the object during the time it is locked.

Implicit Locking
Implicit locks are automatically acquired by the server to ensure data integrity among multiple users. To
allow greatest concurrency, SFS acquires locks only when needed and frees them as soon as it can. The
lock duration is the length of a server unit of work, which is, for example, from the time a file is opened
until it is closed and any changes committed. Note that if you commit the changes, but have not yet
closed the file, the implicit locks are still held. Similarly, if you update a file and then close it, but do not
commit the work unit, the locks are still held. Maintaining the implicit lock eliminates the need to:

• Use multiple work units or explicit locks to guarantee a consistent version of an update-in-place input
file

• Reopen directories
• Reopen input files (and possibly see a later version of the data).

Internally, SFS uses several different lock types. For our purposes, however, it is best to think of implicit
locks as having only two types: share and exclusive.
SHARE

An implicit share lock permits multiple readers of an object. SFS acquires an implicit share lock when
a user opens an object for read. When an object is implicitly share locked, other users can implicitly
lock the object as share or exclusive.

EXCLUSIVE
An implicit exclusive lock permits only one writer of an object. SFS acquires an implicit exclusive
lock when a user opens an object for anything other than read. When an object is implicitly exclusive
locked, other users can implicitly lock the object as share, but they cannot implicitly lock the object as
exclusive.

The lock type and duration for implicit locks depends on the operation you ask SFS to perform. SFS,
for instance, gets different locks for an open for write or replace requests (DMSOPEN routine with the
WRITE or REPLACE parameter) and for an erase request (DMSERASE) even though these operations are
considered a type of write. Some locks can be freed when the operation completes, while other locks
must be held until the work unit in which the operation occurs is committed. In any case, all implicit locks
acquired during a work unit are freed when the work unit is rolled back. Explicit locks, which we will be
discussing next, can last beyond the work unit (even if there is a rollback).

When you try to update an object that is implicitly exclusive locked, your request is rejected. If you made
the request in a program, your program will receive a return code of 8. If you made the request by issuing
a CMS command, the command will fail.

Explicit Locking
When you let SFS lock and unlock your files automatically, the implicit lock will remain in effect until the
file is closed and any changes have been committed or rolled back. If you want a lock to remain in effect
longer than this, you must explicitly lock the object by entering a CREATE LOCK command before running
your program or by issuing a DMSCRLOC routine (Create Lock) within your program. This section discusses

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 177

the DMSCRLOC routine. For more information on the CREATE LOCK command, see the z/VM: CMS User's
Guide and the z/VM: CMS Commands and Utilities Reference.

The DMSCRLOC routine allows you to explicitly lock a file or a directory. Explicit locks are sometimes
called check-out locks because you are checking-out a file or directory just as you would check out a book
at a library.

With the DMSCRLOC routine you can specify both the duration of the lock and the type of lock.

You can specify three types of explicit locks:
SHARE

An explicit share lock allows multiple readers, but no writers. Explicit share locks can be created on
file control directories and the files within. Explicit share locks cannot be created on directory control
directories or files in those directories. Multiple users may have a share lock on the same file or file
control directory at the same time.

If you create a share lock you will not be able to write to the file or directory even if you have WRITE
authority. But, you will be able to read it, as will others.

READ authority is required for the specified file or directory.

EXCLUSIVE
An explicit exclusive lock type means there can be only one person accessing the file or directory at
a given time. Explicit exclusive locks can be created on file control directories and the files within.
Explicit exclusive locks cannot be created on directory control directories or files in those directories.
If you create an exclusive lock, you are the only person that can read or write the file or directory. It
also prevents other users from getting any locks on the file or directory.

To obtain an exclusive lock, there cannot be any other types of locks on the file or directory.

WRITE authority is required for the specified file or directory.

UPDATE
An explicit update lock type allows others to read while you read or update.

In the case of file control directories, the only person allowed to write to the file or directory is
the issuer of the CREATE LOCK command or DMSCRLOC routine. In the case of directory control
directories:

• A lock on a file prevents everyone except the holder of the lock from accessing the directory read/
write.

• A lock on a directory prevents everyone including the holder of the lock from accessing the
directory read/write.

No other user is allowed to update the file or directory even if the issuer is not currently updating the
file or directory.

For file control directories and files within them, WRITE authority is needed to create an update lock.
For directory control directories and files within them, DIRWRITE authority on the directory is needed
to create an update lock.

The duration of the lock can be:
SESSION

An explicit session lock lasts until the end of the CMS session, or until it is specifically deleted (with
the DELETE LOCK command or DMSDELOC routine), or until all user machine connections to the SFS
file pool are broken (for example, with the DMSPURWU routine).

LASTING
An explicit lasting lock lasts until it is deleted with the DELETE LOCK command or DMSDELOC routine.
The lock lasts across CMS sessions and logon sessions. If, for example, you create a LASTING lock
and log off, the object as still locked, even though you are not logged on.

You should use explicit locks whenever you want to control the activity on your files or directories without
revoking authority. If, for example, you are rewriting a document that everyone has access to, and you
do not want anyone to see the new draft until it is complete, you might create lasting exclusive locks

Manipulating SFS and Minidisk Files and Directories

178 z/VM: 7.2 CMS Application Development Guide

on the document's files. If, on the other hand, you do not care whether anyone sees the changes, but
want to make certain no one else is changing the files, you would create lasting update locks. Once the
document is complete you would either delete the locks or create lasting share locks if you wanted to
prevent changes.

To request a lock, all activity in the affected SFS file pool for the work unit must be committed. If there is
any outstanding work on the file pool, the request fails.

Relationships between Locks
Table 16 on page 179 depicts the relationship between the various locks. Remember the following rules
when considering locks:

• Implicit locks are acquired by SFS.
• Explicit locks are acquired by users (or by some CMS commands like XEDIT or SET LANGUAGE).
• A explicit share lock has n readers and no writer.
• An explicit exclusive lock has no readers and one writer.
• An update lock has n readers and one writer.
• To obtain any type of lock, there cannot be any other types of locks on the file or directory.

Only UPDATE locks are allowed on directory control directories and on the files within them. So, cases
involving share and exclusive locks in the figures are not applicable to directory control directories and the
files within them.

Table 16. Results of Interactions between Accessing and Locking

When you try to

Read Write
Create a

Share Lock
Create an

Exclusive Lock
Create an

Update Lock

If someone
is

reading OK OK OK fail/wait OK

writing OK fail/wait fail/wait fail/wait fail/wait

If someone
has already
created

a share lock OK fail OK fail fail

an exclusive
lock fail fail fail fail fail

an update lock OK fail fail fail fail

Legend:
OK

Done immediately.
fail

Command fails or program receives an error code.
fail/wait

Indicates action with FILEWAIT OFF/ON, which applies only to implicit locks. See z/VM: CMS Commands
and Utilities Reference for information on the SET FILEWAIT command.

Table 17 on page 180, Table 18 on page 180, Table 19 on page 180, and Table 20 on page 180 show what
happens when you try to create a lock on a file or directory using DMSCRLOC when the object is already
locked.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 179

Table 17. Issuer Has Lock on File and Requests Another on Directory

Lock Mode for Directory Lock Mode for File

Explicit Share Explicit Update Explicit Exclusive

Explicit Share Yes No No

Explicit Update Yes Yes Yes

Explicit Exclusive Yes Yes Yes

Table 18. Issuer Has Lock on Directory and Requests Another on File

Lock Mode for File Lock Mode for Directory

Explicit Share Explicit Update Explicit Exclusive

Explicit Share Yes Yes Yes

Explicit Update No Yes Yes

Explicit Exclusive No Yes Yes

Table 19. Issuer Requests Lock on Directory While Another User Has Lock on File

Lock Mode for Directory Lock Mode for File

Explicit Share Explicit Update Explicit Exclusive

Explicit Share Yes No No

Explicit Update Yes No No

Explicit Exclusive No No No

Table 20. Issuer Requests Lock on File While Another User Has Lock on Directory

Lock Mode for File Lock Mode for Directory

Explicit Share Explicit Update Explicit Exclusive

Explicit Share Yes Yes No

Explicit Update No No No

Explicit Exclusive No No No

Deleting Locks
The DMSDELOC routine (Delete Lock) releases an explicit lock on a file or directory that was created
with the CREATE LOCK command or DMSCRLOC routine. Only the creator of the lock or an SFS file pool
administrator can delete it.

To delete a lock, all activity in the affected SFS file pool for the work unit must be committed. If there
is any outstanding activity, the request fails. If you want to delete a lock in an active SFS file pool, you
can use another work unit. For example, say there is an open file in SFS file pool A, which is active in the
default work unit, and you want to delete the lock on that file. You can call DMSGETWU to get another
work unit ID and then call DMSDELOC (on the new work unit ID) to delete the lock in SFS file pool A.

Waiting for Locks
If your request fails because the object is locked, you should wait until the object is not locked and
reissue the request. Programs that fail because of lock conflicts should be rerun when the objects it needs
are not locked.

Manipulating SFS and Minidisk Files and Directories

180 z/VM: 7.2 CMS Application Development Guide

If you do not care how long you might wait for a response to a request, and if you are being rejected
because you are the second writer, you can tell SFS to wait for the object to become unlocked rather than
reject the request. To do this, you issue a SET FILEWAIT ON command. However, this only can help if the
files or directories are locked implicitly.

This is useful, for example, at the end of the day, when you might start a program, disconnect your virtual
machine, and then go home. It is not a good idea to submit a job to the batch machine that issues a
SET FILEWAIT ON command. While your program is waiting, so are all the other programs in the batch
machine queue.

Because most CMS commands issued from a terminal form a single logical unit of work, the implicit lock
is usually not held for a long time. In application programs, however, you have control over the committing
of work units and can cause implicit locks to be held for a long time.

Deadlocks
In any system that manages shared resources, it is possible for deadlocks to occur. A deadlock is a
standstill that is reached when two or more users are each waiting for a resource that the other holds.

In SFS, it is possible for deadlocks to occur only for implicit locks. Because SFS never waits for an
explicitly locked object, even if FILEWAIT is ON, there cannot be a deadlock that involves any previously
explicitly locked object—SFS would have already terminated the request.

A deadlock would occur if USERA's program holds a lock on FILEA while waiting for a lock on FILEB.
Meanwhile, USERB holds a lock on FILEB while waiting for a lock on FILEA. All the locks are implicit locks,
obtained, perhaps, by opening a file for write. USERA is waiting for USERB, while USERB is waiting for
USERA. If nothing was done, both USERA and USERB would wait forever.

Or, suppose user USERA's program holds an implicit lock on FILEA while waiting for an explicit lock on
FILEB. Meanwhile, user USERB holds an implicit lock on FILEB while waiting for an explicit lock on FILEA,
and both USERA and USERB have SET FILEWAIT ON. USERA is waiting for USERB, while USERB is waiting
for USERA. This also would cause a deadlock to occur. If nothing was done, both USERA and USERB would
wait forever.

SFS detects these situations when the deadlock is contained within a single file pool, and SFS resolves
them by rolling back the youngest logical unit of work (the one that started most recently). SFS will roll
back the logical unit of work even if that user had entered SET FILEWAIT ON.

If you forget what locks you have created on your files or directories, issue the QUERY LOCK command.
The QUERY LOCK command also displays the locks created on your file or directory by other users to
whom you have granted read or write authority. You can also use the DMSOPDIR (Open Directory) routine
with DMSGETDI (Get Directory) or DMSGETDK (Get Directory - Lock).

Who Is Locking the SFS File or Directory?
Some CMS commands do not have specific return codes that indicate the command failed because the
file was locked. Instead, a return code indicating an open error is returned. While this allows existing
programs to run without having to be recoded and recompiled, it does prevent a CMS user from knowing
immediately whether the command failed because there was truly a file open error or because the file
was locked.

If commands operating on files or directories repeatedly fail, even though you know the object exists and
you are authorized to access it, you should suspect that the object is locked. The message or error code
that describes the failure will indicate either an error opening the object or a locking error.

There are two ways to check whether a file or directory is locked. One method checks for explicit locks,
which most frequently cause lock conflicts. The other method checks for implicit locks. Because implicit
locks are usually held for a short time, they are not often the cause of repeated command failure. By the
time you reissue the command, the implicit lock is often freed, and the command succeeds. So, the first
kind of lock you should look for is an explicit lock.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 181

Checking Explicit (or Check-Out) Locks
To check whether a file or directory is explicitly locked, issue the QUERY LOCK command. You must
be authorized for the file or directory that you query. For example, suppose user CROCKETT, a travel
writer, has a file space in the SFS file pool named TRAVEL. Crockett wants to see whether the .MAPS.USA
directory is locked by one of his co-workers. He would issue:

query lock travel:crockett.maps.usa

Or, if the default SFS file pool for Crockett is TRAVEL, he could use the abbreviated form:

query lock .maps.usa

If Crockett accessed the directory as, for example, file mode B, he can also issue:

query lock b

If the directory is not locked, CMS will display a response saying so. Otherwise, Crockett would see a
display like this:

Directory = TRAVEL:CROCKETT.MAPS.USA
User ID Lock Duration
TWAIN EXCLUSIVE LASTING

The display shows the directory, TRAVEL:CROCKET.MAPS.USA, exclusively locked by Twain. "Lasting"
means that the directory is locked regardless of whether Twain is logged on.

To check whether the file NEWYORK SCRIPT is explicitly locked within that directory, Crockett would
issue:

query lock newyork script .maps.usa

or

query lock newyork script b

Again Crockett would see either a message telling him the file was not locked, or a display like this:

Directory = TRAVEL:CROCKETT.MAPS.USA
Filename Filetype Fm Type User ID Lock Duration
NEWYORK SCRIPT B1 BASE JIM SHARE SESSION
NEWYORK SCRIPT B1 BASE TOM SHARE LASTING

Here the type is BASE, which means that NEWYORK SCRIPT is a base file. Two users, Jim and Tom have
share locks on the file. Jim's lasts until the end of his session, while Tom's lasts until he deletes it. The B1
file mode indicates that Crockett still has the .MAPS.USA directory accessed as B.

For application programs, you can use the DMSOPDIR (Open Directory) routine with DMSGETDI (Get
Directory) or DMSGETDK (Get Directory - Lock). Specify DMSOPDIR with the intent of LOCK. Subsequent
DMSGETDI or DMSGETDK calls provide the lock type, lock length, and lock user ID

If you suspect that a file or directory you are trying to use is locked, and QUERY LOCK doesn't show it as
being locked, check for an implicit lock.

Checking Implicit Locks
Because implicit locks are fleeting, the QUERY LOCK command does not display information about them.
If it did, there would be a good chance that the result would not be valid by the time the result was
displayed.

To check for implicit locks:

1. Enter SET FILEWAIT ON.

This command tells CMS to wait for the file to become free if a lock conflict occurs. By default,
FILEWAIT is OFF, so CMS will not wait and the command fails.

Manipulating SFS and Minidisk Files and Directories

182 z/VM: 7.2 CMS Application Development Guide

2. Reissue the command that was causing the lock problem.

If the object is still implicitly locked, the command will wait. Go to the next step.

If the command succeeds immediately, the implicit lock must have been recently freed. In this case,
just issue SET FILEWAIT OFF, and continue your work.

If the command fails, someone must have just acquired an explicit lock, or the object no longer exists,
or you are no longer authorized to access the object.

3. Have a friend issue a QUERY FILEPOOL CONFLICT command for you. If, for instance, Crockett was
trying to see whether an implicit lock was causing him problems in the TRAVEL SFS file pool, he would
have a friend issue:

query filepool conflict crockett travel:

The result will look like this:

Requester Holder Wait Lock Lock Type
--------- -------- -------------- ------- -------
TWAIN SMITH Lock File Excl
LEIGH SMITH Lock File Excl
SUE SMITH Lock File Excl
CROCKETT SMITH Lock File Excl

The first two columns show the most important information: who is requesting the lock and who is
holding the lock. (We are going to ignore the other columns for now.) Crockett, along with three other
users, are waiting for Smith. The other users are listed because they are in queue for the resource
ahead of Crockett, which means that if Smith suddenly freed his lock, Crockett would still have to wait
for Twain, Leigh, and Sue.

Note: QUERY FILEPOOL CONFLICT does not show conflicts caused by explicit locks because CMS
never waits for an explicit lock, even if FILEWAIT is on.

Once you find out who is holding the lock, you can call them or send them a message to see when they
will be done. If you choose not to wait, and you want to cancel the command, re-IPL CMS.

When you IPL CMS, SFS realizes that you have ended your CMS session, and stops waiting to process your
command. During CMS initialization, FILEWAIT is automatically reset to OFF.

Canceling a Command When FILEWAIT Is On
When FILEWAIT is ON, it is possible that your command or program will take a long time to complete.
Suppose you change your mind about waiting for the command or program. How do you cancel it? You
can:

• Enter the #CP LOGOFF command.
• Enter #CP IPL CMS. (You can IPL a system other than CMS.)
• Have your SFS file pool server operator issue a server FORCE operator command to sever your links to

the SFS file pool server.

Any of the actions causes the communications between your virtual machine and any other SFS file pool
server machine to be severed. SFS file pool server machines detect this and immediately stop processing
your command. There is, however, a remote chance that while you are logging off or issuing the IPL
command, the SFS file pool server machine can complete processing your original request. In that case,
you may not see the successful completion message. So, in your next CMS session it is a good idea to look
at files that would have been changed to see whether they were changed.

Note that in XEDIT each subcommand is a complete operation. That is, at the completion of an XEDIT
subcommand, any file read from or written to is left closed. So, any XEDIT subcommand that reads from
or writes to a file, such as LOAD, PUT, or FILE, may be delayed if FILEWAIT is ON. If FILEWAIT is OFF and
someone else is using a file, then a LOAD, PUT, or FILE would fail for that file.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 183

Performance Tips
When writing application programs that use files in SFS or minidisks, several factors can influence how
well your program performs. The following sections list the performance considerations.

SFS Performance Tips
The following are performance considerations for your programs when using SFS files:

• If your application will perform only a few operations to a file or directory, then use direct reference to
files and directories to avoid processing for the ACCESS command.

• If your application will perform many operations on files, then accessing the directories (instead of
direct reference) may make the operations process more efficiently.

• Use hierarchical directories to minimize the number of files that need to be accessed. Only access those
files that are actually needed during normal application processing.

• If your application deals with read-only or read-mostly data, consider using directory control
directories. If you are using an S/390® processor, your administrator can make directory control
directories eligible for use in a data space. This can improve the read performance of your application.
See the z/VM: CMS User's Guide for more about the use of directory control directories.

• Refer to a file by its base file name rather than through one of its aliases.
• Rather than issuing a separate request, such as STATE or DMSEXIST, to see if a file exists before

opening it, you should attempt to open the file and check the return codes to determine if it exists. Not
only is this more efficient, but it also eliminates the possibility that the status of the file has changed
between the time the existence check was made and the time the file was opened.

• If the directory containing a file has been accessed, it is normally more efficient to use DMSEXIFI, rather
than DMSEXIST, to check for the existence of a file or to obtain file-related information. DMSEXIST
always results in a file pool server call. If the directory is accessed, DMSEXIFI does not result in a
file pool server call (unless the file is protected by an external security manager or variables following
wuerror are specified in the parameter list). Instead, file status is obtained directly from the cached
directory information in the user virtual machine. SFS ensures that this data is kept up to date.

• It is good practice to close files and commit your work as soon as possible, as this will minimize real
storage requirements and the probability that other users will experience a lock conflict with files that
your application is using. In particular, in an interactive application, try to avoid being in a unit of work
while the user is in think time. Issue prompts before opening files and directories.

• Reduce the number of file system calls. For example, if you wish to close a file and commit your work,
issue DMSCLOSE with the commit option rather than use separate DMSCLOSE and DMSCOMM calls.

• In cases where the application wishes to make an exact copy of an existing file and both files are in the
same SFS file pool, it is more efficient to use the DMSFILEC routine to do this than for the application to
read and rewrite the file. DMSFILEC will do this with one file system call.

• When you wish to move a file from one directory to another within the same file space, consider using
DMSRELOC. This is more efficient than copying the file and then erasing the original file because no file
data is actually moved, no file data has to be erased, and all authorizations and aliases associated with
the file are retained.

• When replacing the contents of a file, make use of the REPLACE option to directly replace the file rather
than creating a temporary file, erasing the original file, and renaming the temporary file. SFS ensures
that the original file will remain intact until you commit your work. If you use the REPLACE option to
replace the contents of a file, you will not lose any of the aliases or authorizations that were set.

• If one or more input files is in migrated status, use the DFSMS RECALL command to bring their contents
into the SFS server prior to running the application. This may be done asynchronously.

• You may also improve performance for migrated files by issuing DMSOPEN requests asynchronously for
input files.

Manipulating SFS and Minidisk Files and Directories

184 z/VM: 7.2 CMS Application Development Guide

SFS and Minidisk Performance Tips
The following are performance considerations for your programs when using minidisk or SFS files:

• Sequential processing of fixed-length records can be made more efficient if the application provides
a large buffer and reads/writes multiple logical records in one request. For optimal performance, the
buffer should start on a page boundary.

• When opening a file, it is best to explicitly specify CACHE or NOCACHE, as this ensures that the file
system will select the most efficient mode of processing.

• For applications coded in assembler, you can reduce the processing required to call repeatedly
executed CSL routines by use of the CSLFPI macro. See “Invoking CSL Routines Frequently from
Assembler Programs” on page 326 for further information.

Using SFS File Space
Remember that before you create an SFS file in a file pool, you must be enrolled in that file pool and
assigned an allocation of space. This allocation of logical space is called a file space. The owner of the file
space, the SFS administrator, and any user authorized by the owner can create files in that file space.

Directories are in a separate file space area, an area of system owned space. Therefore, your directory
entries do not take up your own file space. The file pool catalog, within the system owned space, contains
information about the files and directories that exist in the file pool, such as, who owns them and who is
authorized to look at them.

Threshold Warning
When you are enrolled in an SFS file pool, a threshold warning point is set on space usage. When this
point is reached, a warning will be reported in one of the following ways:

• If you are using an SFS routine, your program receives a return code of 4 and a reason code of 51050.
• If you are using a CMS command, a warning message will be issued.
• If you are using the FS macros (for example, FSWRITE), the FSCBTHEX bit will be set in the File System

Control Block (FSCB).

Be aware that this threshold does not prevent you from continuing to use additional space. Until a
COMMIT operation is attempted, a threshold warning may be the only indication that your application will
get, even if the file space limit has been exceeded.

A default threshold percentage of 90% is set when you are enrolled with file space in a file pool, but
you can modify your own file space threshold percentage with the SET THRESHOLD command. File space
usage and threshold percentage may be queried with the QUERY LIMITS command or DMSQLIMU routine.

Temporary Space
SFS file space and minidisk space are handled differently in CMS. For example, if you have a program that
writes intermediate files on a user's minidisk, you have to be sure there is enough minidisk space to hold
the file or obtain temporary minidisk space. In SFS, the file space allocated to each user is considered
committed space. Because you can use space above your allocated space until you commit, your program
can write files and close them, but not commit the files. You can then reopen the file and read the
uncommitted updates, and continue processing.

If your application is written using SFS routines, and it is unable to commit a work unit because file space
limits have been exceeded, the commit failure will not automatically cause activity on the work unit to be
either committed or rolled back. Your application must either delete unneeded file blocks that are above
the file space limit and attempt to commit the work again, or explicitly roll back the changes if there is not
sufficient space to hold them.

If your application does not use CSL routines to update SFS files, an error will be returned for a write
operation when the SFS file space limit is detected. In an environment where files are not shared, you
should have enough space to close and commit all updated files. In an environment where there is

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 185

sharing, updates on the work unit will be rolled back if the SFS file space limit is exceeded when the files
are closed and changes are committed.

In either case, you could lose some of the changes you intended to be permanent if temporary changes
and permanent changes are on the same logical unit of work. Keep in mind that this may happen even if
the file is nonrecoverable.

Your installation may have established a storage policy and installed a file space usage exit that may
prevent or limit overuse of uncommitted space. Contact your file pool administrator for details.

Accessing Multiple SFS File Pools
In CMS, you can update multiple SFS file pools and other protected resources on a single work unit.
Whenever a commit (or rollback) is issued on that work unit, CRR coordinates the commit (or rollback)
among all of the resources to ensure data integrity.

See Chapter 16, “Your Applications and Data Integrity,” on page 241 for information on accessing multiple
file pools.

SFS Restart Recovery
Not all sudden failures of your computer system cause a data loss. When an SFS server is started, it
determines whether anyone was making changes when it last ended. That is, SFS tries to find unfinished
work. If it does, it automatically rolls back any uncommitted changes. By doing this, SFS automatically
recovers from almost all system failures.

If your application also accesses other protected resources, this same protection is extended to those
other resources through Coordinated Resource Recovery (CRR). For details on CRR, see Chapter 16, “Your
Applications and Data Integrity,” on page 241.

SFS User Synchronization
SFS synchronizes files to allow concurrent access to a file by multiple people. Multiple readers are
allowed to a single file, along with one writer.

Writers can always see the changes they are making. That is, they can read records they have just written
without closing and reopening the file.

Readers see changes at varying times, depending primarily on the file overwrite attribute.

Synchronization for NOTINPLACE Files
Readers can see only committed changes to NOTINPLACE files. (Most files have the NOTINPLACE
attribute.) Once the writer commits the change, there may be a delay before a reader sees the updates.

For NOTINPLACE files in file control directories, users who do not already have the file open see the
changes as soon as they open the file. If the file was open by the reader before the writer committed the
changes, the reader must close and reopen the file to see the changes. Once the file is open, the reader
has a consistent view of the file. That is, the version of the file the reader sees is frozen the instant the file
is opened.

For NOTINPLACE files in directory control directories, different rules apply. In this case, the access status
(or lack of it) affects when a reader sees the updates. If the reader does not have the directory control
directory accessed, the rules are the same as those for file control files. That is, the reader must close
and reopen the file to see the changes. If, however, the directory is accessed, the reader will not see
the changes until the reader reaccesses the directory. This characteristic is sometimes referred to as
access-to-release consistency and is similar to the consistency provided for minidisk files.

Manipulating SFS and Minidisk Files and Directories

186 z/VM: 7.2 CMS Application Development Guide

Synchronization for INPLACE Files
Readers can see uncommitted changes to SFS INPLACE files. Once the changes are written to the file
pool, they are available to readers regardless of the directory attribute (FILECONTROL or DIRCONTROL)
and the access status.

It is possible for readers not to see changed records because an old version of the record is already in
their virtual machine's file buffers. Readers can use the REFRESH option on the DMSREAD routine if they
want to be certain they are reading the latest record.

For INPLACE files, SFS does not try to ensure any sort of consistency. You can read a record twice and get
different results if someone managed to write a record between your reads.

Another potential delay in reading changes is caused when files are extended. A file extension is any new
block or record added to the file. To see extensions to INPLACE files in file control directories, the reader
must close and reopen the file. To see extensions to INPLACE files in directory control directories, the
reader must reaccess the directory if it was accessed. If it was not accessed, the reader must close and
reopen the file to see the extensions.

Lock Collisions
Within the SFS file pool server, there are implicit waits. For example, if a user attempts to open a file for
write which is already open for write by another user, and the SET FILEWAIT command was issued with
ON, the SFS file pool server waits until the file is closed and committed. If SET FILEWAIT is OFF, the
default, there is a rejection of requests instead of waiting on an implicit lock. No waiting ever occurs on a
collision with an explicit lock. For example, if a user attempts to open a file for write that has an explicit
share lock on it, the request is rejected, regardless of the FILEWAIT setting.

Asynchronous Requests
Most CSL routines that interface with the Shared File System (such as DMSOPEN, DMSERASE,
DMSCRLOC) can be issued either synchronously or asynchronously by an application. To process a routine
asynchronously means that the server handles the request while control returns to your program so it can
continue processing. Asynchronous support is designed for performance-sensitive applications such as
service machines or multitasking applications that may be doing other work concurrently.

Note: If you are writing an application that issues asynchronous SFS requests on behalf of other users,
you may wish to consider using multiple user ID support.

You can indicate that a request is to be processed asynchronously by specifying a binary 1 in the requestid
parameter. This causes CMS to generate an integer that uniquely identifies the asynchronous request.
This integer is passed back in the requestid parameter of the routine making the request. You can then
specify this value on DMSCHECK to determine if the request has completed. (If a 1 is passed back, it
means that no server interaction was required to complete the request.)

Note: All requests to a minidisk will be processed synchronously. If an asynchronous request was issued
(requestid = binary 1), the request is still processed synchronously to the minidisk and the requestid will
still have a 1 when the CSL routine has completed.

CMS passes the asynchronous request on to the server for processing. When control is returned to
your program, the return and reason codes indicate whether the request was accepted or immediately
rejected. If the return code is zero, indicating that the request was accepted, your program needs to
invoke the DMSCHECK routine with the value returned in requestid to check if the asynchronous request
has completed.

You must specify a WAIT or NOWAIT parameter on the DMSCHECK routine. The WAIT parameter means
that your program waits until the request you are checking for completes. The NOWAIT parameter means
that control returns to your program to continue processing.

Note that a number of server requests may be needed to satisfy a single CSL request. This is particularly
true when large amounts of data are being processed. When DMSCHECK is specified with the NOWAIT
option, you may need to issue DMSCHECK more than once to complete the request.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 187

The request is not considered to be complete until the DMSCHECK has completed. Both input and
output parameters of the initial CSL request may be updated by CMS at any time during this process.
The application must not change the contents of these parameters until DMSCHECK completes, or
unpredictable results may occur. When DMSCHECK completes, you must examine the return code and
reason code parameters of the initial request (for example, DMSOPEN) to determine the outcome of that
operation.

If the return code on DMSCHECK is zero, the request has completed and the variables for the request
are filled in. A return code of 4 indicates that the request has not yet completed. A return code of 8
indicates that an error occurred. See the z/VM: CMS Callable Services Reference for further information on
DMSCHECK.

If there are any asynchronous requests pending when CMS end-of-command processing takes place, the
work units with which these requests are associated will be rolled back.

Even when you request asynchronous processing, there are several circumstances in which some
synchronous SFS server processing may be performed to satisfy your request. These circumstances
include:

• You specify the COMMIT keyword and other CRR-participating resources (for example, another file pool)
are active for this work unit.

• You specify the COMMIT keyword and you have open SFS output files on the work unit.
• Your asynchronous CSL request is the first SFS request to the file pool for the specified work unit.

Note: You cannot call any CSL routines asynchronously from a REXX program.

If a work unit has an active asynchronous request, you cannot issue any other request for the affected
file pool on that work unit. The only exception to this rule is a rollback request, which could be a rollback
routine, such as DMSROLLB, or a routine or macro that causes a rollback, such as the DMSPURWU (Purge
Work Unit IDs) routine or the DMSABN macro.

Issuing Asynchronous SFS Requests from CMS Multitasking Applications
A multitasking application that issues asynchronous requests to an SFS server can use DMSCHECK to test
for the completion of the requests:

• Use CMS Application Multitasking Event Management routines with DMSCHECK. Only the thread
issuing the request ceases operation. This section describes how to use this technique.

• Issue the DMSCHECK CSL routine with the NOWAIT option until the request has been completed.
Processing continues, but the application must keep issuing DMSCHECK until the request has been
completed. This technique allows other threads in the application to continue, but they must compete
for processor time with the repeated calls to DMSCHECK.

• Issue the DMSCHECK CSL routine with the WAIT option. The virtual machine goes into a wait state,
and all threads of the application wait until the request being checked has been completed.

The first of these techniques blocks only a single thread while an asynchronous request is processed.
It uses Event Management routines and a system event that is reserved for signaling the completion of
asynchronous CSL routine requests to an SFS server. The characteristics of this event are:
Characteristic

Description
Name

VMSFSASYNC
Scope

Session. All processes in the session can monitor and signal this event.
Signal Delivery

CMS simultaneously signals the completion of the asynchronous request to all qualifying monitors.
Signaler

Asynchronous. CMS continues its internal processing after it signals the completion of the
asynchronous request.

Manipulating SFS and Minidisk Files and Directories

188 z/VM: 7.2 CMS Application Development Guide

To implement this technique, the application must:

1. Call DMSGETWU to get a work unit ID.
2. Create an event key for each combination of file pool ID and work unit ID being used. Each event key

is 12 bytes long and is composed of the 8-byte character file pool ID concatenated with the 4-byte
integer work unit ID: FFFFFFFFWWWW.

3. Call the EventMonitorCreate function for the event name VMSFSASYNC and for the event keys of the
requests (see note “1” on page 189, below).

4. Issue asynchronous requests to the SFS server. You can have only one outstanding asynchronous
request per file pool ID-work unit ID pair.

5. Check that a request was not processed synchronously (see note “2” on page 189, below).
6. Call EventWait with the event token for the requests (see notes “1” on page 189 and “3” on page 189,

below). Only the thread that calls EventWait is blocked. When CMS signals the completion of any SFS
request that matches the specified event token, the thread resumes execution.

7. Call DMSCHECK to determine how the asynchronous request was completed. DMSCHECK can be
issued at any time after EventWait and can be issued with either the WAIT or NOWAIT option (see note
“3” on page 189, below).

Note:

1. EventMonitorCreate returns a monitor token that EventWait uses to identify the asynchronous
requests it is waiting for. There are two ways an application can call EventMonitorCreate:

• Call EventMonitorCreate for each event key. EventMonitorCreate returns a unique monitor token for
each key. A call to EventWait with that token causes the thread to wait for the completion of the
request for that file pool and work unit.

• Call EventMonitorCreate for an array of unique event keys. EventMonitorCreate returns a single
monitor token. A call to EventWait with that token causes the thread to wait for the completion of a
request matching one of the event keys. The application can determine which asynchronous request
has been completed by testing the event flag values returned by EventWait.

2. When an asynchronous CSL routine returns a 1 for the request ID, the request was completed
synchronously. Do not call EventWait.

3. When DMSCHECK is issued with the NOWAIT option, the application may need to issue EventWait and
DMSCHECK more than once before it receives confirmation that the request has been completed.

See z/VM: CMS Application Multitasking for information on Event Management.

Sharing SFS Files Across Systems
Users may specify a nickname on SFS commands which accept a user ID, such as GRANT AUTHORITY.
However, the user may have to set up the nickname differently for files shared across systems. One
reason for this is that the node ID is not recognized. Only user IDs are passed. This necessitates the rule
that all user IDs within a TSAF or CS collection be unique.

With cross-collection support, which involves an APPC/VM VTAM® Support (AVS) virtual machine,
maintaining unique user IDs across the network is not practical. Therefore, each user who needs
resources in another collection is assigned a local user ID in that collection. The AVS virtual machine
then maps the user ID and where it came from to the local ID, which is administered to be unique within
this collection.

If the nickname maps to a user ID and node ID, CMS does not know where the node is. If it knew that the
node was within the collection, then the node ID could be ignored. However, it does not know that. Also,
from outside the collection, the local user ID is used, not the user ID/node ID.

Therefore, SFS looks for a user-specified tag in the nickname called LOCALID. If found, it is used to
resolve the nickname instead of the user ID. The LOCALID itself may not be a nickname. The LOCALID
value may be a list of user IDs. If a LOCALID tag is specified, it will replace the USERID, NODE, and List Of
Userid tags. Obviously, LOCALIDs may not contain node IDs.

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 189

A user who is setting up a nickname for another user will do the following: If the other user is on the
same system, then there is no change for the current nickname entry. Either no node ID is specified or this
node is specified. CMS recognizes the node ID for this machine. If the other user is on another machine
within the collection, then a user ID and node ID are specified for use by RSCS and other programs which
use node ID. A LOCALID tag with a value of the other user ID without the node ID is added. Because all
user IDs within a collection are unique, the real user ID is ok. If the other user is on a machine outside
the collection, the user ID/node ID are specified for programs which use node ID. For SFS, the LOCALID,
which was assigned by an administrator, and specified to the AVS virtual machine, is added.

The steps for SFS command nickname resolution are:

1. If a LOCALID tag is specified, use it.
2. If no node IDs are specified for the Userid tag or the List Of Userids tag, then use those user IDs.
3. If node IDs are specified, and represent this machine, then use the user IDs specified.
4. If any node IDs are specified which represent other nodes, check if a nickname exists for that user

ID/node ID. If the nickname exists, and a LOCALID exists for that nickname, use the LOCALID.
5. If none of these cases exist, an error is returned.

You can use the DMSQCONN routine (Query Connect) to determine if an SFS server is at a local or remote
location.

Use of APPC/VM Paths by SFS
SFS uses APPC/VM to communicate between your virtual machine and the virtual machine that manages
the SFS file pool.

A path is established when you use a unique work unit ID and SFS file pool ID combination. An existing
path to the correct SFS file pool will be used if there is no unit of work in process on that path. For
example, in Figure 25 on page 190, Ernie runs a program that uses two work units. In Work Unit A,
Ernie refers to files in both the DEVELOP and PROD SFS file pools. So, for Work Unit A, two paths are
established: one to SERVER1, and another to SERVER2.

Ernie's program also uses a second work unit that refers to files in the DEVELOP SFS file pool. Because the
references to the files are in another work unit, Work Unit B, another path to SERVER1 is used. Otherwise,
Ernie would not be able to commit the work independently.

Figure 25. Use of APPC/VM Paths by SFS

Manipulating SFS and Minidisk Files and Directories

190 z/VM: 7.2 CMS Application Development Guide

Use of APPC/VM Paths with the Default Work Unit ID
In the previous figure, either Work Unit A or B could be the default work unit ID. Paths established for
the default work unit ID normally persist until you log off. If the default work unit is again used during the
same CMS session, CMS will try to reuse an existing path. Usually it can, because most CMS users issue
commands against only a few SFS file pools.

For example, CMS commands are executed using a default work unit ID and usually a default SFS file
pool. When the command completes, the work is either committed or rolled back, but the path persists. If
the user executes another command, CMS uses the same default work unit ID, SFS file pool, and path. If
the user next refers to a file in another SFS file pool, a new path is established for that work unit ID. CMS
will reuse the new path for any future requests to the same SFS file pool.

Use of APPC/VM Paths with Acquired Work Unit IDs
A work unit ID you get with DMSGETWU persists until you re-IPL or log off, at which time all paths
associated with that work unit ID are severed. A nondefault work unit ID can be made the default work
unit ID temporarily. You can change your default work unit ID by using the DMSPUSWU routine. You can
reset it to the previous value by using DMSPOPWU.

Commands executed in CMS Subset mode do not use the same work unit ID as commands executing
when not in Subset mode. Instead, CMS provides a different default work unit ID.

Severed APPC/VM Paths in SFS
All SFS paths from your virtual machine are severed when you log off, re-IPL CMS, or issue the
DMSPURWU routine (Purge Work Unit IDs). Whether you log off, re-IPL, or issue the DMSPURWU routine
to sever a path, there is additional overhead to reconnect if you later want to reestablish paths to the SFS
server. There are other ways that your paths can be severed which are not under your direct control:

• The SFS file pool server machine operator forces you off the file pool (issues the FORCE USER server
operator command).

• An APPC/VM communication error occurs.
• CRR processing has to sever one or more paths to ensure a complete backout, to enable

resynchronization to occur, or both.
• File pool server processing ends, either normally or abnormally. (In this case, all paths that the server

maintained are severed.)
• CMS end-of-command processing takes place and there are pending asynchronous requests.

If a path is severed when communication is outstanding, the outstanding file pool request will fail with an
error code indicating that the path was severed. If a work unit is in progress on that path, the work unit is
rolled back.

If a path is severed asynchronously (when there is no communication outstanding) and a work unit was
in progress on that path, your next request to that file pool for that work unit will fail with an error code
indicating the path was severed, and the work unit is rolled back.

If a path is severed asynchronously and a work unit was not in progress on that path, your next request to
that file pool for that work unit will succeed, assuming the server is now available.

While paths are established from machine-to-machine, you should remember that users request files
from SFS file pools, not SFS file pool server machines. That is, the user specifies an SFS file pool ID, not
the ID of the virtual machine that happens to be managing the file pool. The SFS file pool ID (resource
ID) is used in the APPC/VM communications. APPC/VM finds the machine that is managing the file pool.
This machine can be on the same system as the requester, another system in the TSAF or CS collection, or
another system in an SNA network.

Because users and applications request files from an SFS file pool, not a SFS file pool server machine, one
wonders what might happen to the paths if the SFS file pool was switched to another SFS file pool server

Manipulating SFS and Minidisk Files and Directories

Chapter 12. Manipulating SFS and Minidisk Files and Directories 191

machine. That is, suppose the SFS file pool is switched from one SFS file pool server machine during
lunch, when many user machines are still in a CMS session but, perhaps disconnected.

To switch SFS file pool server machines, the original machine would have to be shut down. All its links
would be severed, which does not interfere with any work (everyone's eating lunch). The minidisks and
appropriate files are assigned to the new SFS file pool server machine. It is started using the same file
pool ID as the first machine.

Now suppose a user returns from lunch, reconnects, and invokes XEDIT for a file in the SFS file pool. What
happens? If a work unit was in-progress when the original machine was shut down, CMS sees that the
path is severed and returns an error indication. If you immediately reaccess the file pool and then reissue
the XEDIT command, CMS establishes a new path using the SFS file pool ID. APPC/VM communications
find the new virtual machine, and completes the path to it. If a work unit was not in-progress when the
original machine was shut down, the old link is severed, a new one is established, and the command
completes successfully.

Manipulating SFS and Minidisk Files and Directories

192 z/VM: 7.2 CMS Application Development Guide

Chapter 13. Manipulating BFS Files and Directories
Using CMS Record File System CSL Routines

OpenExtensions Byte File System (BFS) files are stored in CMS file pools. A byte file system is generated
as a file space in a file pool, and several byte file systems can reside in the same file pool. The CMS
record file system interface supports limited manipulation of BFS files and directories, primarily for
administration and system-managed storage.

Special Meanings for File and Directory in This Context
In the context of manipulating BFS objects in the CMS record file system, the term "file" refers to a BFS
regular file only. Other types of BFS files cannot be manipulated by CMS record file system functions. The
term "directory" refers to only the top directory in a BFS file space (that is, the byte file system itself).
BFS subdirectories are not equivalent to SFS subdirectories and cannot be manipulated by CMS record file
system functions.

For information on how CMS file attributes apply to BFS files, see Chapter 11, “Understanding the CMS
File System,” on page 119. Many of the CMS functions described in Chapter 12, “Manipulating SFS and
Minidisk Files and Directories,” on page 129 apply to BFS files and directories.

This chapter primarily describes where the CMS record file system support for BFS is different. Topics
include:

• Programming interfaces
• Authority required
• Storage management by DFSMS/VM
• Application design considerations
• File I/O
• Directory I/O
• File locking
• Use of file pool space.

Programming Interfaces
To manipulate BFS files and directories, CMS provides a call interface composed of a set of CSL routines
located in the VMMTLIB callable services library. (This library resides in the CMS nucleus.) These routines,
known as the OpenExtensions callable services, are intended for use by language run-time environments.
They can also be called from assembler and REXX programs. For more information about these routines,
see the z/VM: OpenExtensions Callable Services Reference.

CMS Pipelines provides stage commands for manipulating BFS files and directories. For more information,
see the z/VM: CMS Pipelines User's Guide and Reference.

The CMS record file system CSL routines in the VMLIB callable services library provide limited function for
manipulating BFS files and directories. (The FS macros do not provide BFS support.) When used for BFS
objects, the CMS record file system interface has the following general characteristics:

• It accepts file names, directory names, and name definitions (namedefs).
• It automatically commits changes at file close time.
• It does not participate in Coordinated Resource Recovery (CRR).

For general information about calling the CSL routines in VMLIB, see “CMS Record File System
Programming Interface” on page 129.

Manipulating BFS Files and Directories

© Copyright IBM Corp. 1990, 2022 193

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

Required Authority
Using the CMS record file system interface to manipulate BFS files and directories requires file pool
administrator authority. Note that CMS functions such as the QUERY ENROLL command, which do not
actually manipulate BFS objects but only provide information about them, do not require administrator
authority.

DFSMS/VM and BFS File Management
DFSMS/VM can help automate storage management tasks for BFS files as it does for SFS files. Files can
be assigned attributes that tell DFSMS/VM how long to maintain the file. Files can be automatically
deleted or moved to DFSMS/VM-owned storage automatically, to more efficiently use the available
storage.

You may want to ask your file pool administrator if DFSMS/VM has been installed on your system and is
being used to manage SFS and BFS files, because this can affect the behavior of files in a file pool. See
z/VM: DFSMS/VM Planning Guide for an explanation of how this product is used.

Migration and Recall
Some BFS files that appear to reside in your file pool may actually have had their data moved into a
storage repository managed by DFSMS/VM. (Note that such files still are considered by BFS to consume
their usual amount of room in your file space.) These files are said to be in migrated status in your file
pool. You can identify files that have been placed in migrated status by using the OPENVM LISTFILE
command with the ATTRIBUTES option (the default). Files in migrated status have an F* in the Type
column of the response.

Migrated files behave exactly like regular BFS files, but they must be recalled (either automatically
or explicitly) into your actual file pool before you can reference the data. This may cause a delay,
depending on your system configuration and workload. Automatic recall is governed by the CMS SET
RECALL command. If SET RECALL is ON (the default), recall happens automatically when the file data is
referenced. If SET RECALL is OFF, the file is not recalled. You receive an error indicating that the file is
migrated and not available. You can add the SET RECALL setting to your PROFILE EXEC. Explicit recall
is performed with the DFSMS RECALL command. (See z/VM: CMS Commands and Utilities Reference for
more information about SET RECALL and z/VM: DFSMS/VM Storage Administration for information about
DFSMS RECALL.)

A file does not need to be recalled unless you need to access the file data itself (for example, with the
XEDIT command or the DMSOPEN routine with an intent of READ).

Automatic File Movement and Erasure
You should be aware that DFSMS/VM can automatically cause BFS files to be placed in migrated status
(that is, move the file data into its storage repository) or erased at certain predetermined times, without
advance warning, according to your installation's storage management policies. File erasure criteria are
usually related to how long the file has existed, or the length of time since it was last referenced. The
entire file may be erased, or only the data in the file. See z/VM: DFSMS/VM Storage Administration.

Application Design Considerations
When designing your application program to manipulate BFS files and directories, consider the following:

• Use a name definition (namedef) to identify a file or directory to your program.
• Acquire work unit IDs for work units.
• Process file pool requests on behalf of other user IDs.
• Be aware that BFS changes are committed when closed.
• Handle unexpected conditions in your program.

Manipulating BFS Files and Directories

194 z/VM: 7.2 CMS Application Development Guide

Using a Namedef
For any CSL routine that requires a file name and file type, directory identifier, or some combination of
these in its parameter list, you can specify a namedef instead. A namedef is a 1- to 16-character string
that represents either:

• A file name and file type. For a BFS file, this is the system-generated numeric CMS file name and file
type.

• A directory ID. For BFS, this is the name of the byte file system (bfsid), which identifies the top directory
in a BFS file space.

By using namedefs in your parameter lists, you can run a program to process different files and directories
without changing the code and recompiling the program. The file and directory names are defined
externally to the program.

To associate a namedef with the name of a file or directory, you issue a CREATE NAMEDEF command
before running the program. The first character of the namedef must be alphabetic, and the remaining
characters must be alphabetic or numeric. When the program runs, CMS does the operations on the file or
directory that the namedef represents.

You can use namedefs in three different ways depending on the operations that your program is going to
perform.

• If your program uses different files within the same directory, you could use a namedef for the file name
and file type and code the directory name directly in the parameter list. This lets you process different
files in the same byte file system.

• If your program uses the same file name and file type but different directories, code the file name and
file type directly but use a namedef for the directory name. This lets you process separate versions of
the same file that reside in different byte file systems.

• For the most flexibility, use namedefs for the file name and file type and for directory name. In this case,
the program can process any file name and file type in any byte file system.

Because a namedef is resolved at run time, you do not need to have them defined before compiling your
program. If you run a program without defining the namedef, however, the program may fail because the
namedef is not defined.

A namedef continues until the end of the CMS session (or until an abend occurs) unless you change the
definition of the namedef or delete it altogether.

Creating a Namedef
Suppose you code your parameter list using the namedef FNAME for the file name and file type and
DIRNAME for the directory ID. To process the file having a system-generated file ID of 2 0 in byte file
system POOLA:BFS1, the user would have to enter two CREATE NAMEDEF commands before running your
program:

create namedef 2 0 fname
create namedef poola:bfs1 dirname

To change the definition, you would enter a CREATE NAMEDEF command with a REPLACE option. For
example, to change FNAME to refer to file 17 0, you would enter:

create namedef 17 0 fname (replace

See z/VM: CMS Commands and Utilities Reference for details on the CREATE NAMEDEF command.

Deleting a Namedef
To delete the namedef, enter a DELETE NAMEDEF command:

delete namedef fname

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 195

To delete all namedefs you have defined in this CMS session, enter:

delete namedef *

See z/VM: CMS Commands and Utilities Reference for details on the DELETE NAMEDEF command.

Additional Considerations for Directory ID
Many file pool commands and routines that operate on BFS objects require directory identifiers as a part
of their syntax and parameter lists. CMS allows the user or application to let the file pool ID and file space
ID portions of the directory identifier default. For example, in the command CREATE LOCK ., the file
pool ID and file space ID have not been specified. CMS will attempt to fill in the file pool ID and file space
ID values.

If the file pool ID is not specified, the default file pool set with the SET FILEPOOL command is used. A
default file pool for a user can also be specified in the CP directory entry for that user. If neither of these
have been set, the command or routine fails, because the system does not set a default file pool ID. If the
file space ID is not specified, it defaults first to the file space ID set with the SET FILESPACE command,
and then to the user ID calling the routine.

Using Work Units in Application Programs
A work unit identifies related file pool requests. A work unit is identified by a fullword number called a
work unit ID. An application can have many active work units at any given time. Unlike SFS files, where
data can be committed whenever appropriate for your application, changes to BFS files are committed
when the files are closed.

A work unit can be associated with multiple file pool servers or multiple work units can be associated with
one file pool server. In addition, other resource managers can be accessed on the same work unit as SFS.
However, updates to SFS files and BFS files in the same file pool cannot be included on a single work unit.

A work unit can also be associated with a specific file space or user ID by using the DMSGETWU CSL
routine. A service virtual machine with administration authority can issue file pool requests on behalf of
disconnected user IDs, or user IDs that differ from the VM ID of the service virtual machine, and all SFS
authorizations will remain in force.

Using Multiple Work Units in a Program
To achieve greater system performance and throughput, a program should open BFS files or directories at
the last possible moment, and should close the files as soon as possible. By doing so, the program uses
the least amount of file pool server machine resources and helps keep files and directories available for
other users. In addition, multiple work units are required for doing work on both SFS files and BFS files in
the same file pool, as these changes cannot be combined on a single work unit.

For more information about using work units, see “Using Work Units in Application Programs” on page
133.

Committing and Rolling Back Changes in Application Programs
Changes to a BFS file are committed when the file is closed. The changes cannot be committed before
the file is closed, and the file cannot be closed without committing the changes. The COMMIT parameter
is ignored if specified on any CSL routine except DMSCLOSE. Likewise, the NOCOMMIT parameter on the
DMSERASE and DMSCLOSE routines has no effect. However, DMSROLLB can be used to roll back changes
before the file is closed. The recoverability and overwrite attributes of a BFS file are always RECOVER and
NOTINPLACE. These attributes cannot be changed.

Handling Unexpected Conditions
When a program encounters an unexpected condition, it can do one or more of the following:

• Terminate processing

Manipulating BFS Files and Directories

196 z/VM: 7.2 CMS Application Development Guide

• Set a return code
• Issue a message and return code to the user.

Collecting Error Information
The CSL routines that support BFS file and directory manipulation provide three sources of error
information:

• Return codes
• Reason codes
• Workunit extended error information.

The first two sources are required parameters for every routine; the last source is optional.

The return code provides general error information for a routine. The return code is placed in the return
code variable that you provide and in general register 15. (The return code variable is a signed fullword.)
These CSL routines may have one of the following return codes:
0

Normal—the routine completed successfully.
4

Warning—the routine completed, but the result may not be as intended.
8

Error—the routine did not complete.
12

Error—the routine did not complete, and work within the work unit ID was rolled back.

You may also receive return codes from DMSCSL that are negative values. For more information on these
return codes, see the z/VM: CMS Callable Services Reference.

For many conditions where you receive a return code of 8, the state of the work unit stays the same.

Return codes 4, 8, and 12 have reason codes associated with them to further describe the warning or
error condition. The reason code for a routine is placed in the reason code variable that you provide and in
general register 0. (The reason code variable is a signed fullword.) Return code 0 does have an associated
reason code of 0. For a list of the return codes and associated reason codes, see the z/VM: CMS Callable
Services Reference.

Workunit extended error information (wuerror parameter) is an optional source of error information. It
contains additional error information from the file pool. On input, the wuerror parameter is a character
string followed by a length parameter. If you omit it or if the variable has a length field with a value of 0,
only the return code and reason code are returned. The following information is returned by wuerror:

• Length of the wuerror parameter
• Number of file pool error information areas returned
• Total number of errors for which information is available
• One or more groups of file pool error information.

The file pool error information contains information about errors that have occurred. This information
includes: error reason codes, warning reason codes (up to 16 possible), and user ID index. The
DMSWUERR routine converts the wuerror output to data placed in individual variables. The WUERROR
and FPERROR macros let routines map into the work unit (WUERROR) and file pool (FPERROR) data
areas. For more information, see the z/VM: CMS Callable Services Reference and the z/VM: CMS Macros
and Functions Reference.

BFS File I/O
This section describes how to use CMS record file system CSL routines to manage BFS files. The routines
that let you manage files are collectively known as File I/O routines. The File I/O routines that you can use
for BFS files are listed in Table 21 on page 198.

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 197

Note: You cannot create new BFS files using this interface. You can manipulate only existing BFS files.
BFS files can be created only through the OpenExtensions interface.

Table 21. CMS Record File System CSL Routines for BFS File I/O

CSL Call CSL Function Description

DMSCLOSE Close Closes a file (logically disconnects an application program from a specific
file).

DMSCLDBK Close Blocks Closes a file for reading and writing data blocks (logically disconnects an
application program from a specific file).

DMSERASE Erase Erases files.

DMSEXIFI Exist - File Checks if a file exists and returns the file information in variables.

DMSEXIST Exist Checks if a file (or directory) exists and returns the file information in a
buffer.

DMSOPDBK Open Data Blocks Opens a file for reading and writing file data blocks (logically connects an
application program to a specific file).

DMSOPEN Open Opens a file (logically connects an application program to a specific file).

DMSPOINT Point Alters the read and write record pointers in a file opened by DMSOPEN.

DMSRDDBK Read Data Blocks Reads one or more file data blocks.

DMSREAD Read Reads one or more records from a file.

DMSROLLB Rollback Rolls back changes to an open file.

DMSVALDT Validate Checks the validity of a file identifier.

DMSWRDBK Write Data Blocks Writes one or more file data blocks.

DMSWRITE Write Writes one or more records to a file.

Determining If a BFS File Exists
To determine if a BFS file exists and get the status of the file, you can use the DMSEXIFI or DMSEXIST
routine. However, if you plan to read or write to the file and share the file with other users, you should not
bother with determining if the file exists. You should begin file I/O by opening the file with an intent other
than READ. This ensures that no other users could erase or revoke the file before you get a chance to open
the file. Once you have the file opened, other users cannot erase the file.

DMSEXIFI returns file information in variables. If the file does not exist or you are not authorized to read
from the directory, DMSEXIFI returns a return code of 8 and a reason code of 30000 or 44000. If the file
does exist, DMSEXIFI returns a return code of 0 and places the file information in the variables that you
provide. Check the authority information passed back to make sure you have the correct authority.

DMSEXIST returns file information in a specified buffer. If the file does not exist or you are not authorized
to read from the directory, DMSEXIST returns a return code of 8 and a reason code of 90220. If the file
does exist, DMSEXIST returns a return code of 0 and places the file information in the specified buffer.
Check the authority information passed back to make sure you have the correct authority.

You can map the output with the EXSBUFF assembler mapping macro. For more information on EXSBUFF,
see the z/VM: CMS Macros and Functions Reference.

Opening BFS Files
To open a BFS file (that is, establish a logical connection to the file for subsequent reading or writing
of records, or both), use the DMSOPEN routine. When you use DMSOPEN, you specify an intent to

Manipulating BFS Files and Directories

198 z/VM: 7.2 CMS Application Development Guide

indicate the type of operation that you are performing. You can also specify the type of I/O that you want
performed.

You indicate the intent by specifying one of the following parameters:

• READ means that the file will only be read. You cannot open a file with READ if it does not exist.
• REPLACE indicates that if the file exists, you will replace it with only the added records. You cannot

open a file with REPLACE if it does not exist. When you have opened a file for replace, you can read only
records that you have written. Attempting to read records before writing any results in an end-of-file
condition (return code = 4).

When a file is replaced, the old version of the file is shadowed by the SFS server. If no records are
written to the file or you do not want to actually replace it, this operation can be rolled back later on.

You can indicate the type of I/O by specifying one of the following parameters:

• CACHE should be specified when the caller intends to read the data sequentially most of the time.
Specifying this parameter causes the file system to cache several data blocks for the file, performing I/O
only when the cache buffer is full (for writing) or empty (for reading). This generally reduces the number
of separate I/O operations performed on the file.

• NOCACHE should be specified when the caller intends to read the data in random order most of the
time.

If you do not specify CACHE or NOCACHE, the system chooses a method that it considers appropriate.

A BFS file always has attributes of RECOVER (meaning uncommitted changes are backed out as the result
of a system initiated rollback) and NOTINPLACE (meaning the reader sees a consistent version of the file
from open to close).

When you open a file, CMS passes a token back to your program. The token is an 8-byte field that
identifies the file. You will pass this token on to other routines for reading, writing, and closing the same
file.

After a file is open, you may need to determine certain attributes of the file, such as the number of
records in the file, or the date and time the file was last modified. You can use the extract function of
the DMSERP routine to obtain this type of information. See the z/VM: CMS Callable Services Reference for
more information on DMSERP and the extract functions that are available.

Reading and Writing BFS Files
Use the DMSREAD and DMSWRITE routines to read and write BFS files in the same manner as CMS record
files. For more information, see “Reading and Writing Files” on page 154.

Closing BFS Files
Use the DMSCLOSE routine to close BFS files previously opened with DMSOPEN. When a BFS file is
closed, all changes are committed, even if you specify NOCOMMIT.

Erasing BFS Files
Use the DMSERASE routine to delete a BFS file. If the ENTIRE parameter is used (the default), the file and
all links are erased. If the DATAONLY parameter is specified, only the contents of the file are deleted; the
links remain.

Note: In BFS, a link is a new path name to an existing file, similar in concept to an SFS alias. For more
information about BFS links, see the z/VM: OpenExtensions User's Guide.

You cannot erase a BFS file if:

• The file is not a BFS regular file.
• The file is open.
• The file is locked by another user.

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 199

• You are not a file pool administrator.

Data Block I/O
The data block interface can be used to transfer data to and from BFS files. For more information, see
“Data Block I/O” on page 163. Note that data being transferred to a BFS file must have a logical record
length of 1, and that data transferred from a BFS file has a logical record length of 1.

BFS Directory I/O
This section describes how to use the CMS record file system CSL routines to manage BFS top directories.
The CSL routines you can use for BFS directory I/O are listed in Table 22 on page 200.

Note: You cannot create new BFS directories using this interface. You can manipulate only existing BFS
directories. BFS directories can be created only by the OpenExtensions interface.

Table 22. CMS Record File System Routines for BFS Directory I/O

CSL Call CSL Function Description

DMSCLDIR Close Directory Logically disconnects an application program from a specific
directory.

DMSEXIDI Exist - Directory Checks for an existing directory and returns the directory
information in variables.

DMSEXIST Exist Checks for an existing directory (or file) and returns the
directory information in a buffer.

DMSGETDD Get Directory - Dir Reads one or more directory records into variables when a
directory has been opened with an intent of DIR.

DMSGETDI Get Directory Reads one or more directory records into a buffer.

DMSGETDK Get Directory - Lock Reads one or more directory records into variables when a
directory has been opened with an intent of LOCK.

DMSGETDL Get Directory - Alias Reads one or more directory records into variables when a
directory has been opened with an intent of ALIAS.

DMSOPDIR Open Directory Logically connects an application program to a specific
directory for subsequent reading.

Here are some of the tasks you can perform on BFS directories:

• Determine if the directory exists — You can use the DMSEXIST or DMSEXIDI routines to determine
whether the directory you want to work with exists. You may want to skip this step and just open the
directory, because the status of the directory could change from the time you determine its existence to
the time you actually open it.

• Open a directory to read it — Use the DMSOPDIR routine to logically connect your program to a specific
directory. You can open the directory more than once.

• Read directory records — The Get Directory routines allow you to scan files by reading records in the
directory (previously opened using DMSOPDIR). You can also scan for lock information. These routines
allow you to get the system-generated CMS file names for BFS files.

• Close a directory — The DMSCLDIR routine logically disconnects your application program from a
specific directory (previously opened using DMSOPDIR).

Opening BFS Directories
You can determine the existence of a BFS directory by using the DMSEXIDI or DMSEXIST routine.
However, as with SFS directories (see “Determining If an SFS Directory Exists” on page 167), it is probably

Manipulating BFS Files and Directories

200 z/VM: 7.2 CMS Application Development Guide

better to begin directory I/O by opening the directory using the DMSOPDIR routine. You specify an
intent on DMSOPDIR to indicate the type of operation that you will perform. This determines the type of
information that will be available on subsequent Get Directory routines. Intents of FILEEXT, LOCK, DIR,
and ALIAS are permitted.

Note: The DIR and ALIAS intents do not perform any useful function for BFS. They are supported only for
compatibility with existing programs that use these intents.

FILEEXT: With this intent, you must specify a file name and file type (system-generated values or
asterisks) or a namedef. Information returned from later DMSGETDI and DMSGETDX calls includes:

• Type of open = 8 (FILEEXT)
• File space type = 1 (BFS)
• File ID = system-generated file name and file type
• File mode number = 1
• Record format = F (fixed)
• Recoverability attribute = 1 (RECOVER)
• Overwrite attribute = 0 (NOTINPLACE)
• Logical record length = 1 (1 byte)
• Number of blocks
• Number of records = number of bytes in the file or -1 (for greater than 231-1 bytes)
• Date of last update
• Time of last update
• Directory attribute = 0 (BFS top directory)
• DFSMS/VM migrated status indicator
• User ID of the owner = name of the BFS file space
• Creation time
• Status = 1 (BFS regular file)
• Authority
• Date of last reference
• Creation date
• Maximum blocks used for the file
• Data blocks used for the file
• System blocks = number of additional blocks generated by the system
• DFSMS/VM related attributes
• Unique ID
• Last change date
• Last change time.

For the exact output format for an intent of FILEEXT, see the DMSGETDI or DMSGETDX routine in the
z/VM: CMS Callable Services Reference.

LOCK: With this intent, specifying a file name and file type (system-generated values or asterisks) or a
namedef is optional. Information returned from later DMSGETDI and DMSGETDK calls includes:

• Type of open = 6 (LOCK)
• File space type = 1 (BFS)
• File ID = system-generated file name and file type
• File mode number = 1
• Status = 1 (BFS regular file)

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 201

• Lock type = 2 (exclusive)
• Lock length = 1 (session) or 2 (lasting)
• Lock user ID
• Directory attribute = 0 (BFS top directory)
• DFSMS/VM migrated status indicator.

For the exact output format for an intent of LOCK, see the DMSGETDI or DMSGETDK routine in the z/VM:
CMS Callable Services Reference.

DIR: This intent is supported for compatibility with existing programs that use this intent. Only a BFS
top directory name or a namedef can be specified. Information about BFS subdirectories is not returned.
Information returned from later DMSGETDI and DMSGETDD calls consists of:

• Type of open = 7 (DIR)
• Directory length
• Directory name
• Directory attribute = 0 (BFS top directory).

For the exact output format for an intent of DIR, see the DMSGETDI routine in the z/VM: CMS Callable
Services Reference.

ALIAS: This intent is supported for compatibility with existing programs that use this intent. BFS files
do not have aliases. A file name and file type (system-generated values or asterisks) or a namedef can
be specified. The information returned on later DMSGETDI calls indicates that the specified file has no
aliases.

For the exact output format for an intent of ALIAS, see the DMSGETDI routine in the z/VM: CMS Callable
Services Reference.

Reading BFS Directories
Once the directory is open, use the Get Directory routines to read one or more records:

• Use DMSGETDI to return the information in a buffer.
• Use DMSGETDD to return the information in variables if you opened the directory with an intent of DIR.
• Use DMSGETDX to return the information in variables if you opened the directory with an intent of

FILEXT.
• Use DMSGETDK to return the information in variables if you opened the directory with an intent of LOCK.

For more information, see “Reading Directories” on page 170.

Closing BFS Directories
Use the DMSCLDIR routine to close a directory that was previously opened using DMSOPDIR. Closing a
directory logically disconnects your program from the directory so that you can no longer read records in
it. You identify the directory by passing the token returned from DMSOPDIR.

Erasing BFS Directories
You cannot use the DMSERASE routine to erase a BFS directory. If you really want to erase the directory
(remove the byte file system from the file pool), use the DMSDEUSR (Delete File Space) routine.

Locking BFS Files
This section describes how file pool locking applies to the BFS files stored in file pools. The following
routines provide file locking:

Manipulating BFS Files and Directories

202 z/VM: 7.2 CMS Application Development Guide

CSL Call Function Description

DMSCRLOC Create Lock Creates an explicit lock on a file.

DMSDELOC Delete Lock Deletes an explicit lock on a file.

Note: You cannot use DMSCRLOC to lock a BFS top directory. To lock an entire byte file system, use the
DMSDISFS routine to disable the BFS file space.

When more than one person can write to a file, there must be some way to ensure that two people do not
update the same file at the same time. The file pool locking mechanism provides as much concurrency
as possible. To prevent simultaneous updates, the file pool server uses a locking scheme composed of
implicit and explicit locks.

An implicit lock is one that the server acquires and releases automatically. Whenever someone has a file
open, the server internally associates an implicit lock with that object. If someone else tries to read or
write to that file, the server first checks whether the file is locked before allowing access. An explicit lock
is one that you create by issuing a CMS command or routine that forces a file to be locked.

Locks have two important characteristics: duration and type. The lock duration is the length of time the
lock is to exist. The lock type determines whether others can share the file during the time it is locked.

Implicit Locking
Implicit locks are automatically acquired by the server to ensure data integrity among multiple users. To
allow greatest concurrency, the server acquires locks only when needed and frees them as soon as it
can. The lock duration is the length of a server unit of work, which is, for example, from the time a file is
opened until it is closed and any changes are committed. Maintaining the implicit lock eliminates the need
to obtain an explicit lock each time a file is updated.

Internally, the server uses several different lock types. For the purposes of this discussion, however, it is
best to think of implicit locks as having only two types:
SHARE

An implicit share lock permits multiple readers of a file. The server acquires an implicit share lock
when a user opens a file for read. When a file is implicitly share locked, other users can implicitly lock
the file as share or exclusive.

EXCLUSIVE
An implicit exclusive lock permits only one writer of a file. The server acquires an implicit exclusive
lock when a user opens a file for anything other than read. When a file is implicitly exclusive locked,
other users can implicitly lock the file as share, but they cannot implicitly lock the file as exclusive.

The lock type and duration for implicit locks depends on the operation you ask the server to perform.
For instance, the server gets different locks for a replace request (DMSOPEN routine with the REPLACE
parameter) than it does for an erase request (DMSERASE). Some locks can be freed when the operation
completes, while other locks must be held until the work unit in which the operation occurs is committed.
In any case, all implicit locks acquired during a work unit are freed when the work unit is rolled back.
Explicit locks, which we will be discussing next, can last beyond the work unit (even if there is a rollback).

When you try to update a file that is locked with an implicit exclusive lock, your request is rejected. If you
made the request in a program, your program receives a return code of 8. If you made the request by
issuing a CMS command, the command fails.

Explicit Locking
When you let the file pool server automatically lock and unlock your BFS files, the implicit lock on a file
remains in effect until the file is closed and the changes have been committed. If you want a lock to
remain in effect longer than this, you must explicitly lock the file by entering a CREATE LOCK command
before running your program or by calling the DMSCRLOC (Create Lock) routine within your program. This
section discusses using the DMSCRLOC routine. For more information on the CREATE LOCK command, see
the z/VM: CMS User's Guide and the z/VM: CMS Commands and Utilities Reference.

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 203

The DMSCRLOC routine allows you to explicitly lock a BFS file. Explicit locks are sometimes called
check-out locks because you are checking out a file just as you would check out a book at a library. With
the DMSCRLOC routine you can specify both the duration of the lock and the type of lock.

You can specify the following types of explicit locks for BFS files:
EXCLUSIVE

An explicit exclusive lock type means there can be only one person accessing the file at a given time.
If you create an exclusive lock, you are the only person that can read or write the file. It also prevents
other users from getting any locks on the file. To obtain an exclusive lock, there cannot be any other
types of locks on the file.

UPDATE
An explicit update lock type has the same effect as an explicit exclusive lock.

The duration of the lock can be:
SESSION

An explicit session lock lasts until the end of the CMS session, or until it is specifically deleted (with
the DELETE LOCK command or DMSDELOC routine), or until all user machine connections to the file
pool are broken (for example, with the DMSPURWU routine).

LASTING
An explicit lasting lock lasts until it is deleted with the DELETE LOCK command or DMSDELOC routine.
The lock lasts across CMS sessions and logon sessions. For example, if you create a LASTING lock on
a file and then log off, the file is still locked even though you are not logged on.

You should use explicit locks whenever you want to control the activity on your files without revoking
permissions. If, for example, you are rewriting a document that everyone has access to, and you do not
want anyone to see the new draft until it is complete, you might create lasting exclusive locks on the
document's files.

To request a lock, all activity in the affected file pool for the work unit must be committed. If there is any
outstanding work on the file pool, the request fails.

Relationships between Locks
Table 23 on page 204 depicts the relationships between the various locks on BFS objects. Remember the
following rules when considering locks:

• Implicit locks are acquired by the file pool server.
• Explicit locks are acquired by users (or by some CMS commands like XEDIT or SET LANGUAGE).
• An explicit exclusive lock has no readers and one writer.
• To obtain any type of lock, there cannot be any other types of locks on the file or directory.

Table 23. Results of Interactions between Accessing and Locking BFS Objects

when you try to

Read Write Create an Exclusive
Lock

If someone is
reading OK OK fail/wait

writing OK fail/wait fail/wait

If someone has
already created an exclusive lock fail fail fail

Manipulating BFS Files and Directories

204 z/VM: 7.2 CMS Application Development Guide

Table 23. Results of Interactions between Accessing and Locking BFS Objects (continued)

when you try to

Read Write Create an Exclusive
Lock

Legend:
OK

Done immediately.
fail

Operation fails or program receives an error code.
fail/wait

Indicates action with FILEWAIT ON or OFF, which applies only to implicit locks. See z/VM: CMS Commands
and Utilities Reference for information on the SET FILEWAIT command.

Table 24 on page 205 shows the interactions between implicit locks when the same BFS object is
accessed from both the OpenExtensions interface and the CMS record file system interface.

For example, if a user is using the OpenExtensions interface to read or write a BFS object, CMS record file
system users cannot get write access to the object. If a user is using the CMS record file system interface
to write a BFS object, OpenExtensions users are denied both read and write access to the object.

Note: The interactions shown in Table 23 on page 204 and Table 24 on page 205 do not apply to CMS
objects defined in BFS by external links. In that case, the interactions shown in Table 16 on page 179
apply.

Table 24. Lock Interactions between the OpenExtensions and CMS Interfaces

when you try to access the object from

OE CMS

and someone already has the
object accessed from Read Write Read Write

OE
Read OK OK OK fail

Write OK OK OK fail

CMS
Read OK OK OK OK

Write fail fail OK fail

Legend:
OE

OpenExtensions interface.
CMS

CMS record file system interface.
OK

Operation is done.
fail

Operation fails or program receives an error code.

Deleting Locks
The DMSDELOC (Delete Lock) routine releases an explicit lock on a file that was created with the CREATE
LOCK command or DMSCRLOC routine. Only the creator of the lock or a file pool administrator can delete
it.

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 205

To delete a lock, all activity in the affected file pool for the work unit must be committed. If there is
any outstanding activity, the request fails. If you want to delete a lock in an active file pool, you can use
another work unit. For example, say there is an open file in file pool A, which is active in the default work
unit, and you want to delete the lock on that file. You can call DMSGETWU to get another work unit ID and
then call DMSDELOC (on the new work unit ID) to delete the lock in file pool A.

Waiting for Locks
If your request fails because the file is locked, you should wait until the file is not locked and reissue the
request. A program that fails because of lock conflicts should be rerun when the files it needs are not
locked.

If you do not care how long you might wait for a response to a request, and if you are being rejected
because you are the second writer, you can tell the server to wait for the file to become unlocked rather
than reject the request. To do this, you issue a SET FILEWAIT ON command. However, this can help only if
the files are locked implicitly.

This is useful, for example, at the end of the day, when you might start a program, disconnect your virtual
machine, and then go home. It is not a good idea to submit a job to the batch machine that issues a
SET FILEWAIT ON command. While your program is waiting, so are all the other programs in the batch
machine queue.

Because most CMS commands issued from a terminal form a single logical unit of work, the implicit lock
is usually not held for a long time. In application programs, however, you have control over the committing
of work units and can cause implicit locks to be held for a long time.

Deadlocks
In any system that manages shared resources, it is possible for deadlocks to occur. A deadlock is a
standstill that is reached when two or more users are each waiting for a resource that the other holds.

In a CMS file pool, it is possible for deadlocks to occur only for implicit locks. Because the file pool
server never waits for an explicitly locked object, even if FILEWAIT is ON, there cannot be a deadlock that
involves any previously explicitly locked object—the server would have already terminated the request.

A deadlock would occur if USERA's program holds a lock on FILEA while waiting for a lock on FILEB.
Meanwhile, USERB holds a lock on FILEB while waiting for a lock on FILEA. All the locks are implicit locks,
obtained, perhaps, by opening a file for write. USERA is waiting for USERB, while USERB is waiting for
USERA. If nothing was done, both USERA and USERB would wait forever.

Or, suppose user USERA's program holds an implicit lock on FILEA while waiting for an explicit lock on
FILEB. Meanwhile, user USERB holds an implicit lock on FILEB while waiting for an explicit lock on FILEA,
and both USERA and USERB have SET FILEWAIT ON. USERA is waiting for USERB, while USERB is waiting
for USERA. This also would cause a deadlock to occur. If nothing was done, both USERA and USERB would
wait forever.

The file pool server detects these situations when the deadlock is contained within a single file pool. The
server resolves them by rolling back the youngest logical unit of work (the one that started most recently).
The server will roll back the logical unit of work even if that user had entered SET FILEWAIT ON.

If you forget what locks you have created on your files, issue the QUERY LOCK command. The QUERY
LOCK command also displays the locks created on your file by other users to whom you have granted
read or write authority. You can also use the DMSOPDIR (Open Directory) routine with DMSGETDI (Get
Directory) or DMSGETDK (Get Directory - Lock).

Using File Pool Space for BFS Files
Before you can create a BFS file in a file pool, the byte file system must be enrolled in that file pool and
assigned an allocation of space, thereby creating a BFS file space. To create a BFS file space, you must
have permission to connect to the file pool and you must be a file pool administrator.

Manipulating BFS Files and Directories

206 z/VM: 7.2 CMS Application Development Guide

Directories are in a separate system-owned file space. Therefore, your directory entries do not take up
any of the BFS file space. The file pool catalog, within the system-owned space, contains information
about the BFS files and directories that exist in the file pool, such as who owns them and who is permitted
to look at them.

The file space usage threshold for a BFS file space is always 100% (and cannot be changed), so threshold
warnings are not given.

File Pool Restart Recovery
Not all sudden failures of your computer system cause a data loss. When a file pool server is started,
it determines whether anyone was making changes when it last ended. That is, the server tries to find
unfinished work. If it does, it automatically rolls back any uncommitted changes. By doing this, the server
automatically recovers from almost all system failures. However, BFS does not participate in Coordinated
Resource Recovery (CRR).

File Pool User Synchronization
The file pool server synchronizes files to allow concurrent access to a file by multiple people. Multiple
readers are allowed to a single file, along with one writer. Writers can always see the changes they are
making. That is, they can read records they have just written without closing and reopening the file.
Readers see changes when they close and reopen the file.

Within the file pool server, there are implicit waits. For example, if a user attempts to open a file for write
which is already open for write by another user, and the SET FILEWAIT command was issued with ON,
the server waits until the file is closed and committed. If SET FILEWAIT is OFF (the default), there is a
rejection of requests instead of waiting on an implicit lock. No waiting ever occurs on a collision with an
explicit lock. For example, if a user attempts to open a file for write that has an explicit share lock on it,
the request is rejected, regardless of the FILEWAIT setting.

Asynchronous Requests
Asynchronous requests from applications for BFS files and directories are handled in the same manner as
for SFS. See “Asynchronous Requests” on page 187.

Manipulating BFS Files and Directories

Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines 207

Manipulating BFS Files and Directories

208 z/VM: 7.2 CMS Application Development Guide

Chapter 14. Extracting and Replacing System
Information

The Extract/Replace facility is a callable service in the Callable Services Library (CSL). The Extract/
Replace facility allows application programs to obtain or modify selected system information. The benefit
of using Extract/Replace is that it locates the data and returns it to the program without your program
being aware of the version of VM, changes in the location of data, or where the data actually resides. The
Extract/Replace facility eliminates most CMS control block dependencies.

The Extract/Replace facility can:

• Extract and change data in common control blocks (for example, in NUCON).
• Use search arguments to narrow a search when extracting or replacing data, where multiple instances

of that data may exist (for example, information dealing with files, devices, or accessed disks).
• Continue a search through the data looking for the next instance of data that meets the search criteria.
• Change search arguments in the middle of a search loop.
• Return to a specific point in a search loop to extract or replace additional data relating to the original

data.
• Set up protected Extract/Replace environments.

This chapter describes:

• How to use the DMSERP CSL routine to extract and replace information.
• An example of a REXX exec using the CSL DMSERP routine. For examples of using the DMSERP routine

from high-level language applications, see Appendix E, “PL/I Example,” on page 543, Appendix C,
“COBOL Examples,” on page 533, Appendix D, “FORTRAN Examples,” on page 537, Appendix G, “VS
Pascal Example,” on page 549, and Appendix B, “C Example,” on page 531.

Using the Extract/Replace Routine
Application programs may need system data that can exist in one place in system storage (single
occurrence of data) or it may exist in more than one place (multiple occurrences of data). No matter
where or how many places the system information exists, an application can use the CSL Extract/Replace
routine, DMSERP, to find the information.

DMSERP has these functions:

• GETENV—set up an Extract/Replace environment that is protected against accidental alteration.
• EXTRACT and EXT:envir—obtain selected system information
• REPLACE and REP:envir—modify selected system information
• RESET and RES:envir—initialize an Extract/Replace environment.

For reference information on the DMSERP routine, see the z/VM: CMS Callable Services Reference.

Using a Protected Environment
The EXTRACT, REPLACE, and RESET functions of DMSERP operate in the Extract/Replace general
environment. All programs have access to this environment and can change data and even reset the
environment while another program is using it.

For instance, PROGA could be using tokens to locate information it has found before. If PROGB begins
its use of the Extract/Replace facility with a call to the RESET function, all of PROGA’s tokens are lost. To
avoid this, PROGA can set up a protected environment by making its first DMSERP call for the GETENV
function. GETENV returns a unique environment ID. PROGB cannot issue Extract/Replace requests in this

Extracting and Replacing System Information

© Copyright IBM Corp. 1990, 2022 209

protected environment unless it has the environment ID. The protected environment lasts until the virtual
machine is IPLed or the RES:envir function is used.

To set up a protected environment, a program:

1. Uses the GETENV function of DMSERP. DMSERP returns a four-character environment ID (envir) in the
buffer.

2. Uses the EXT:envir, REP:envir, and RES:envir functions to extract information, replace information, and
reset the environment.

Note: The examples in this book of using DMSERP’s EXTRACT and REPLACE functions also apply to the
EXT:envir and REP:envir functions in a protected environment.

However, an initial call to RESET cannot be replaced by a call to RES:envir. To initialize a protected
environment, use GETENV. RES:envir reinitializes the environment ID and returns the environment to the
system. See “Calling the Extract/Replace Routine from a REXX Program” on page 214 for an example of a
REXX program that sets up and uses a protected environment.

Extracting System Information
Use the EXTRACT function of the DMSERP routine to obtain system information. For example, suppose
you want to know the storage size of the virtual machine your program will be running in, because your
program may not be able to finish normally if the storage size is too small.

If you did not use the Extract/Replace facility, your program would contain code to look in system storage
at the location where the virtual storage size information is stored. Problems could occur whenever a new
version of VM is used because the storage size information may be in a different location. Your program
would then have to be recompiled, or even rewritten, to work on the new version of VM.

If you use the Extract/Replace facility, the portion of program code that looked for the virtual storage
size is no longer provided by the application programmer. Your program would only have to call DMSERP
and initialize some variables. DMSERP locates the data and returns it to the program while handling any
possible changes in the information location. The application program itself does not need to rely on the
location of certain data.

Ways of Searching for Data
DMSERP searches for the system information in different ways. You can call DMSERP without any search
arguments, using search arguments, using a continued search, or using tokens.

Calling DMSERP without Any Search Arguments
The virtual machine size scenario is an example of a single occurrence of data. Your virtual machine can
only be one size at one time; therefore, the storage size information is found in system storage at only one
location.

The following REXX exec uses the DMSERP routine, without any search arguments, to extract the storage
size of your virtual machine:

/* Use DMSERP to extract storage information without
 any search arguments. */

address 'COMMAND'

retcode = 0
size = 0
datatype = 0
len = 4
token = 0

call csl '"DMSERP" retcode "EXTRACT" 0 "VIRTUAL_MEMORY_SIZE"',
 'size datatype len "00000000" "OR" token'

if retcode=0 then do /* Check if Extract/Replace was successful */

 /* NOTE: The storage size is being returned as a binary */

Extracting and Replacing System Information

210 z/VM: 7.2 CMS Application Development Guide

 /* value. This value is being converted to REXX character */
 /* format using the C2D built-in function. */

 size = C2D(left(size,len))%1024
 msize = size%1024
 say 'Storage size = 'size'K ('msize'M).'
end

In this example, retcode, buffer, datatype, buflen, and token are output variables that are filled in by the
DMSERP routine. Numargs is an input variable. See “Calling the Extract/Replace Routine from a REXX
Program” on page 214 for information about converting character data (the C2D function). See the z/VM:
CMS Callable Services Reference for a description of the parameters of the DMSERP routine.

Calling DMSERP Using Search Arguments
The Extract/Replace routine uses search arguments to search for system information located in more than
one place in system storage, such as the status and the access mode of a minidisk.

On each call to DMSERP, you can specify up to ten of these search arguments. DMSERP returns the
information matching the search criteria. By combining search arguments, you can define your search to
be as broad or narrow as necessary.

See z/VM: CMS Callable Services Reference for details on the search arguments of the DMSERP routine.

Example
Here is an example of multiple occurrences of data. Your virtual machine could have several minidisks
attached to it. The access mode information for each of these minidisks is found in system storage at
individual locations.

Suppose your application wants to store a file it created. Your application can only store the file on a
read/write minidisk, and your virtual machine may have access to more than one read/write minidisk.
Therefore, your program has two factors to consider:

• Determine the file modes of the accessed disks
• Determine which disks are accessed as read/write.

You can use DMSERP to search for these items. Your application would call DMSERP asking for the file
mode and, by passing the appropriate search argument criteria, indicate that the minidisk must be read/
write. Extract/Replace starts at the beginning of the minidisk information and keeps searching until it
finds a read/write minidisk or it runs out of minidisk information.

The following REXX program calls DMSERP to obtain the access mode of the first accessed read/write
disk:

/* Extract the access mode of the first read/write disk. */

address 'COMMAND'
retcode = 0
call csl '"DMSERP" retcode "RESET"' /* Reset EXTRACT/REPLACE */

/* Extract the file mode of the first read/write disk. */

mode = 0 /* INOUT type parameters need to have initial values */
len = 1 /* This is because REPLACE shares parameter definition */
token = 0 /* with EXTRACT and the REXX/CSL interface therefore */
datatype = 0 /* cannot determine the data direction. */

call csl '"DMSERP" retcode "EXTRACT" 1 "ACCESS_MODE"',
 'mode datatype len "00000000" "OR" token',
 '"CMS_READ_WRITE_DISK" 1 9 1 "EQ"'

if retcode=0 then do /* Check if Extract/Replace was successful */
 mode = left(mode,len) /* Set access mode in a variable */
 say 'The access mode of the first read/write disk is' mode'.'
end

Extracting and Replacing System Information

Chapter 14. Extracting and Replacing System Information 211

Calling DMSERP Using Continued Searches
If you want to locate multiple occurrences of data, DMSERP allows your application to continue to
search through the system information using the same search arguments previously set in the application
without having to go through the entire search process again. A setting on the flags parameter of the
DMSERP routine sets this continue search feature on.

See z/VM: CMS Callable Services Reference for information on the flags parameter of the DMSERP routine.

The preceding example locates the access mode of the first read/write disk accessed. By using the
continued search setting on the flags parameter, your application can easily extract the access modes
of all the read/write disks. See “Calling the Extract/Replace Routine from a REXX Program” on page 214
for a REXX program using the continued search feature of the DMSERP routine. Assuming that there is
another minidisk that meets the search criteria, the Extract/Replace routine passes back the file mode of
the next read/write minidisk for your program to use.

You may also change search arguments while doing a continuous search. For example, you may want
your program to store the file on the first read/write minidisk after the disk accessed as A, as long as
the minidisk is not accessed as C. The initial call to Extract/Replace would contain one search argument
indicating a read/write minidisk. After Extract/Replace finds the minidisk with file mode equal to A, you
can call Extract/Replace again using the continue search feature and change search argument features. In
this second call, there are two search arguments, one indicating the disk must be the read/write and the
other indicating that the file mode cannot be C.

Calling DMSERP Using Tokens
DMSERP also uses tokens to search for information. You can think of tokens as addresses (or indexes)
telling Extract/Replace to look in a specific place to find information. Tokens are returned to your program
every time you extract information where multiple occurrences of that information may exist.

For example, suppose your program has successfully called Extract/Replace and obtained the information
pertaining to the file mode of a minidisk. Now, you want to find out how many files are currently on that
minidisk. One method is to call Extract/Replace with the exact same search arguments, but this time
ask for the number of files instead of the file mode information. This would cause Extract/Replace to go
through its entire search argument process again.

However, because Extract/Replace has already found the location of the information concerning the
minidisks, your program has already been passed a token representing this location. You need only
call Extract/Replace asking for the number of files and passing the token representing the location. A
setting of the flags parameter of the DMSERP routine signals DMSERP that a token is being passed.
Extract/Replace can now locate the information and obtain the information without going through the
entire search process again.

See z/VM: CMS Callable Services Reference for information on the flags parameter of the DMSERP routine.

Changing System Information
You can also use the Extract/Replace routine to change system information. The REPLACE function of the
Extract/Replace routine makes use of all the concepts mentioned earlier in this discussion: single and
multiple occurrences of data, search arguments, continued searches, changes to search arguments, and
tokens. The difference is in the use of the system information. When extracting information, the result of
the call to DMSERP provides your application with the system information you requested. When replacing
information, your application provides the new information in the call to DMSERP. The result of the call
changes the specified system information.

Example 1: This is an example describing a situation when you would use DMSERP with the REPLACE
function. Suppose you want to provide the address of a special routine that would be called each time the
system reader received a device interrupt. Without using the Extract/Replace routine, you would have to
locate the information dealing with the system reader and continually change the address of the special
interrupt routine. Because there is information in the system dealing with many devices (disks, tapes,
printers), the code needed to find this system reader information could get quite complex.

Extracting and Replacing System Information

212 z/VM: 7.2 CMS Application Development Guide

Using the Extract/Replace routine with the REPLACE function and search arguments, your application can
look for information dealing with the reader. You provide the address of the new special routine to replace
the old one and Extract/Replace changes the current address with the new address.

Example 2: This is an example of a REXX exec that calls the DMSERP routine with the REPLACE function.

There are two formats of the CMS Ready message—with the time of day displayed or without the time of
day displayed. You can use the DMSERP routine with the REPLACE function to set the format of the CMS
Ready message.

The following exec, called REPLACE1 EXEC, sets the format of the CMS Ready message so the time of day
is not displayed.

/* Replaces the time of day setting on the CMS Ready message
 The time of day WILL NOT be displayed after invoking this exec. */

address 'COMMAND'

retcode = 0
No_Time = '1' /* Information you want replaced; that is, the */
 /* information you input to the DMSERP routine. */
 /* This parameter sets the format of the CMS */
 /* Ready message. The value '1' indicates that */
 /* the time will not be displayed. */

datatype = 9 /* Type of data... 9 means 'Indicator'... the */
 /* data replaced is either a 1 or 0. */

len = 1 /* Length, in bytes, of passed data (No_Time) */

token = 0 /* Used to find or replace additional data */
 /* associated with data replaced or extracted */
 /* on a prior call. Not used in this example. */

call csl '"DMSERP" retcode "REPLACE" 0 "NO_TIME"',
 'No_Time datatype len "00000000" "OR" token'

exit retcode

After invoking this exec, the time of day setting will not be displayed on the CMS Ready message. The CMS
Ready message appears as follows:

Ready;

The following exec, called REPLACE0 EXEC, sets the format of the CMS Ready message so the time of day
is displayed:

/* Replaces the time of day setting on the CMS Ready message
 The time of day WILL be displayed after invoking this exec. */

address 'COMMAND'

retcode = 0
No_Time = '0' /* Information you want replaced; that is, the */
 /* information you input to the DMSERP routine. */
 /* This parameter sets the format of the CMS */
 /* Ready message. The value '0' indicates that */
 /* the time will be displayed. */

datatype = 9 /* Type of data... 9 means 'Indicator'... the */
 /* data replaced is either a 1 or 0. */

len = 1 /* Length, in bytes, of passed data (No_Time) */

token = 0 /* Used to find or replace additional data */
 /* associated with data replaced or extracted */
 /* on a prior call. Not used in this example. */

call csl '"DMSERP" retcode "REPLACE" 0 "NO_TIME"',
 'No_Time datatype len "00000000" "OR" token'

exit retcode

Extracting and Replacing System Information

Chapter 14. Extracting and Replacing System Information 213

After this exec has run, the time of day is displayed in the CMS Ready message:

Ready; T=0.02/0.03 14:21:29

Calling the Extract/Replace Routine from a REXX Program
When calling Extract/Replace from a REXX program, your program needs to convert numeric data where
necessary. This is necessary only for Extract/Replace. The C2D and D2C REXX built-in functions convert
character format data to numeric format and back. See z/VM: REXX/VM Reference for details on the C2D
and D2C built-in functions.

A typical program flow is:

1. Call DMSERP routine to get the data you want.
2. Check value in the datatyp parameter to determine the data type of the extracted data.
3. If the data type indicates character data or indicator data (bit), the data can be used directly.
4. If the data type indicates numeric data, the data must be converted to REXX character format using
C2D(LEFT(buffer,buflen)).

If you are replacing numeric information, the buffer containing the replacement value must be
converted from REXX character to numeric using D2C(buffer,4). The datatyp parameter must
be a fixed binary field with a length of 4 bytes. If you are passing in numeric search values,
the buffer containing the search value must be converted from REXX character to numeric using
D2C(sargval,4).

This program extracts the number of files on and access modes of all the read/write disks, using a
protected environment.

/*Report the number of files on and access modes of all R/W disks. */
/*Use a protected Extract/Replace environment (initialized by */
/*GETENV) instead of the use the general environment (used by the */
/*EXTRACT, REPLACE, and RESET). */

address 'COMMAND'

/* Initialize variables for parameter list */;
retcode = 0
numargs = 0 /*numargs and infoname parameters are ignored by */
infoname = 0 /* GETENV but are required by DMSERP's parameter list.*/
datatype = 0 /* set by DMSERP */
buffer = 0 /* holds environment ID returned by DMSERP */
bufflen = 4 /* buffer length must be at least 4 to hold environment ID*/

/* Call DMSERP using GETENV function to initialize a new environment */
/* and receive the environment ID. */
call csl '"DMSERP" retcode "GETENV" numargs infoname buffer datatype',
 'bufflen'
envir=substr(buffer,1,bufflen) /*get the environment ID from buffer */;

/* Extract the file modes of all disks accessed R/W */
i = 0
flags='00000000' /* Specify initial search */
mode = 0 /* IN/OUT type parameters need to have initial values*/
number = 0 /* REPLACE shares parameter definition with */
token = 0 /* EXTRACT and the REXX/CSL interface, so we */
datatype = 0 /* cannot determine the data direction. */

/* Build the function name to extract from a protected environment */
/* by combining 'EXT:' and the environment ID received from the */
/* GETENV function. */
function = 'EXT:' || envir

do until retcode ¬= 0
 len = 1
 call csl '"DMSERP" retcode function 1 "ACCESS_MODE"',
 'mode datatype len flags "OR" token',
 '"CMS_READ_WRITE_DISK" 1 9 1 "EQ"';
 flags='10000000' /* Specify continued search */

 if retcode=0
 then do /* Check if Extract/Replace was successful */

Extracting and Replacing System Information

214 z/VM: 7.2 CMS Application Development Guide

 mode = left(mode,len) /* Set access mode in a variable */
 len = 4
 call csl '"DMSERP" retcode function 0 "NUM_FILES"',
 'number datatype len "00100000" "OR" token'
 if retcode=0
 then do
 i=i+1
 accessmode.i = mode
 /* The number of files is returned as a binary value. */
 /* Convert this value to REXX character format with */
 /* the C2D built-in function. */
 filenum.i = C2D(left(number,len))
 say 'There are' filenum.i 'files on the read/write',
 'disk at mode' mode'.'
 end
 end
 accessmode.0 = i
 filenum.0 = i
 end /* until retcode¬=0 */;

/* Build the function name to restore the protected environment.*/
function = 'RES:' || envir
call csl '"DMSERP" retcode function'

exit

Extracting and Replacing System Information

Chapter 14. Extracting and Replacing System Information 215

Extracting and Replacing System Information

216 z/VM: 7.2 CMS Application Development Guide

Chapter 15. Using Data Spaces

This chapter introduces the concept of data spaces and describes the facilities provided in z/VM that
enable you to use them in sophisticated applications. This includes an overview of the CMS callable
services library (CSL) routines that simplify the creation, management, and deletion of data spaces.

Introduction
Using ESA/390 extensions to the interpretive-execution facility, z/VM enables applications to take
advantage of hardware support for data spaces that are introduced by Enterprise Systems Architecture.
An application that runs in an XC virtual machine can create multiple data spaces of up to 2 GB each
outside its own primary address space, as shown in Figure 26 on page 217. It can then share these data
spaces. This support can be useful for database, three-dimensional graphics, and other applications that
require large buffer areas in storage.

 -------------------- User1 --------------------- --- User2 ---
 +-------------+ +-------------+
 +------------+ | User1's | | User1's | +-----------+
XC virtual		data space		data space		Another
machine						virtual
						machine
		(up to 2GB)		(up to 2GB)		
(primary						(primary
address						address
space)	+-------------+ +-------------+	space)				
+--------------+---------------------------------------+-----------+--+						
CP						
+---+

Figure 26. Guest data spaces

Data space support allows an application that executes on an ESA or XA virtual machine to share its
primary address space. The application can also copy data from other virtual machines' data spaces into
its primary address space.

Terminology
The following sections introduce the terminology and concepts of data space support in z/VM.

Address Spaces
The term address space refers to a contiguous area of storage that can be addressed by a program
running in a virtual machine. Every virtual machine has its own primary address space for programs, data,
and control information. A primary address space is the virtual machine's main storage.

Data Spaces
Another type of address space is the data-only address space, which can be requested from the system
by an application running in an XC virtual machine. This data-only address space, henceforth called data
space, can hold up to 2 GB of data. A data space is an area of storage external to the virtual machine
in which the requesting program is executing. A data space can be used only for data storage and
manipulation. Programs cannot execute in this area, although a data space can hold programs stored as
data. Because a data space has no CMS-reserved areas, it is fully addressable. In addition, access to a
data space can be shared with other applications or other users.

Hardware Support—Access Registers
ESA/390 provides a set of access registers, each of which is paired with a general register. The access
registers are used to indicate which address space contains the data being referenced by an address in

Using Data Spaces

© Copyright IBM Corp. 1990, 2022 217

the associated general register. The access registers are used for addressing only when a program running
on an XC virtual machine is executing in access-register mode (AR mode).

The application uses assembler language instructions to control its addressing mode.

Outline of VM Data Space Support
An application that runs on an XC virtual machine can leverage data space support to operate
concurrently and efficiently on the following categories of data:

• Data spaces that are external to the application's primary address space
• Data spaces that are external to the primary address space of the application's virtual machine

The following list summarizes VM data space support:

• A data space is a special type of address space (in z/VM publications, data-only address space = data
space):

– It is for data only.
– The entire space is addressable.

• In XC mode, a data space always resides outside its owner's virtual machine primary address space.
• Data spaces can be shared.
• Any permitted virtual machine within the z/VM system that contains a shared data space can access

that shared data space by using CPU instructions.
• Data spaces provide integrity and isolation for the data they contain.
• Only applications that execute in XC virtual machines can reference data spaces directly. However, an

application that runs on an ESA, XA, or Z virtual machine can copy data from another user's data space
by using z/VM services.

• Access registers (one associated with each general register) allow manipulation of data in a data space.
• The size of a data space can range from 256 pages or blocks (1 MB) to 524,288 pages (2 GB) and is
fixed upon creation. If the size specified (in number of pages) is not a multiple of 256, it is rounded up to
a multiple of 256.

• CMS provides callable services library (CSL) routines for creating and managing one or more data
spaces. (These routines in turn use CP macros to complete the operations.)

• Data in a data space can be manipulated by using most of the ESA/390 assembler language instructions
that have a storage-related operand. For more information, see z/VM: ESA/XC Principles of Operation
and z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation.

• Data spaces can be defined with the following attributes:

– Scope of program usage
– An association with CMS events that cause automatic data space-related resource clean up.

Such a definition contributes to overall VM resource management by assuring the recovery of the
data-space related resource.

• XCONFIG directory statements define the scope of a virtual machine's use of data spaces.

Note for MVS Programmers
The principle difference between access-register translation as defined for an ESA/390 virtual machine,
like an MVS/ESA guest, and host access-register translation, which is the corresponding process for an
XC virtual machine, is that for XC virtual machines, the tables and structures that control architecture
usage reside with the host (CP) rather than the guest. Otherwise, XC mode handling of access-register
addressing is consistent with ESA/390 mode. The Extract/Replace (DMSERP) callable service may be
used to determine if you are executing on an XC virtual machine. If so, then the callable service support to
exploit the data space services may be used.

Using Data Spaces

218 z/VM: 7.2 CMS Application Development Guide

Data Space Support for CMS Virtual Machine Environments
CMS operates in two virtual machine modes, each of which provides a different level of architectural
support:
XC

• Can have primary address space of up to 2047 MB
• Can create data spaces up to 2 GB each in size
• Can share data spaces
• Can manipulate data in data spaces
• Can share primary address space

ESA or XA

• Can have primary address space of up to 2047 MB
• Can share primary address space
• Can copy data from a data space using z/VM services.

Uses for Data Spaces
Certain applications require vast amounts of storage to work efficiently. One such class of applications
includes databases, which can map an entire data structure into storage at one time rather than
overlaying data or explicitly managing I/O. Another class of applications requires large storage buffers,
which now can reside outside the virtual machine's primary address space. The graphic representation
of three-dimensional objects, image processing, and numerically-intensive computation all require such
large storage areas.

How can data space support be exploited by user applications or program products executing on CMS?

Applications in an XC virtual machine can use data spaces to:

• Obtain more storage than is available in its virtual machine's primary address space
• Isolate data from other programs that may execute in the same virtual machine
• Share data located in a data space among programs executing in the same or other virtual machines
• Isolate data by its particular usage and then share that data only among related users (this is an

alternative to using a common area that may contain data for various usage)
• Share data located in its virtual machine primary address space with programs executing in other virtual

machines.

In addition, applications (particularly those that provide database management services) can use data
spaces with the minidisk mapping services. This can improve overall system performance by replacing
virtual machine I/O, such as DIAGNOSE I/O, with paging I/O, which is more efficient. See z/VM: CP
Programming Services for an overview of this support.

Minidisk caching should be turned off for minidisks that are read and written only by MAPMDISK and the
corresponding data space. Minidisks that are read and written by a combination of data space access (or
MAPMDISK) and virtual I/O (DIAGNOSE and channel program) should be evaluated on an individual basis
to determine if minidisk caching should remain enabled.

To reference data in a data space directly, the program must be in AR mode. When in this mode,
assembler instructions (such as load, store, and move character) can move data in and out of a data space
and manipulate data within it. Assembler instructions can also perform arithmetic operations on the data.

Summary of Data Space Operations
To exploit data space support, use the routines provided in the CMS callable services library (CSL),
VMLIB CSLLIB. These routines, which employ CP functions, provide CMS system services for creating,
controlling, and deleting data spaces. See the z/VM: CP Programming Services for more information on

Using Data Spaces

Chapter 15. Using Data Spaces 219

the CP functions. The application must execute in AR mode for the time necessary to complete any
manipulation of or direct reference to data in a data space.

An application running in a virtual machine that is allowed to own a data space can perform the following
operations, each of which corresponds to a CSL routine:

• Create a data space (DMSSPCC)
• Delete a data space (DMSSPCD)
• Establish addressability to an address space (DMSSPLA)
• Permit other users (virtual machines) or applications to access its address space (DMSSPCP)
• Isolate its address space from other users (DMSSPCI)
• Restore other users' access permission to use an address space (DMSSPCR)
• Release pages of address space storage (DMSSPCRP)
• Remove addressability of an address space (DMSSPLR)
• Ask for the identification token and size of any address space it owns or is permitted to access

(DMSSPCQ).

A data space can be created and deleted only from an XC virtual machine that has been authorized using
an XCONFIG ADDRSPACE directory statement. With the SHARE option on that directory statement, your
application can share address spaces it created with applications running on other virtual machines.

If the application is running in an ESA or XA virtual machine, it must specify BASE for the name parameter
on the DMSSPCC (Create Data Space) routine. This indicates to the system that data space structures
are to be created for the virtual machine primary address space. These structures allow sharing of the
primary address space.

An application running in a virtual machine that is allowed to access an address space belonging to
another virtual machine can perform the following operations, each of which corresponds to a CSL
routine:

• Ask for the identification token of the address space it needs to access
• Establish addressability to the address space
• Copy from the address space into its own virtual storage (only for ESA and XA virtual machines)
• Remove addressability of the address space.

Note: Although data space management also can be performed using CP macros and DIAGNOSE codes,
do not use that interface in any program that uses the CMS interface. CMS relies on the CP interface
and any mixing of the interfaces may inhibit CMS from performing its error checking. Thus, performing
data space management directly using data space CP macros or DIAGNOSE codes along with the CMS
interface may cause unexpected results.

Table 25 on page 220 summarizes the data space callable services support in terms of what virtual
machine mode the call can be made from and whether the call must be made from the owner virtual
machine.

Table 25. Data Space Callable Services Summary

Service : May be Called from Is the Owner Not Owner
But
Permitted (1)ESA or XA

mode
XC mode

DMSSPCC - Create Data Space yes (2) yes becomes
owner

n/a

DMSSPCD - Delete Data Space yes (2) yes yes no

DMSSPCRP - Release Address Space Pages yes (2) yes yes no

DMSSPCQ - Query Address Space yes yes yes yes

Using Data Spaces

220 z/VM: 7.2 CMS Application Development Guide

Table 25. Data Space Callable Services Summary (continued)

Service : May be Called from Is the Owner Not Owner
But
Permitted (1)ESA or XA

mode
XC mode

DMSSPCP - Permit Address Space Access yes (2) yes yes no

DMSSPCI - Isolate Address Space yes (2) yes yes no

DMSSPCR - Restore Address Space Access yes (2) yes yes no

DMSSPCPY - Copy from Address Space yes no yes yes

DMSSPLA - Establish Address Space
Addressability

yes yes yes (3) yes

DMSSPLR - Remove Address Space
Addressability

yes yes yes yes

Note:

1. The virtual machine that intends to access an address space owned by another virtual machine must be
given permission to access by the owning virtual machine and must have the address space identification
token (ASIT) or the name and owner of the data space passed to it (or the name and owner are a fixed for all
permitted users) by the owning virtual machine. Having this, the permitted virtual machine must obtain an
ALET to be able to access the address space.

2. An application can call this routine only for address spaces owned by the virtual machine in which it is
executing. The only address space an ESA or XA virtual machine owns is its primary address space.

When DMSSPCC is called from an ESA or XA virtual machine, only the name of BASE is accepted. No
additional address space is created, but CMS creates and maintains data space structures that allow
sharing of the user's primary address space by other virtual machines.

When DMSSPCD is called from an ESA or XA virtual machine, only the ASIT of the primary address space
is accepted. No address space is deleted. However, CMS does delete all data space related structures that
were created and maintained for the primary address space.

When DMSSPCRP is used from an ESA or XA. virtual machine, only zeros can be specified for the ASIT to
indicate the primary address space. The pages released are those of the primary address space.

3. The DMSSPLA service is not required to establish addressability to the virtual machine's own primary
address space.

Using Data Spaces in Your Applications
This section describes how to use the CSL routines in your applications to set up and manage data spaces.

Creating and Using Data Spaces
A CMS program's ability to create, delete, and access data spaces depends on whether the virtual
machine that it executes in has been authorized to do so through CP directory control statements.
Because the use of data spaces consumes system resources such as virtual, real, expanded, and auxiliary
storage, their use must be controlled. System programmers responsible for tuning and maintaining z/VM
use the following directory control statements to control these resources:

• XCONFIG ADDRSPACE directory control statement—This statement authorizes an XC virtual machine to
create and delete data spaces, specifies the maximum size of the data spaces, and indicates whether
they can be shared. For ESA and XA virtual machines, it allows sharing of the primary address space.

• XCONFIG ACCESSLIST directory control statement—This statement allows an XC, ESA, or XA virtual
machine to access more than 62 address spaces (the number allowed without an XCONFIG
ACCESSLIST statement), specifying the number of data spaces that can be accessed at any given

Using Data Spaces

Chapter 15. Using Data Spaces 221

time. The access list is maintained for the virtual machine by CP and is used to keep track of address
space authorizations. Note that an ESA or XA virtual machine can only reference data in another virtual
machine's data space by using the DMSSPCPY (Copy from Address Space) routine.

As an application developer, you should be aware of these installation-established limits and how they
relate to return codes associated with the DMSSPCC (Create Data Space) and DMSSPLA (Establish
Address Space Addressability) routines.

Creating a Data Space
When a CMS program executing in an XC virtual machine uses the DMSSPCC (Create Data Space) routine
to create a data space, it needs to provide the name and size (number of pages) of the data space.
In addition, it can specify the attributes to be associated with the data space. Two of these attributes
(NOKEEP/KEEP and NOSYS/SYSTEM) determine the life span of the data space. The section entitled
“Ownership and Scope of Data Spaces” on page 224 describes what effect each of these options has in
CMS.

The NOSHARE/SHARE attribute determines whether the data space can be shared with other users. For
more information on sharing, see “Sharing Data Spaces with Other Virtual Machines” on page 226. The
storage key and fetch protection attributes (USER/NUCLEUS/OTHER and NOFPROT/FPROT) determine
the reliability characteristics of the data space. These attributes are described in the section entitled
“Protecting Data Space Storage” on page 231.

With the default attributes, a data space is deleted at end-of-command or abend, no sharing is allowed,
the storage key is the same as the user key, and no fetch protection is provided.

When DMSSPCC is called, CMS, utilizing the underlying CP support, returns an address space
identification token (ASIT) that uniquely identifies the data space within the scope of a z/VM system
IPL (CP IPL). (The ASIT is similar to the STOKEN of MVS/ESA.) The application must retain the ASIT
for subsequent data space related service calls. An application can obtain an ASIT of an existing data
space by using the DMSSPCQ (Query Address Space) routine, described in “Extracting Address Space
Information” on page 229.

An ASIT identifies an instance of a data space. An instance of a data space is a temporal concept that
means a particular version of the data in a data space. For example, when a data space is deleted and a
new data space with the same name is created, the new data space can be considered a new instance of
the original data space. Even though the name is the same, recreating a data space results in a new ASIT
being assigned. Thus, the ASIT can be used to ensure that only users authorized for a particular instance
of a data space can access it.

Accessing Data Space Storage
To gain access to the data space, the program calls the DMSSPLA (Establish Address Space
Addressability) routine, specifying the ASIT of the data space, which was returned on the Create or Query
call. DMSSPLA adds an entry to the access list and returns an access list entry token (ALET). The access
list entry (ALE) identifies the newly created data space and the ALET selects the entry.

The access list referenced in this discussion is associated with the virtual machine's primary address
space and is also referred to as the host access list. This access list is equivalent to the primary address
space access list (PASN-AL) of MVS/ESA.

Figure 27 on page 223 shows the relationship of an XC virtual machine's address space components.
Each CMS user virtual machine has a primary address space where CMS and application programs
execute. Associated with a primary address space is the access list that contains entries to data spaces,
in this case DataSpaceX and DataSpaceY. When a data space entry is placed on the access list, an ALET
is obtained from the system. The ALET indicates to the system which data space to address when making
storage references. The application places this ALET in the access register associated with the general
register containing an operand whose value is to be fetched from the data space.

Using Data Spaces

222 z/VM: 7.2 CMS Application Development Guide

 User1 (XC)
 +----------------+ DataSpaceX DataSpaceY
 | | +-->+------------+ +->+------------+
+----------							
	PGM1						
	...						
	...						
	ALETX DC F						
	ALETY DC F						
		+------------+	+------------+				
+--+--+------------++----+--------------------+------------------+							
	DataSpaceX +-----+						
+------------+							
	DataSpaceY +--------------------------+------------------+						
+------------+							
Access List							
CP							
+--+

Figure 27. Data Space Addressability

Releasing Data Space Storage
A long-running application, such as a resource manager in a server machine, should release storage when
it has finished using the data space for one purpose and wants to reuse it for another purpose, or when
it is finished using the data space. Releasing data space storage causes the specified storage page range
to be returned to the system. A subsequent reference to the released page will return only zeros. This is a
result of the page releasing function.

Releasing data space storage contributes to improving overall system performance and recovery of
resources by reducing the working set, the set of pages that must be active to avoid excessive paging.
A small working set for a given virtual machine requires less system management and leaves more
resources available for system use. Releasing data space storage also results in releasing backing storage
for pages that have been paged out. Reviewing the section entitled “Ownership and Scope of Data
Spaces” on page 224 will help you determine if your application needs to release data space storage.

To release data space storage, a program running in the owning virtual machine uses the DMSSPCRP
(Release Address Space Pages) routine. The ASIT of the data space, the starting page (offset parameter)
and number of pages (span parameter) must be specified on the call. Addressability to the data space
must have been established for WRITE and must be in effect when the DMSSPCRP routine is called. The
DMSSPCRP routine can also be used to release pages in the virtual machine's primary address space.
When doing this, the ASIT value must be specified as 8 bytes of X'00' to designate the primary address
space.

Managing Data Space Storage
Managing storage in a data space differs from managing storage in your virtual machine primary address
space. Keep the following in mind when you handle your data space storage:

• When you create a data space, request a large enough size to handle the needs of your application. The
amount of storage you specify when you create a data space is the maximum size that the data space
can be.

• Once you have created the data space and have established addressability to it, the entire addressing
range of the data space is available.

• You are responsible for keeping track of how the space is allocated by your application. Depending on
the scope of usage attributes defined for the data space when it was created, the system will delete the
data space automatically when the related CMS event is encountered. You can delete the data space
any time you wish or let the system do it for you once the related CMS event occurs.

Using Data Spaces

Chapter 15. Using Data Spaces 223

• You cannot use CMS storage management services, such as the CMSSTOR, SUBPOOL, DMSFREE,
DMSFRET, GETMAIN, and FREEMAIN macros, to manage this area.

• When you are finished using a data space, delete it. The z/VM system will automatically remove the
access list entry associated with this data space.

Ownership and Scope of Data Spaces
Events such as end-of-command and virtual machine reset play an important role in the lifespan of data
spaces. End-of-command is discussed in more detail in the z/VM: CMS Application Development Guide
for Assembler. Virtual machine reset may be caused by using such CP commands as SYSTEM CLEAR,
SYSTEM RESET, IPL, or LOGOFF. When virtual machine reset occurs, CP automatically recovers resources
associated with the virtual machine.

An application must call a CSL routine to create a data space. From CP's perspective, the data space is
owned by the virtual machine in which the application is executing. From a CMS point of view, ownership
can be associated with:

• The command cycle in which the creating program was executing: When end-of-command occurs, any
data spaces owned by this command cycle are deleted by CMS.

• The virtual machine: Unless the data space is explicitly deleted by a program executing in the virtual
machine, CMS does not delete the data space.

Reset of the virtual machine causes any data space created by any program executing in this virtual
machine to be deleted by CP.

Scope of Usage within a Virtual Machine
When a program uses the DMSSPCC (Create Data Space) routine to create a data space without specifying
any attributes, the data space persists until end-of-command occurs or until it is explicitly deleted prior
to end-of-command. A data space of this type, therefore, is accessible to the creating program and
potentially to any program it calls directly or indirectly during the command cycle.

For a data space to be accessible, addressability must be established to the data space by calling the
DMSSPLA (Establish Address Space Addressability) routine to place an entry for it on the access list. To
make the data space accessible to other programs within the virtual machine, the access list entry token
(ALET) obtained when establishing addressability must be made available to the other programs requiring
access to the data space.

An application can control accessibility to a data space by limiting distribution of the ALET. For example,
Figure 28 on page 225 shows how PGM1 creates two data spaces, adds them to the access list, but keeps
the DataSpaceX data space private to itself while sharing the DataSpaceY data space with PGM2. In this
case, PGM1 uses some related application convention to pass the ALET for the DataSpaceY data space to
PGM2.

Using Data Spaces

224 z/VM: 7.2 CMS Application Development Guide

 User1 (XC)
 DataSpaceX DataSpaceY +----------------------+
 +-+------------+ +─→+-------------+ | +---------------- |
							PGM1		
							...		
				+------+<----------+-+-					
									ALETX DC F
				+------+			ALETY DC F		
							+----------------		
								PGM2	
				+------+-------->	...				
+------------+	+-------------+		ALETY DC F						
++----------------+------------------------+-------+------------+-+--+									
	+--------------------------------	DataSpaceY							
	+------------+								
+---	DataSpaceX								
+------------+									
CP									
+--+

Figure 28. Private and Shared Usage within a Virtual Machine

If an application wants to allow any program executing in the virtual machine, even during different
command cycles, to access a data space, it can create the data space with an attribute of KEEP. The KEEP
attribute allows a data space to persist through end-of-command. In this scenario, the ALET value must
be saved in a known place across program executions. CMS nucleus extension support is suited for this
form of application.

Abnormal termination of a program causes CMS abend processing to be invoked. During CMS abend
processing, resources not identified to survive abends are recovered by CMS. Specify the SYSTEM
attribute on DMSSPCC to enable the data space to survive CMS abend processing. Depending on the
application usage, this can be particularly useful when a data space is created with the KEEP attribute.
Specifying both SYSTEM and KEEP indicates that the creating application wants the data space to survive
should an unrelated application program abnormally terminate in the user's virtual machine.

Recall that data spaces created with or without the KEEP attribute are all viewed by CP as being owned by
the virtual machine. In the event of a virtual machine reset, all data spaces owned by the virtual machine
are recovered by CP.

Table 26 on page 225 summarizes when a data space is deleted (therefore, the system-related resources
are recovered) by the occurrence of CMS events as they relate to the data space attributes.

Table 26. Data Space Cleanup Events

Event NOKEEP
NOSYSTEM

NOKEEP
SYSTEM

KEEP
NOSYSTEM

KEEP SYSTEM

CMSCALL, SVC 202, OS linkage
termination

kept kept kept kept

Command end deleted deleted (1) kept kept

Abend recovery deleted kept (1) deleted kept

DMSSPCD (Delete) deleted deleted deleted deleted

Virtual machine reset, for example,
IPL, LOGOFF

deleted deleted deleted deleted

Note: 1. With the NOKEEP and SYSTEM attributes, if an abnormal termination occurs prior to end-of-command,
the data space will survive until end-of-command. If no abend recovery is performed using the ESTAE or
ABNEXIT exits, the abnormal termination will continue, resulting in end-of-command, at which point the data
space would be deleted.

Using Data Spaces

Chapter 15. Using Data Spaces 225

Sharing Data Spaces with Other Virtual Machines
A virtual machine that intends to be the owner of data spaces to be shared with other virtual machines
requires a SHARE option on its XCONFIG CP directory statement. A program executing in this XC virtual
machine can then create a data space that can be shared with programs executing in other virtual
machines. The program creating the data space calls the Create Data Space (DMSSPCC) routine with the
SHARE attribute, which tells CMS that this data space is allowed to be shared with other virtual machines.

Table 27 on page 226 summarizes to what degree a data space can be shared based on the attributes
assigned to it by its creator.

Table 27. Data Space Sharing Scopes

Data spaces can be shared with: NOKEEP
NOSHARE

NOKEEP
SHARE

KEEP
NOSHARE

KEEP SHARE

All programs that can execute until end-of-
command

shared shared shared shared

All programs that would execute in the virtual
machine, beyond end-of-command

not shared not shared shared shared

Programs that would execute in another
virtual machine (1)

not shared shared not shared shared

Note: 1. The owning virtual machine that intends to share an address space with another virtual machine
must be authorized to do so (it must have the SHARE option on its XCONFIG ADDRSPACE CP directory control
statement). The virtual machine that intends to access a data space owned by another virtual machine must
be given access permission by the owning virtual machine, and must have either the access list identification
token (ASIT) or the name and owner of the data space passed to it (or the name and owner is fixed for all
permitted users) by the owning virtual machine. In addition, to be able to access the data space, the permitted
virtual machine must obtain an ALET by calling the DMSSPLA (Establish Address Space Addressability) routine.

The application that created the shareable data space must authorize the other virtual machines that also
need to access the data space. It does this by calling the DMSSPCP (Permit Address Space Access)
routine. If the owning virtual machine does not have the SHARE option on its XCONFIG directory
statement, the DMSSPCP call fails.

The DMSSPCP routine requires the user ID (or a list of user IDs) or the virtual configuration identification
token (VCIT) of the virtual machine that is being authorized and the address space identification token
(ASIT) of the data space to be shared. See “Using Alternate User IDs with APPC/VM” on page 232 for
more information related to VCIT usage. During the CMS authorization process, the DMSSPCP routine
assures that only data spaces created with the SHARE attribute are allowed to be accessible to other user
virtual machines.

To obtain access to the data space, an application executing in the authorized user virtual machine must
supply the ASIT when calling the DMSSPLA (Establish Addressability) routine. The ALET that is returned
on this call is then used by the accessing program when executing in AR mode.

Example
Figure 29 on page 227 is similar to Figure 28 on page 225, except that in Figure 29 on page 227 the
DataSpaceY data space is shared between virtual machines. In this case, the Server1 virtual machine
owns the data spaces. Application program PGM1 executing in Server1 can pass either the name and
owner information or the ASIT of data space DataSpaceY when it receives an APPC/VM request from a
related piece of the server application that executes in the user virtual machine. If PGM1 passes the name
and owner information of DataSpaceY, PGM2 can call the DMSSPCQ (Query Address Space) routine to
obtain the ASIT. If PGM1 passes the ASIT of the data space, then the DMSSPCQ call is not necessary.
PGM2 then establishes addressability to the data space by calling the DMSSPLA routine to obtain an ALET
that can be used to reference the data space.

Using Data Spaces

226 z/VM: 7.2 CMS Application Development Guide

 Server1 (XC) User1 (XC)
 +-----------------+ +-----------------+
+-----------	+--------------------+	+-----------									
	PGM1		+->+---+-----+		PGM2						
	... -------++				+-->	...					
		+>+---------+		˅							
	ALETX DC F						some				ALETY DC F
	ALETY DC F						data ----+				
		+---------+	+---------+								
		DataSpaceX	DataSpaceY								
+-+-+-+------------++-+------------+----------------++-------------+-+++											
		DataSpaceX +--+	<----------------+ DataSpaceY								
	+------------+	+-------------+									
		DataSpaceY	---------------+								
	+------------+ +-------------+										
	Access List (ASIT of DataSpaceY) Access List										
CP +----------------------APPC--------------------------------------+											
+--+

Figure 29. Private and Shared with Another Virtual Machine

Allowing Access to Your Virtual Machine's Primary Address Space
You can allow applications executing in other virtual machines to access your virtual machine's primary
address space by performing the same creation and authorization steps as described for data spaces. An
application executing in an ESA or XA virtual machine can call the DMSSPCC (Create Data Space) routine
as long as the name parameter specifies BASE, identifying the primary address space. No data space is
created, but CMS establishes and maintains data space structures related to the primary address space.
This can be useful when an attribute such as SHARE is used to specify the longevity and sharing intentions
for the primary address space.

Next, use the DMSSPCP (Permit Address Space Access) routine to permit access to the primary address
space. The entire primary address space will be made accessible to the permitted virtual machines. Note,
however, that an XCONFIG ADDRSPACE CP directory statement with the SHARE option is required to
allow sharing of the primary address space.

Your program can then pass the ASIT for the primary address space to the program in the permitted
virtual machine using APPC/VM. Once it has received the ASIT, the permitted user can call the DMSSPLA
routine to establish addressability to your virtual machine's primary address space. Figure 30 on page 228
illustrates this relationship.

Using Data Spaces

Chapter 15. Using Data Spaces 227

 User1 (XC) User2 (XC)
 +>+-----------------+ +-------------------+
	+-------------		+-------------			
		PGM1			PGM2	
		
			+------>			
						ALETBASE DC F
	+------+					
		+----+--------------+				
	+------+					
+-+-++--+----------+--+--------------------+-+--+------------+-+-----+						
					++ BASE	
		+-----------+		+-----------+		
		+-----------+		+-----------+		
		(ASIT of BASE)				
	+-------------APPC----------------------+					
+---+ CP						
+--+

Figure 30. Sharing Primary Address Space with Another Virtual Machine

The User1 virtual machine calls DMSSPCC, specifying BASE for the name parameter, to make its primary
address space shareable. (This assumes an XCONFIG ADDRSPACE statement with the SHARE option in
User1's CP directory.) It then calls DMSSPCP to permit User2 and passes the ASIT returned on DMSSPCC
to the User2 virtual machine. The PGM2 program in the User2 virtual machine calls DMSSPLA with the
ASIT to establish addressability to the User1 primary address space. The DMSSPLA call places the ALET
for the User1 primary address space on User2's access list. This allows PGM2 in User2 to access User1's
primary address space. When PGM1 in User1 calls the Permit routine, it can specify whether READ or
WRITE access is granted.

When your virtual machine's primary address space is shared with other users, SEGMENT LOAD and
SEGMENT RELEASE commands cannot be issued from your virtual machine. Sharing your primary address
space does not affect existing segments, but you cannot release those segments or attach new ones.

Isolating Shared Address Spaces
An application running in a server virtual machine, commonly referred to in z/VM as a server application,
may need to modify a data space that is shared with a number of user virtual machines. In some cases,
the application must make the modification in a private state, when the application can be assured that
there are no user references in process to the data space. The DMSSPCI (Isolate Address Space) routine
provides this function, where upon return from the service, the data space is in a private state.

Once the server application completes the modifications to the data space, it can call the DMSSPCR
(Restore Address Space Access) routine to re-permit users that were permitted access to the data space
before the DMSSPCI call. The restore call re-permits users that are still logged-on (even if they are
disconnected) at the time of the call. These users, however, must re-establish addressability to the data
space before they are allowed to access the data again, so they will need to be able to detect when the
address space has been isolated by its owner for a refresh or update.

If a reference is made to the data space after the isolate was performed by the owner, the user virtual
machine receives an addressing-capability exception. The user application can use this exception to
detect the isolate condition and then can call the DMSSPLA routine to re-establish addressability to the
data space and obtain a new ALET for referencing the data space. If the DMSSPLA routine fails with
a return code indicating that the restore has not yet been performed, the application must have some
mechanism to either retry or inform the user that the function cannot be performed at this time. Thus,
the isolate/restore support therefore involves more complicated support in the portion of the server
application that executes in the user virtual machine.

Using Data Spaces

228 z/VM: 7.2 CMS Application Development Guide

Note: An application requiring a shared data space that periodically needs to be isolated for refresh
activity can utilize its own locking protocol that may be less costly in terms of overall system performance.

Extracting Address Space Information
An application can obtain information about an existing data space owned either by the virtual machine in
which it is executing or by another virtual machine. The DMSSPCQ (Query Address Space) routine returns
the ASIT and size of the data space whose name and owner are specified on the call. The owner is defined
to be the user ID of the virtual machine from which the data space was created. Specifying an asterisk
(*) for the owner parameter indicates that the owner of the data space is the virtual machine in which the
program is executing.

To obtain information about a data space created from another virtual machine, the virtual machine in
which the program is executing must already have been permitted access by the owning virtual machine.
In this case, the requesting program must also specify the user ID of the owner of the data space on
the DMSSPCQ routine call. See “Sharing Data Spaces with Other Virtual Machines” on page 226 for more
information.

Using the DMSSPCQ routine, an application developed to use shared data spaces can determine the size
of the data space so it can ensure that references will not produce addressing exceptions. Note, however,
that when used to query the size of a primary address space, DMSSPCQ returns the highest address
accessible in the virtual machine. When discontiguous shared segments are being used, it is possible
that gaps may exist between a saved segment and the primary storage of the virtual machine. Therefore,
addressing exceptions may still be possible in this situation.

Rules for Creating, Deleting, and Using Data Spaces
To protect data spaces from unauthorized use, the z/VM system (CP and CMS) uses certain rules to
determine whether a program can create or delete a data space or whether it can access data in a
data space. The rules for CMS programs are similar to MVS/ESA supervisor state programs, because all
programs invoked by CMS execute in supervisor state.

The following rules apply to CMS programs using the CSL routines for data space support.

Rules for Creating Data Spaces
Only a program running in an XC virtual machine can create a data space that will reside outside the
virtual machine's primary address space. A program running in an ESA or XA virtual machine can specify
BASE on the Create Data Space routine to share its primary address space. The virtual machine must be
authorized with a XCONFIG ADDRSPACE CP directory control statement.

Rules for Deleting Data Spaces
A program can delete a data space only if it is running in the virtual machine that created it.

Rules for Releasing Storage in Address Spaces
A program can release an area of an address space only if the address space was created from the same
virtual machine.

Rules for Establishing Addressability to Address Spaces
Establishing addressability involves specifying the ASIT of the address space when calling the DMSSPLA
routine. This routine places an entry on the access list and returns an ALET that designates the entry.

A program can establish addressability to any data space owned by the virtual machine in which it is
executing. If the data space was created from another virtual machine, access authority must first be
granted by the owning virtual machine. The owning virtual machine grants access by calling the DMSSPCP
(Permit Address Space Access) routine. The owning virtual machine must also be authorized to share its
address spaces through the SHARE option on the XCONFIG ADDRSPACE CP directory control statement.

Using Data Spaces

Chapter 15. Using Data Spaces 229

If an application needs to access more than 62 data spaces, an XCONFIG ACCESSLIST CP directory
control statement is also required in the virtual machine's CP directory to give the virtual machine a bigger
access list.

Applications running in ESA or XA virtual machines can access a data space created by an XC virtual
machine by obtaining the ASIT of the data space and then specifying it on a call to the DMSSPLA
routine to establish addressability to the data space. The ALET obtained from this call must be saved
for subsequent use with the DMSSPCPY (Copy from Address Space) routine. Figure 31 on page 230
illustrates this environment, in which PGM1 creates data space DataSpaceY and stores some data in it. It
then permits the User2 virtual machine access and uses APPC/VM to pass the ASIT for the data space to
PGM2. PGM2 in turn calls the Establish Addressability routine and then the Copy from Address Space to
copy data from DataSpaceY to its own primary address space.

Rules for Accessing Data in Address Spaces
Once it has established addressability to the address space, a program executing in AR mode can
access the address space. Note that address space storage is also subject to storage key protection
and access-list-controlled protection. Access-list-controlled protection means that read and write access
to an address space is regulated by the CP-controlled access list associated with the virtual machine.

Applications running in ESA or XA virtual machines can only reference data spaces by calling the
DMSSPCPY routine, which copies data from the data space to their primary address space.

 User1 (XC)
 +-----------------+
 | +----------- |
 | |PGM1 -------+-------------+
 | | ... | +--->+-----+-------+
 | | | | | ˅ |
 | | ALETY DC F | | | +------+ | User2 (XA)
 | | | | | | | | +-----------------+
			+------+		+-----------			
							PGM2	
							...	
					+---->			
								ALETY DC F
		+--------+----+						
		DataSpaceY						
+-+-+-+------------++--+-------------+--------+---++------------+-+-+-+								
				+--copy--+				
	+------------+	+------------+						
		DataSpaceY +---+---------------------------+ DataSpaceY						
	+------------+ +------------+							
	Access List (ASIT of DataSpaceY) Access List							
+-------------------APPC--------------------------------------+								
CP								
+---+

Figure 31. Sharing with a XA-Mode Virtual Machine

Using VM Data Space Services from ESA or XA Virtual Machines
Although applications cannot create data spaces from ESA or XA virtual machines, the data space callable
services can be used to share the virtual machine's primary address space with other virtual machines.

This may be useful when a server application that executes on an XC virtual machine requires services
from another server that may be capable of running only on an ESA or XA virtual machine. In this case,
the non-XC server application cannot directly access a data space that could be used to pass information
between servers. The non-XC server application, however, can establish a communication area within
the primary address space of the ESA or XA virtual machine on which it runs. The location of this area
can be conveyed to the XC server application, which can then directly reference the specified area.
The non-XC server application can store/fetch to the designated area because it is within its primary
address space. The XC server application can also store/fetch to this area because it has the extended
addressing capabilities of ESA/390 architecture. Of course, the non-XC server application would have to
follow the same requirements for sharing the primary address space as for sharing a data space. See the

Using Data Spaces

230 z/VM: 7.2 CMS Application Development Guide

section entitled “Allowing Access to Your Virtual Machine's Primary Address Space” on page 227 for more
information on sharing the primary address space.

Protecting Data Space Storage
The means used to protect data space storage depends on the sharing environment the application is
working in. We will discuss sharing within a virtual machine first, then turn our attention to sharing with
other virtual machines.

Sharing within a Virtual Machine
The owning program of a data space that is shared with other programs executing in the same virtual
machine can use the access list entries to control access to a data space by calling the DMSSPLA routine.
It can do this by obtaining two ALETs:

• One with the WRITE option, for its own use
• One with the READ only option, which it would pass to the programs that required access to the data

space.

This technique is known as access-list-controlled protection because it uses the entries in the access list
to control read and write access to a data space.

Example
Figure 32 on page 231 illustrates this form of protection. PGM1 creates data space DataSpaceX and then
calls DMSSPLA twice to obtain two ALETs: One ALET for read/write to use for its own needs, and the other
ALET for read-only to pass on to PGM2. In this case, PGM2 can only read data in data space DataSpaceX;
any update attempt will result in a protection exception.

 User1 (XC)
 +----------------------+
 | +-------------- |
 DataSpaceX | |PGM1 |
 +---->+--------------+ | | ... |
 | | | +-------+-+-- | | | |
 | | | | | | ALETXRW DC F |
 | | | | | | ALETXRO DC F |
 | | +------+ | | | |
 | | | |<-------+ | +-------------- |
 | | | +--+-----+ | |PGM2 |
 | | +------+ | | | | ... |
 | | | +----------> |
 | +--------------+ | | ALETXRO DC F |
 | | | |
 | | |
+---+----------------------------------+---+----------------+-+---+
+<-------------------------------------+DataSpaceX (RW)	
	+----------------+
+--------------------------------------+DataSpaceY (RO)	
+----------------+	
Access List	
CP	
+---+

Figure 32. Access-List-Controlled Protection

Sharing With Other Virtual Machines
When sharing a data space with other users, more storage protection options are available to the owner
of the data space. Access-list-controlled protection can still be used by calling the Permit Address
Space Access (DMSSPCP) routine without specifying the WRITE option, thus taking the default READ
option. This allows only READ access when the permitted user calls the DMSSPLA routine to establish
addressability to the data space. Because there is no way for another user to modify the ALET type from
read to write, or to access the data space without the ALET, this is a reliable means of protecting data
space storage.

Using Data Spaces

Chapter 15. Using Data Spaces 231

A creating program can also protect a data space by specifying the FPROT and KEY parameters on the
DMSSPCC routine. KEY assigns the storage key for the data space and FPROT specifies that the storage
in the data space is to be fetch-protected. Storage protection and fetch protection apply to the entire
data space. For example, a program cannot reference storage in a fetch-protected data space without
executing in the PSW key that matches the storage key of the data space or PSW key 0. Remember that
user programs in CMS execute in virtual machine supervisor state, so they can change the PSW key at will.
Therefore, storage key and fetch protection may not provide adequate security in all cases.

Use the NUCLEUS and USER attributes on the DMSSPCC routine to ensure a storage key consistent with
the PSW key of your application. You can also specify the fetch-protection (FPROT) option with either
USER or NUCLEUS when creating the data space.

Other Considerations When Using VM Data Spaces
The following sections address other important issues that you may need to consider when writing an
application that uses the data space support.

Using Alternate User IDs with APPC/VM
To authorize another virtual machine to access a data space, the application in the owning virtual machine
calls the DMSSPCP (Permit Address Space Access) routine, specifying the logon ID (user ID) of the virtual
machine to be permitted access. In cases where the owner of the data space is a server (for example,
Shared File System (SFS)), the server usually obtains this user ID from information that is supplied by
APPC when the APPC connection is established between the user and the server.

When a worker virtual machine (one that does work for other user virtual machines) is involved, however,
there is an additional consideration, because worker virtual machines can run with an alternate user ID
in effect. The alternate user ID is the user ID of the virtual machine on whose behalf the worker machine
is performing the task. When the worker using an alternate user ID connects with the resource owner,
APPC/VM reports the alternate user ID, rather than the logon ID, as the identity of the virtual machine
making the connection.

Depending on how the application is written, a worker virtual machine might require access to a data
space to perform work on behalf of the requester (user). In this case, the worker’s identity needs to be
known because it is the worker virtual machine that needs to access the resource on behalf of the user.
The virtual configuration identification token (VCIT) provides the identity of the APPC/VM connecting
virtual machine, in this case the worker virtual machine. Thus, when a worker virtual machine is to be the
permitted user of a data space, the resource owner virtual machine would specify the VCIT for the user
parameter along with the VCIT option on the DMSSPCP routine, rather than specifying the alternate user
ID.

A virtual machine using APPC/VM to communicate will have the VCIT of the connecting virtual machine
passed as part of the connection pending extended data provided on an APPC connection request. When
an APPC connection flows through TSAF, AVS, or an ISFC line (that is, when the connection originates
outside of the system containing the target virtual machine), the VCIT field is zeros.

Note: Virtual Machine Communication Facility (VMCF) and Inter-User Communication Vehicle (IUCV)
communication always supply the logon ID and never an alternate user ID or secure VCIT on their
connection requests. Therefore, data space access permission must be granted using the user ID of the
virtual machine making the connection (for example, a worker virtual machine) when using either of these
means of communication.

Example
Figure 33 on page 233 shows a user virtual machine using APPC/VM to submit work to a batch-monitor
virtual machine (BatMon). The batch monitor in turn assigns a task virtual machine (TaskBat) to do the
work on the user's behalf. However, the TaskBat virtual machine needs a resource owned by ServerX,
for which the user virtual machine is authorized. The batch monitor virtual machine issues a DIAGNOSE
code X'D4' to change TaskBat's alternate user ID to that of the user ID on whose behalf the work is being
done. Then TaskBat issues an APPC/VM connection to ServerX to get at the resource required. Both the
alternate user ID and the VCIT are passed on the connect. The ServerX virtual machine uses the alternate

Using Data Spaces

232 z/VM: 7.2 CMS Application Development Guide

user ID on the pending connect request to validate that the user is authorized for the resource. If the user
is authorized, the VCIT on the pending connect request is used to allow access to data space DataSpaceX
by TaskBat. After TaskBat gets a connect accepted and the ASIT of the data space is reflected back to it, it
can call the DMSSPLA routine to establish addressability to the data space.

 BatMon TaskBat (XC) ServerX (XC)
 User1 +----------+ +-------------+ DataSpaceX +-------------+
 +----------+ | | | +--------- | +-----------+ | |
					PGM1					
					...					
		DIAG X'D4'								
					<-------+					
								+----+		
						+-----+				
							+----+			
					+-----------+					
++----------+--+----------+---+-+---------+++--------------------+++---------+-+-+										
	DatSpX RO									
+---------+		+---------+								
		+---------APPC---------+	DatSpX RW							
+---------+ +---------+										
CP										
+--+

 1. Batch monitor issues DIAGNOSE code X'D4'
 2. CP passes User1's user ID and VCIT of TaskBat on connect
 of TaskBat to ServerX

Figure 33. Alternate User ID and VCIT Usage

Storage Error Notification for Access Register-Specified References
An application can choose to be notified when a storage error occurs on a reference to data contained in
an address space other than its own primary address space. This can be another user's virtual machine
primary address space or a data space.

Storage Errors
When an uncorrected storage error is detected by CP, a machine check interrupt is reflected to the XC
virtual machine. This type of error is typically caused by a:

• Real error in main storage
• Paging error on page-in of a page.

In these cases, the data that was in the page is lost. CMS checks the ASIT supplied with the machine
check interrupt to determine if the storage error was in a data space. If it was, CMS issues a system abend
with a CMS abend code of X'1F4'.

I/O Errors
When an I/O error is detected by CP while trying to do a page-out of a mapped page to its respective
DASD slot, a machine check is reflected to the owning virtual machine. In this case, the data in storage is
still valid. CMS issues a system abend with a CMS abend code of X'1F5'.

The application program can establish either an ESTAE or CMS ABNEXIT routine to handle these possible
abend occurrences. In the case of the X'1F4' abend code, CMS releases the page identified by the "failing
storage address" information before driving any ABNEXIT or ESTAE exit routine. This action is indicated to
an ABNEXIT routine through the SDWFSPRL flag in the SDWFLAG2 field of the CMSSDWA DSECT. If CMS
could not release the affected page, this flag will be off.

In the case of the X'1F5' code, the exit routine can still save the data from the affected page. The X'1F5'
abend is primarily associated with a mapped page. The exit routine should unmap the page identified by
the failing storage address or map the page to a different DASD block. For more information on recovery
actions, see z/VM: CP Programming Services.

Note:

Using Data Spaces

Chapter 15. Using Data Spaces 233

1. If the exit routine attempts to recover from the abend without returning to CMS and a X'1F4' abend
was indicated, the exit should ensure that the affected page was released. The exit can call the
DMSSPCRP routine or issue a DIAGNOSE code X'10' to release the affected page if CMS has not
already done so.

2. In a z/XC virtual machine, the failing storage address is eight bytes. However, if the high-order four
bytes of that address are zero, CMS provides a four-byte address that is compatible with the ESA/XC
architecture. For applications that do not support more than two gigabytes, and in particular for I/O
errors that are associated with VM data spaces, this means that no changes are required to handle
z/Architecture eight-byte failing storage addresses.

The IHASDWA mapping macro is used by an ESTAE exit while the ABNEXIT exit uses the DMSSDWA
mapping macro to determine the address/data space that was involved with the error as well as the page
affected.

Virtual Machine Event Handler
Data space support introduces new virtual machine notification events. These events relate to the use of
function that produces asynchronous external interrupts in the form of a X'2603' interrupt code to an XC
virtual machine. When CMS detects a X'2603' interrupt, it invokes an application-specified handler routine
to process the notification of the event. An application must use HNDEXT SET to define a X'2603' external
interrupt handler to CMS. A X'2603' external interrupt handler must be defined by an application that
intends to use the SAVE function of the CP MAPMDISK macro or page-fault notification provided by the
CP PFAULT macro. These macros are described in the z/VM: CP Programming Services.

Page-Fault Notification for Access-Register-Specified References
An application can choose to be notified when a page fault occurs on a reference to data contained in
an address space other than its own primary address space. This can be another user's virtual machine
primary address space or a data space.

Note: The term page fault as used throughout this chapter also includes segment faults. Segment-fault
notification is reflected through the same mechanism as page faults.

Page-fault notification allows the application to avoid page-fault serialization by overlapping CP's page-
fault resolution for one application task with the execution of a different application task.

The page-fault notification discussed below is not related to the support provided by the CP SET PAGEX
command. Page-fault notification is not affected by SET PAGEX in any way.

For each valid access list entry, page-fault notification can be requested for storage references made
using the access list entry. An application requiring this support must utilize CP and CMS services. To
activate and be able to use page-fault notification, the application must:

1. Establish an external interrupt handler by invoking the CMS macro HNDEXT
2. Issue the CP PFAULT macro to define a TOKEN address to CP
3. Call the DMSSPLA routine with the ASYNC option when establishing addressability to the data space.

When page-fault notification is in effect, an application can control the enabling and disabling of the
interrupt by using the CMS ENABLE macro interface to selectively control the external interrupt mask in
the PSW. An application can cancel page-fault notification using the CP PFAULT CANCEL function.

When a page fault occurs on an application reference to a data space and page-fault notification
enablement is in effect, a handler routine defined by the HNDEXT macro SET function is driven. See the
z/VM: CMS Application Development Guide for Assembler for a description of this support and operation.

Overview of CMS Service Call Support in AR mode
To reference data spaces directly, CMS programs execute in an XC virtual machine in access-register
mode (AR mode). The application program enters AR mode by issuing the Set Address Space Control
(SAC) instruction:

Using Data Spaces

234 z/VM: 7.2 CMS Application Development Guide

SAC 512

The results of this instruction cause bits 16 and 17 of the PSW to be set to a B'01' value. Subsequent
instructions continue to be fetched from the primary address space of the virtual machine. The
instruction operand addresses, however, may refer to an address space other than the primary
address space of the user virtual machine. The access register that is associated with a base register
of an instruction is now used to determine the operand address space. See “AR Mode Execution
Considerations” on page 239 for a programming example.

As a general programming practice when using AR mode, the access registers associated with the general
registers used as base and save registers should always contain a value of 0 to indicate the primary
address space.

An application executing in AR mode can use CMS services by calling CMS-supported native and
simulated interfaces. The various CMS application programming interface groups provide support as
described in the following sections.

Effect of Data Space Support on Preferred Programming Interfaces
The preferred programming interface comprises CMS preferred macros and CSL routines. This section
describes the support provided by these two types of preferred interface calls.

Preferred CMS Macros
Macros from this group can be called while in AR mode. In general, calls to preferred interface
group macros are made by supervisor assisted linkage (SVC) transfer to the called service. When an
application calls a preferred-group macro, control is transferred to the macro in primary-space mode.
Upon completion of the macro, control is returned to the caller in the addressing mode in effect when the
call was made.

To prevent inadvertent modification of a data space (or other address space) by the preferred group
macro expansion code while executing in AR mode, ensure that a DMSSTATE SET,ASCENV=ARM macro
specification is in effect before calling a preferred macro. This will assure that the caller's access register
1 is reset to 0, ensuring that references made in AR mode using general register 1 refer to the caller's
primary address space.

The DMSSTATE macro, similar to the MVS/ESA SYSSTATE macro, is provided to condition an assembler
global variable that will cause AR mode toleration code to be expanded within the CMS preferred
group macros during program assembly. If the global variable indicates an AR mode environment, the
additional expansion takes place; otherwise, it does not. If a new AR mode application program contains
a DMSSTATE SET,ASCENV=ARM coded before any CMS preferred group macros are called, any AR mode
environment code contained in the macros will be expanded. If the application uses only CMS preferred
group macros, it can issue the SAC 512 instruction and remain in AR mode throughout its processing.

If a preferred macro is called while in AR mode, but a prior DMSSTATE SET,ASCENV=ARM macro
specification is not in effect and access register 1 contains a nonzero value, the call is terminated by
CMS with a X'1CD' abend code. The X'1CD' abend indicates that CMS detected a possible inadvertent
modification of a data space during the preferred macro expansion.

If access register 1 contains a valid ALET value in AR mode, the preferred macro may produce a code
expansion that will attempt to modify the address space associated with the ALET. This may result in a
program check or an inadvertent space modification. If a program check does not occur during the macro
code execution, CMS subsequently terminates the call with a X'1CD' abend code.

The preferred group macros are:

• Downward compatible with CMS releases that introduced the macro to the preferred group
• Compatible with assembler F and non-ESA assembler H
• Available in all virtual machine modes.

The CMS services called through this interface are performed in primary-space mode (non-AR mode). All
parameters specified as storage addresses are considered to refer to the primary address space of the

Using Data Spaces

Chapter 15. Using Data Spaces 235

user's virtual machine (for example, the PLIST must reside in the primary address space). Similarly, any
save areas required must also be in the primary address space.

Access registers are saved across the interface call and are restored upon return to the caller. The caller's
translation mode (primary space mode or AR mode) is restored to what it was at the time of the call.
SVC Entered Services

The CMS supervisor indicates to a callee, that is, the target of a CMSCALL macro, whether the caller
was in AR mode at the time of the call. The USEAR flag in the USEMFLG field of the USERSAVE
mapping macro indicates whether the call was made in AR mode. When the callee gets control, it will
be in primary space mode and register 13 will point to USERSAVE.

BRANCH Entered
Macros for services that have documented branch entry interfaces save and restore the access
registers and the translation mode across the interface call. Once entered, the function is performed
in primary space mode.

Note that access registers 0, 1, 14, and 15 are volatile across macro calls.

Existing programs containing CMS preferred macros must be reassembled in order to run in AR mode.
Reassembling picks up the new version of the macro interface. If the programs are not reassembled
and are issued in AR mode, the programs abends with a CMS abend code of X'1CD'. The abend occurs
because a nonzero value is detected in the access register associated with the parameter list pointer. An
abend code of X'1CD' indicates this.

Interrupt Handling in AR Mode
z/VM saves the access registers across all CMS interrupt handling, whether in AR mode or primary space
mode in an XC virtual machine. The access registers and translation mode (primary space mode or AR
mode) are restored when the interrupted process resumes.

Exit routines (for example, HNDEXT, HNDIO) are driven in primary space mode from the first level
interrupt handler (FLIH) in an XC virtual machine. At entry to the interrupt handler, access registers are
the same as they were at the time of the interrupt. Control should be returned to the FLIH in primary
space mode.

Callable Services Library Routines
Before attempting to call CSL routines from a high-level language, check the reference manual for the
language to determine whether such calls are supported and what setup operations are required.

Assembler language programs can call CSL routines from AR mode using either the MVS/ESA level of the
CALL macro or using the CMS preferred interface group "fast path" macro CSLFPI.

The CMS services called through these interfaces are performed in primary space mode. All parameters
specified as storage addresses are considered to refer to the primary address space of the user's virtual
machine.

Using the CALL Macro with the CMSCSL Interface
The MVS/ESA CALL macro can be used to invoke a CSL routine through the DMSCSL interface. This CALL
macro must be conditioned at assembly time. Conditioning is performed in MVS/ESA using the SYSSTATE
macro with the ASCENV=AR parameter specified to indicate an AR mode call. This macro call ensures that
the parameter list (PLIST) modification of the CALL macro expansion does not inadvertently modify a data
space or the primary address space of another virtual machine. The MVS/ESA levels of the SYSSTATE and
CALL macros are provided by CMS.

The callable service routine called by the interface operates in primary space mode. All parameters
specified as storage addresses are considered to refer to the primary address space of your virtual
machine.

If a service call is made using a non-MVS/ESA level of the CALL macro or made with the MVS/ESA level of
the CALL macro but not conditioned by SYSSTATE ASCENV=AR, then the caller must ensure that access
register 1 has a value of 0. If a nonzero value is detected in the access register associated with the

Using Data Spaces

236 z/VM: 7.2 CMS Application Development Guide

parameter list pointer, the call will be terminated with an abend code of X'1CD'. This test is common to all
language calls. Parameters specified as storage addresses must refer to the primary address space of the
user's virtual machine, otherwise unpredictable results may occur.

When the CALL macro is executed, access register 13 should have a value of 0 to avoid the inadvertent
modification of an address space or the occurrence of a program check.

Using the Fast Path to Invoke CSL Routines
In CMS, specifying TYPE=CALL on the CSLFPI macro causes a direct transfer to the called service. When
an application calls a CSL routine while in AR mode, control must be transferred to the routine in primary
space mode. Specifying TYPE=CALL on the CSLFPI macro with a prior DMSSTATE SET,ASCENV=ARM
macro specification in effect ensures that this condition is met. Upon completion of the routine, control is
returned to the caller in the addressing mode in effect when the call was made.

Do not use the CSLFPI macro in AR mode unless you also use the DMSSTATE SET,ASCENV=ARM macro
specification. If a call to the CSLFPI TYPE=CALL macro is made in AR mode without the conditioning
DMSSTATE macro specification and access register 1 contains a valid ALET value, the call may produce a
code expansion that will attempt to modify the address space associated with the ALET. This can result in
an inadvertent modification to an address space or in a program check.

The DMSSTATE call prevents the CSLFPI TYPE=CALL macro expansion code from inadvertently modifying
an address space while executing in AR mode by resetting the caller's access register 1 to 0, ensuring that
references made using general register 1 refer to the caller's primary address space.

To save the translation mode (AR mode or primary space mode) and access registers across a call
while executing in AR mode, ensure that a DMSSTATE SET,ASCENV=ARM macro specification is in effect
whenever your application calls CSLFPI with TYPE=CALL, TYPE=AREA, or TYPE=DSECT specified.

When the CSLFPI TYPE=CALL macro is issued, access register 13 should have a value of 0 to avoid the
inadvertent modification of an address space or the occurrence of a program check.

Table 28 on page 237 shows the results of using the CSLFPI and DMSSTATE macros to call a CSL routine
while in primary space mode. The letter "P" in the fifth column represents primary space mode.

Table 28. CSLFPI TYPE=CALL Behavior on XC Virtual Machine in Primary Space Mode

Assembly time definition Results of CSLFPI call

Before Issuing
CSLFPI TYPE=AREA,
Call DMSSTATE
SET,ASCENV=

Before Issuing
CSLFPI TYPE=CALL,
Call DMSSTATE
SET,ASCENV=

Caller's AR1
Reset to 0

Caller's
Trans. Mode
& ARs Are
Saved

Callee
Gets
Control in

Caller's
Trans. Mode
& ARs Are
Restored

NOARM NOARM no no P no

NOARM ARM yes no P no

ARM NOARM no no P no

ARM ARM yes yes P yes

Table 29 on page 238 shows the results of using the CSLFPI and DMSSTATE macros to call a CSL routine
while in AR mode. The letter "P" in the fifth column represents primary space mode, while the letters "AR"
represent AR mode.

Using Data Spaces

Chapter 15. Using Data Spaces 237

Table 29. CSLFPI TYPE=CALL Behavior on XC Virtual Machine in AR Mode

Assembly Time Definition Results of CSLFPI Call

Before Issuing
CSLFPI TYPE=AREA,
Call DMSSTATE
SET,ASCENV=

Before Issuing
CSLFPI TYPE=CALL,
Call DMSSTATE
SET,ASCENV=

Caller's AR1
Reset to 0

Caller's
Trans. Mode
& ARs Are
Saved

Callee
Gets
Control in

Caller's
Trans. Mode
& ARs Are
Restored

NOARM NOARM no no AR no

NOARM ARM yes no P no

ARM NOARM no no AR no

ARM ARM yes yes P yes

Effect of Data Space Support on Compatibility Programming Interface
Calling macros from this interface group in AR mode results in an abend with a CMS abend code of X'1CD'.
Access registers as well as the general registers are preserved on entry, and are made available to an
ABNEXIT or ESTAE routine.

The CMS supervisor detects the execution of a compatibility-group call when an SVC 202 is detected and
initiates the abend. If access register 1 contains a valid ALET value, the compatibility-group macro may
produce a code expansion that will attempt to modify the data/address space associated with the ALET
value. This can result in a program check or an inadvertent space modification. If a program check does
not occur during the macro code execution, CMS subsequently terminates the call with a X'1CD' abend
code.

Effect of Data Space Support on Simulated Programming Interfaces
Certain macros provided by OS/MVS and DOS/VSE are simulated by CMS. This section discusses those
macros.

OS/MVS and OS/VSAM Simulated Macro Interfaces
OS/MVS and OS/VSAM macros simulated by CMS are not AR-mode capable. The MVS set of macros
provided are at an MVS/SP level, with the exception of the CALL, SYSSTATE, IHASDWA, and IHAEPIE
macros, which are at the MVS/ESA level.

Calling OS/MVS simulated macros in AR mode results in abend code X'0F8' and reason code X'18'.

Access registers are saved across the interface call and are restored upon return to the caller. The CMS
OS/MVS simulation function called by the interface executes in primary-space mode (non-AR mode),
so parameters associated with the call must refer to data in the caller's primary address space or
unpredictable results may occur.

DOS/VSE Simulated Macro Interfaces
z/VM abends DOS service calls made through DOS/VSE macros if they are issued in AR mode in an XC
virtual machine. An abend code of X'1CD' indicates this.

Effect of Data Space Support on Existing Programs
Existing CMS application programs that use the CMS application programming interface are unaffected
by data space support when they run within the scope of the specific interface. That is, applications that
currently run on ESA or XA virtual machines can run successfully on an XC virtual machine. Further, a CMS
program that is written to take advantage of ESA/390 architecture can run on an XC virtual machine with
little or no change. Similarly, applications that are written to take advantage of z/Architecture can run on
z/CMS in an XC virtual machine with little or no change.

Using Data Spaces

238 z/VM: 7.2 CMS Application Development Guide

For more information, see z/VM: ESA/XC Principles of Operation and z/VM: z/Architecture Extended
Configuration (z/XC) Principles of Operation.

An application running in an XC virtual machine can exploit data spaces. To be able to operate directly
on data within a data space, the application program must execute in AR mode on an XC virtual machine.
New CMS application programs written to exploit data spaces can coexist with existing application
programs in an XC virtual machine. New data space applications that have dependencies on existing,
non-AR mode applications must transfer control to these applications in the following manner to ensure
predictable results:

• Use CMS supervisor-assisted linkage (CMSCALL or AMODESW macros)
• Return to primary-space mode before using a branch transfer.

AR Mode Execution Considerations
Figure 34 on page 240 shows portions of a program, PGM1, executing in the USER1 XC virtual machine
in AR mode. In this example, the DMSSPCC and DMSSPLA routines were called previously to create data
spaces DataSpaceX and DataSpaceY and add them to the access list of the USER1 virtual machine.

Note: An AR mode program must set the access register associated with its base register to a 0 ALET
value. This ensures that when an instruction uses the base register of the program to reference an
address, the instruction references an address within the user's primary address space.

Once the data spaces have been created and addressability to them has been established, the program
uses assembler instructions to manipulate data in them. The numbers to the left of the instructions in the
figure correspond to the following steps.
1.

PGM1 issues the SAC 512 instruction to enter AR mode to manipulate data directly in the data spaces.
2.

It then issues the LAE instruction to establish general register 12 as a base register and to zero out the
associated access register (AR12).

Next, it uses the LAM, SR, and USING assembler instructions to establish the base address for the data
spaces.
3.

The LAM instruction loads the ALET of DataSpaceX into AR 2 and the ALET of DataSpaceY into AR 3.
The ALETs were obtained using the DMSSPLA routine.

4.
The SR instructions are used to establish the origin address of the data spaces. Data spaces created in
VM have an origin of 0.

5.
The USING statements identify the mappings of the data space areas.

The next set of instructions, the L, ST, and MVCs, show data movement among the primary address space
and the data spaces.
6.

The L and ST place data from the primary address space into data space DataSpaceX.
7.

The first MVC then moves this same data from data space DataSpaceX to DataSpaceY.
8.

The second MVC moves the data from data space DataSpaceY to the USER1 primary address space at
location DATOT.

Essentially, the character string of 'ABCD' originally located at DATIN in the primary space has been
moved to DataSpaceX, to DataSpaceY, and finally, back to the primary space at location DATOT.
9.

The SAC 0 instruction takes the program out of AR mode and back to primary space mode.

Using Data Spaces

Chapter 15. Using Data Spaces 239

 User1 (XC)
 +-----------------------+
 |+----------------- |
 ||PGM1 CSECT |
 || STM 14,12 |
 1. || SAC 512 |
 2. || LAE 12,0(15,0) |
 || ... |
 3. || LAM 2,3,ALETS |
 4. || SR 2,2 |
 || SR 3,3 |
 5. || USING DSXMP,2 | DataSpaceY
 || USING DSYMP,3 |+----------------------->+--------------+
 || ... || | |
 6. || L 4,DATIN || | |
 || ST 4,DSXA1 || | |
 7. || MVC DSYA1,DSXA1|| DataSpaceX | |
 8. || MVC DATOT,DSYA1|| +>+--------------+ | |
 || ... || | | | | |
 9. || SAC 0 || | | | | |
 || ... || | | | | | | |
 ||DATOT DS F || | | | | |
 ||DATIN DC C'ABCD' || | | | | |
 ||ALETS DS 0F || | | +---------+ | | +---------+ |
 ||ALETX DS F || | | +---------+ | | +---------+ |
 ||ALETY DS F || | | ^ | | ^ |
 || ... || | | | | | | |
 ||DSXMP DSECT || | | | | | | |
 || ... || | | | | | | |
 ||DSXA1 DS F || | | | | | | |
 || ... || | | | | | | |
 ||DSYMP DSECT || | | | | | | |
 || ... || | | | | | | |
 ||DSYA1 DS F || | | | | | | |
 || ... || | +---+----------+ +---+----------+
 || || | | +----------------+
 +-+----+-----------+------++-+-----+---+-------------------------------+
 | +─>|DataSpaceY +-------+ | | | | | | | | | | | | |
 | | +-----------++--------+ | | |
 | |+>|DataSpaceX ++ +---+---+-+-+-+-+---+-----------+---+---+ |
 | || +-----------+ GR | | | | | | | | ... | | | |
 | || Access List +---+---+---+---+---+-----------+---+---+ |
 | || AR | | | | | | | | ... | | | |
 | || +---+---+-+-+-+-+---+-----------+---+---+ |
 | || 0 1 | | 4 ... 14 15 |
 | |+-----------------------------+ | |
 |CP +----------------------------------+ |
 +--+

Figure 34. Access Registers and Data Space Addressability

Using Data Spaces

240 z/VM: 7.2 CMS Application Development Guide

Chapter 16. Your Applications and Data Integrity

This chapter describes the Coordinated Resource Recovery Services and how to design your applications
to ensure data and system integrity within your application.

Introduction to Coordinated Resource Recovery Services
As people depend on computers to perform increasingly important and complex work for them,
requirements for data and system integrity become more stringent. Coordinated Resource Recovery
(CRR) provides a means of ensuring data integrity (consistency) for complex transactions and distributed
applications.

Applications that do not write to more than one resource on a work unit need not be concerned with CRR.
However, some applications need to update data in multiple places and be assured that all changes are
made, or if that is not possible, that no changes are made. The application's data must always be in a
consistent state.

CRR enables an application running on CMS to update multiple resources with integrity, whether they
reside locally or remotely in an SNA network.

How CRR Works
To get this function, the application need only use protected resources (resources, such as the Shared
File System (SFS), that participate in CRR). These protected resources utilize a repository controlled by
a program called a resource manager to keep track of both the new and old versions of the data. Upon
request, the resource manager of the repository can either commit the changes, making them permanent,
or roll back2 the changes, thereby restoring the original values.

Some applications need to communicate with other applications in other virtual machines or systems
which themselves change data. In scenarios like this CRR also coordinates changes among multiple
applications. This capability is provided through APPC/VM support for protected conversations (both in
assembler and the Communications element of the Common Programming Interface (CPI) for high-level
languages).

Recall from Chapter 12, “Manipulating SFS and Minidisk Files and Directories,” on page 129 that in CMS,
work is divided into logical units of work. These logical units of work are sets of changes that can be
viewed as units of recovery. The changes made by these logical units of work are associated by a work
unit, which is identified by a work unit ID. After an application makes a set of changes (completes a logical
unit of work) on a CMS work unit, it commits all changes associated with that work unit or rolls them
all back. Changes done under other work units are unaffected. The point at which a commit or rollback
is done is also known as a synchronization point (usually called sync point). The set of changes made
on a CMS work unit can also be referred to as a transaction. Once the set of changes on a work unit
has been committed, the application repeats the process with a new set of changes to data (another
transaction). This type of application is commonly known as a transaction program (TP). Figure 35 on
page 242 illustrates this concept.

2 The term "rollback" (verb form "roll back") is generally used in CMS. The synonymous term in SAA and
SNA is "backout" (verb form "back out"). Because of the relationship between CRR and SNA, the SNA term
backout does appear in CMS documentation along with rollback.

Your Applications and Data Integrity

© Copyright IBM Corp. 1990, 2022 241

 |<-------- Application or TP (Transaction Program) -------->|
 | |
 | | | | | |
 |<- Trans- ->|<- SYNC ->|<- Trans- ->| . . . |<- SYNC ->|
 | action | PT | action | | PT |
 | | | | | |
 +------------+----------+------------+-----------+----------+
 Start End

Figure 35. Relationship between an Application, Transaction, and Synchronization Point

An application is typically made up of transactions separated by sync points. A simple application looks
like a single work unit to CMS. A complex application can have more than one transaction at the same
instant (and therefore, more than one CMS work unit). For the purposes of this discussion, transaction and
logical unit of work are synonyms.

Because transactions can change data, we want to be sure that the changes made can be recovered
(made consistent with each other after a failure). This is accomplished by separating transactions with
sync points where all recoverable changes are either made permanent or undone. A sync point looks like a
single, atomic operation to the application. An application always ends with a sync point, which should be
explicitly coded in the form of a commit (or rollback).

CMS provides the coordination process for the commit and rollback of data across multiple repositories
through its synchronization point manager (SPM). CMS, through CRR, can coordinate up to about 200
resources (SFS file pools, other participating resources, and protected conversations) within a transaction
(logical unit of work). The SPM accepts commit and rollback requests from the application and works with
the affected resource managers, represented by resource adapters, to ensure a consistent state for the
data.

Whenever an application accesses multiple resources and commits those resources, CRR creates a
unique Logical Unit of Work Identifier (LUWID). The LUWID identifies the changes in all the various
resources that are being coordinated. This is important to know because of the role that the LUWID plays
in resource recovery following a failure.

CRR is implemented using a two-phase commit protocol. The first phase involves the SPM acting as
coordinator by requesting all resource managers involved to get ready to commit the changes for the
work unit. Each resource manager responds indicating whether the changes are complete. When the SPM
receives a response from all the resource managers, it decides whether to commit or roll back the work
unit. If all of the resource managers indicate that the changes can be made, the decision is to commit. If
any reply indicates that a change cannot be made, the decision is to roll back. The decision is recorded in
the CRR recovery server's log and that decision is then passed on to each resource manager to carry out.
The recording of the decision in the CRR recovery server's log marks the transition from the first to the
second phase of the commit. In the second phase, the SPM notifies all of the resource managers of the
decision and the resource managers must then carry it out.

Note that, because of a severe failure, such as the SFS file pool server machine going down, the commit or
rollback may not be completed at the time the application requests the commit or rollback. CMS provides
an additional function, resynchronization, that will complete the request at a later time, when contact is
restored with all affected resources. This is automatic; your application does not have to be restarted in
order for this to occur. Resynchronization may occur after the application ends.

Designing Your Application for Data Integrity
The section entitled “Data Recovery/Data Integrity” on page 24 contains some concerns about data
integrity that you should address before starting to design your application. If you have not reviewed
that section already, it would be well worth your while to look at it before continuing on here because it
contains some important background that will help you decide what to include in your design.

Your Applications and Data Integrity

242 z/VM: 7.2 CMS Application Development Guide

Setting Up to Ensure Data Integrity
As we discussed earlier, applications are made up of transactions, or sets of changes to data. Transactions
must be associated with work units. Your application can use the default work unit, but it is recommended
for more complex applications that your application call the DMSGETWU (Get Work Unit ID) CSL routine to
obtain a work unit. DMSGETWU gives you the control you need for complicated applications. DMSGETWU
also allows you to specify a default transaction tag for the work unit.

A transaction tag contains a message up to 80 characters long that is written to the CRR recovery server's
log to aid in the recovery from a failure. At sync point, this message is also available to be written to the
logs of the resource managers involved in the work unit, which includes the logs of all SFS file pools that
the application is connected to.

As mentioned earlier, your application can specify a transaction tag on the DMSGETWU routine. However,
your application, whether it uses the default work unit or obtains a work unit using the DMSGETWU
routine, can call the DMSSETAG (Set Transaction Tag) routine. The DMSSETAG (Set Transaction Tag)
routine sets or changes a transaction tag at any time on the default work unit or another work unit.

Consider the following problem that occurs when the operator or administrator looks at the CRR or SFS
log after some failure during sync point processing and asks: "What application was running?" If an
operator or administrator is forced into a situation where they must recover data, how do they know what
application was originally invoked?

The solution is to have your application tell CMS what to store on the log so that the CRR recovery server
operator can determine what needs to be done during resynchronization. Each transaction (or logical unit
of work) can have its own information (tag) saved on the log at sync point. Your application can specify a
default transaction tag when it obtains a work unit and can set or change the transaction tag at any time.
The transaction tag is written to the CRR recovery server log and then passed to the adapter exits (the
interface to the resources being accessed) for use on their resource manager's log.

You can use transaction tags to communicate application-specific information to administrators
performing CRR problem determination procedures. The exact content of the tag is left to the discretion
of application programmers. It is up to you, the application programmer, to establish standards for
its content. Transaction tags can also be extremely helpful for problem determination in a distributed
environment. The ability to customize transaction tag information allows your application to return
transaction-specific data.

Transaction tags are not automatically known between applications that communicate using protected
conversations, however. For example, if an application, APPL1, is connected by a protected conversation
to another application, APPL2, then the transaction tag that APPL1 sets is not logged in the CRR recovery
server for APPL2. APPL2 must set its own transaction tag. If you want a transaction tag to appear in
the CRR logs for all applications involved in a transaction, then you can pass the tag information as
data through the protected conversations, thus allowing the receiving programs to create an identical
transaction tag.

Examples of useful transaction tag information are:

• User ID of the end-user executing the distributed application
• Name of the application
• Type of activity being performed (add, change, delete, etc)
• Other key information.

A possible transaction tag might be:

BIGDEALS SELLER1.VMCRR Add Sales-order=76235430

This transaction tag indicates that the user SELLER1 at node VMCRR was executing the BIGDEALS
application, specifically adding sales order 76235430.

Another approach to transaction tags might be:

BIGDEALS RECOVERY INFO=file_id_xyz

Your Applications and Data Integrity

Chapter 16. Your Applications and Data Integrity 243

This transaction tag provides only the application name and a pointer to a file kept by the application
which contains specific information, such as what steps to perform when recovering BIGDEALS and what
resources were being updated. This is a more flexible way of using transaction tags, but it requires the
operator to go to the file indicated to get further information.

Once the second phase of the commit is completed for a resource, the log data is typically discarded for
that resource. It is possible in the event of operator intervention or a catastrophic failure on the part of
one of the resources during resynchronization, that some of the log data needed to manually bring the
data back to a consistent state may not be available. For example, say application A calls applications B
and C, which update resources D and E, and F and G, respectively, as shown in Figure 36 on page 244:

 +-----+
 | A |
 +-----+
 | | |
 +-----+ +------+-----+
 | | |
 +-----+ +-----+
 | B | | C |
 +-----+ +-----+
 | | | |
 +-----+ +────+ +───+ +───+
 | | | |
 +-----+ +-----+ +-----+ +-----+
 | D | | E | | F | | G |
 +-----+ +-----+ +-----+ +-----+

Figure 36. Hierarchy of Application Calls and Updates

During the second phase of the commit, even if resynchronization becomes necessary between A
and C, the log records at B, D, and E are still erased when they complete the commit. Then, if the
resynchronization process fails, and the resulting operator intervention results in a rollback for C, F, and G,
the data is left in an inconsistent state (resulting in an error condition). Such a situation requires manual
recovery, but the log data for B, D and E is no longer available, making the determination of the extent of
data inconsistency very difficult at best. Therefore, if your application is performing critical transactions, it
should keep its own record of each transaction until it is clear that the transaction has been successfully
committed or rolled back.

Setting Synchronization Point Options
Another part of setting up is anticipating problems that could occur during sync point processing. The
CSL routine DMSSSPTO (Set Synchronization Point Options) allows you to set certain options for the sync
point. If you do not use DMSSSPTO to set any of the options, the system defaults will be used. The default
settings are as follows:
WAIT

If a resynchronization is required, control is not returned to your application until resynchronization
completes.

BACKOUT
If a protocol violation (notification of an inconsistency) is received from the sync point initiator while in
prepared state (ready to commit), CMS will roll back the changes to the work unit(s) specified for the
sync point.

SYNC
On certain requests the virtual machine will remain in a wait state until the request completes.

The choices you need to make depend on your application and the installation where it will run. The
following discussion should help you understand what each choice of options means to your program.

WAIT/NOWAIT: When the default option WAIT is in effect, your application will enter a wait state until
a return code is returned to your program after the resynchronization completes. This return code will
indicate one of two possibilities:

• Recovery was successful as indicated by the return code (either a commit or roll back was completed),
or

Your Applications and Data Integrity

244 z/VM: 7.2 CMS Application Development Guide

• A commit or rollback was performed, but the state may not be consistent due to a unilateral decision
(possibly operator intervention) on the part of one or more resources to commit or roll back contrary to
the global (CRR) decision.

In the first case, if a commit is indicated, your program can continue processing from that sync point. If
a rollback is indicated, it will be necessary to try the transaction again. You will have to prepare for the
second case (a possibly inconsistent state) in accordance with the type of application you are designing.
Some situations may require that your program terminate, while other situations may allow for less
drastic measures.

If your application must operate in an environment that dictates a different course of action than that
just described (for example, delays of more than a few seconds are intolerable), you can set the NOWAIT
option. This option means that resynchronization will still be tried, but if it is not successful on that
first try, control is returned to your application with a resynchronization-in-progress reason code. This
could be useful if your application processes transactions in an interactive environment. Your program
can continue other processing (unless the system goes down), and the resynchronization will complete
later, possibly even after your application ends. Alternatively, if the success or failure of the transaction in
resynchronization could affect future transactions, your program could terminate.

In any case, you should consult your system administrator so you can be aware of computer center
procedures for such things as recovery and operator intervention.

BACKOUT/COMMIT: If a protocol violation is received from the initiator (your protected conversation
partner) of the synchronization point while in prepared state, CMS rolls back the changes to the specified
work unit(s) by default. This is an attempt to ensure that recovery can be achieved quickly and reliably.
It is generally safer to assume the worst in transaction processing. If this is not satisfactory for your
application's environment, you can set the COMMIT option so that an attempt will be made to commit the
changes in the event of a protocol violation on the part of the initiator of the sync point.

SYNC/ASYNC: The (default) SYNC option allows the SPM to communicate synchronously with a protected
resource when it is more efficient to do so. Ordinarily, when the SPM needs to communicate with more
than one protected resource, it does so asynchronously. There are times, however, such as when reading
from one resource and writing to another, when the SPM is only communicating with one resource at a
time, even though more than one resource is involved. If ASYNC is set, the SPM is forced to communicate
asynchronously with that one resource. The SYNC setting allows the SPM to switch to synchronous
communications when that is the better choice.

If your application performs multitasking, you should set the ASYNC option. This allows CMS to regain
control immediately and to call DMSCWAIT (CRR Wait) for any requests to the CRR recovery server. Your
application can then intercept the call to DMSCWAIT and dispatch another task (which will be using
a different work unit ID). You must provide a replacement for DMSCWAIT to handle the waiting. See
Chapter 17, “Writing a CRR Wait Routine for Multiuser Server Applications,” on page 251.

ALL/SINGLE: Should you decide to set any of the sync point options, you can also specify whether you
want the settings to apply to all current and future work units or only to a specific work unit.

Committing (or Rolling Back) Changes
In order to make the changes permanent, the work unit making the changes must be committed. IBM
strongly recommends that your application issue an explicit commit as soon as the processing for
a logical unit of work is completed. You can also issue an explicit rollback when problems occur in
the work unit; otherwise, an implicit commit is issued at end of command. With CRR, all changes to all
protected resources made on the specified work unit(s) will be committed (or rolled back if all resources
could not commit) when a commit routine of any of the protected resources is issued.

It is possible, however, that not every resource your program will access is capable of participating in CRR.
This means that you must find out before coding your application, which resources participate in CRR and
which ones do not.

If any of the resources are unable to participate in CRR, changes made to data controlled by those
resources cannot be guaranteed to be consistent with the data controlled by protected resources (those
participating in CRR). You must issue a commit for the nonparticipating resource(s) using the product-

Your Applications and Data Integrity

Chapter 16. Your Applications and Data Integrity 245

specific commit routine. To reduce problems, design your application to issue resource-specific commits
first to make permanent any changes to resources not participating in CRR. Dividing the changes for
various resources into separate work units can make this task much simpler because your program can
commit one work unit at a time. The preceding discussion applies when you want to roll back unwanted
changes.

For all resources participating in CRR, your application can issue a commit or rollback using one of the
following ways:

• Using the SRRCMIT (Commit) and SRRBACK (Backout) SAA resource recovery (also known as CPI
resource recovery) routines

• Using the DMSCOMM (Commit) and DMSROLLB (Rollback) CSL routines
• Asking the participating resource to commit or roll back (SFS return codes are not available in this case).

The synchronization point manager takes care of propagating this signal to all protected resources.

An important consideration in deciding which routine to use for committing or rolling back a work unit
is the amount of information available to your application in the event of an error or other problem.
The DMSCOMM and DMSROLLB CSL routines return both a return code and a reason code to indicate
what problem occurred. The SRRCMIT and SRRBACK routines provide a return code only, while other
participating resources may provide a return code, error information, or both. See the documentation on
the individual participating resource for details on possible return codes.

When all of the work in a work unit has been completed, your application can return the work unit to
CMS using the DMSRETWU (Return Work Unit ID) CSL routine. Returning the work unit just indicates that
the system may free its storage associated with that work unit. If the work has not been committed,
a coordinated commit is issued automatically. SFS files and directories that are open under the work
unit are closed and protected conversations associated with the work unit are deallocated. If you use
this routine, you should use the DMSPOPWU (Pop Default Work Unit ID) CSL routine to remove the work
units from the stack prior to returning them, because the work unit stack is not checked or modified by
DMSRETWU.

So far, we have only discussed the explicit ways of committing changes, although implicit commits are
also possible. Whenever CMS does an implicit commit or rollback, it does a coordinated commit or
rollback. An implicit commit is done at end of command, for example, at the Ready; message. If the
commit does not succeed, however, an implicit rollback will be performed, and your application may not
be able to find out about it. IBM strongly recommends that your application always issue an explicit
commit as soon as the processing for a logical unit of work is complete. Remember that changes made
to a file are not actually reflected in the file until they are committed. For more details with regard to
committing changes in an application program, see Chapter 12, “Manipulating SFS and Minidisk Files and
Directories,” on page 129.

A Few Notes on Rollbacks
A rollback can occur at any time, but synchronization point processing is when it is most likely
because that is when changes are committed and when problems making the changes permanent
are encountered. Note, however, that rollbacks can also occur at times other than during sync point
processing. For example, a failure during a write attempt can cause a rollback before sync point
processing. As a result of such a failure, your application will receive a return code indicating one of
two situations:

• A coordinated rollback must be performed on the current work unit. A resource, such as a protected
conversation, cannot issue rollbacks (or commits). The resource relies on the application to issue a
rollback when one is required.

• A coordinated rollback has already been performed. A resource manager, such as SFS, automatically
issues a rollback.

Other participating resources may have different rules. As an application writer, you must reference the
protected resource documentation for the correct application action.

Your Applications and Data Integrity

246 z/VM: 7.2 CMS Application Development Guide

If an application issues a commit but gets a return code indicating a rollback on that commit, this means
that all work was rolled back. The application is not required to issue a rollback in this case.

Tracking Down Errors
How does an application find out why and where a commit was rolled back, why a rollback had problems,
or if warnings occurred? Although your application will receive a code from the commit, this may
not be enough to determine what actually went wrong and what course of action (if any is possible)
should be taken to correct the problem. It is possible to get detailed information about errors by using
the DMSGETSP (Get Synchronization Point Errors) CSL routine to retrieve error blocks saved by the
synchronization point manager. You can use this error information to identify which resource encountered
a problem or is involved in resynchronization processing.

Error blocks are saved for all warnings and errors detected since the last commit or rollback for a work
unit. The format and content of the error blocks is resource dependent and is, therefore, not specified in
the CRR architecture. However, error blocks should contain the resource ID for which the error occurred
and perhaps an error code identifying the cause of the problem (for example, SFS supplies reason codes).

Your application can identify a product by a component ID, adapter exit name, or both. For IBM products,
the component ID can be found in the Programming Systems General Information Manual. You need
to identify the product in order to determine the format of the error block, which is specified in the
documentation of each product.

z/VM provides two CSL routines to help you interpret error blocks—DMSWUERR (SFS Wuerror Deblocker)
and DMSPCAER (Protected Conversation Adapter Errors). DMSWUERR extracts the error information from
error blocks created by SFS. DMSPCAER extracts the error information from error blocks created when
protected conversations encounter problems during sync point. See the z/VM: CMS Callable Services
Reference for details on the DMSWUERR and DMSPCAER routines.

Generally, if you are using more than one resource type, your program should:

1. Call DMSGETSP to determine the error block length
2. Use the length obtained from the call to prepare to retrieve the error data
3. Call DMSGETSP (possibly in a loop) to retrieve the error blocks
4. Handle the errors.

Figure 37 on page 248 shows an example REXX exec for iteratively retrieving sync point error blocks.
This example assumes all of the error blocks are the same length, but this may not always be a safe
assumption.

The SPM keeps track of the length of each error block and resets this length value for all error blocks
for a work unit at the start of each synchronization point. This length is the value that is returned in the
actual_error_data_length parameter of the DMSGETSP (Get Synchronization Point Errors) CSL routine.

Your Applications and Data Integrity

Chapter 16. Your Applications and Data Integrity 247

/***/
/* This REXX exec provides an example of a typical call to DMSGETSP. */
/***/
/* Get Sync Point Errors */
/***/
retc = 0
reason = 0
data = copies(' ',284) /* Initialize Data Area to size needed for SFS errors. */
data_length = length(data) /* Get the length of the data */
eb_length = 0 /* Initialize usable data length */
cursor = 0 /* Initialize the cursor to zero */
workunit = 0 /* Get error information for the default work unit. */
exitname = copies(' ',8) /* Initialize exit name */
exitname_length = length(exitname) /* Get its length */
resid = copies(' ',9) /* Initialize resource component */

/* Call for the 1st error block */
call csl ('DMSGETSP retc reason ',
 'data data_length eb_length ',
 'cursor workunit exitname ',
 'exitname_length resid')

If (retc = 4) & (reason = 90278) /* Check the call results /
 Then Do
 Say 'There are no syncpoint errors to retrieve'
 End

 Else Do
 /* There are either some syncpoint errors, or there was an unexpected error on */
 /* the call to DMSGETSP. Loop only if there are syncpoint errors to retrieve. */
 Do While ((retc = 0 | retc = 4) & (reason ¬= 44040))

 If (retc = 4) & (reason = 90271)
 Then Do
 /* Buffer used to hold the error block is not big enough, create a buffer */
 /* the size of the error block length set by the previous call to DMSGETSP. */
 retc = 0
 reason = 0
 data = copies(' ',eb_length)
 data_length = length(data)
 /* Reinitialize the cursor. This will reset the position in the error */
 /* block list, so some errors might be retrieved for a second time. */
 cursor = 0 /* Reinitialize the cursor */
 End
 Else Do
 /* An error block has been successfully returned by DMSGETSP. */
 /* The exit name and resource ID identifies the format of error block. */
 /* Interpret the contents of the error block. */
 End

 /* Get the next error block */
 call csl ('DMSGETSP retc reason ',
 'data data_length eb_length ',
 'cursor workunit exitname ',
 'exitname_length resid')
 End /* End of Do While */

 If reason = 44040
 Then
 Say 'All syncpoint errors have been successfully returned'
 Else
 Say 'DMSGETSP executed with return code' retc,
 ' and reason code' reason
 End

Figure 37. Example of a REXX Exec Used to Iteratively Retrieve Error Blocks

Notes for Distributed Application Programs
An application may be distributed, meaning it has multiple parts that communicate through a
conversation. To take advantage of CRR, use protected conversations wherever possible. Whenever a
sync point is reached in any part of a distributed application using protected conversations, the system
requests the other parts to synchronize by issuing a commit or rollback. In other words, if your application
is communicating with other applications in an SNA network, any time it receives a notification through a
protected conversation to commit, it must issue a commit routine (or roll back if it cannot commit). If the
request is to roll back, it should issue a rollback routine.

To understand how this works, recall that in CMS, a work unit is used to associate a set of changes that
must be committed (or rolled back) in unison (logical unit of work). The situation gets more interesting
when the application is distributed, because each part of the application will have its own work units
and some of them may need to be committed in unison with those of other parts of the application. The
protected conversation plays a vital role in the coordination of the work in these work units by providing
the link between them. The LUWID identifies the protected conversation and all protected resources

Your Applications and Data Integrity

248 z/VM: 7.2 CMS Application Development Guide

associated with it. This LUWID is comprised of three components: the fully qualified logical unit (LU)
network name; the instance number, which is unique at the LU that creates it; and the sequence number,
which is incremented by 1 following every sync point.

When a protected conversation is established, an LUWID and CMS work unit ID are associated with it.
Then, when the conversation is accepted, its LUWID is associated with a new work unit in the target
application. Figure 38 on page 249 illustrates how CMS work units and protected conversation LUWIDs
are related.

Appl.A
+-----------------+ Application A is using work unit x to do
| | some processing.
| work unit x |
| . | When it needs to communicate with Application B,
| . | it issues a Set_Sync_Level routine with
| Allocate | the CM_SYNC_POINT parameter followed by
| | | an Allocate to establish a protected conversation.
+------+----------+ An LUWID is created for the protected
 | conversation and is associated with work unit x.
 |LUWID1
 |
Appl.B |
+------+----------+ When Application B Accepts the protected
| Accept | conversation, a work unit is obtained and
| work unit y | associated with the protected conversation's
| . | LUWID. This work unit is not related to
| . | Application A's work unit x.
| Allocate |
| | | If Application B in turn needs to communicate
+---------+-------+ with another application on this work unit,
 | it establishes a protected conversation,
 |LUWID1 again using the same LUWID.
 |
Appl.C |
+---------+-------+ Upon Accepting the protected conversation, a
| Accept | work unit is obtained and associated with the
| work unit z | protected conversation's LUWID. This is still
| . | the same LUWID that was created when Application A
| . | first Allocated the protected conversation.
| . |
| |
+-----------------+

Figure 38. Relationship between CMS Work Units and Protected Conversation's LUWID

The LUWID ties the CMS work units together, so that whenever a sync point is reached and a commit is
issued on a work unit, the partners are notified and are requested to issue a commit of the work unit with
which they have associated the protected conversation. At this point, the system takes the responsibility
to coordinate the commit of all data for all parts of the application such that all parts either are committed
or rolled back. Should a rollback be required, even due to a failure outside your application, protected
conversations can put your application in a backout required state. This means that your application
should issue a rollback on the work unit associated with the conversation.

It is also possible for one of the partners to have protected conversations that it initiated with other
programs under the same work unit, so that these other programs would participate in the sync point. A
program may initiate multiple conversations on a work unit, but may accept only one.

When using protected conversations, your application may get errors that pertain only to those
conversations. You can use the DMSGETSP CSL routine to retrieve the detailed error passback blocks that
contain extended error information (as described in “Tracking Down Errors” on page 247) and then use
DMSPCAER CSL routine to parse the blocks of data for a particular conversation. This can be particularly
useful when debugging the communications sections of your application. DMSPCAER and DMSGETSP
are described in the z/VM: CMS Callable Services Reference. You can also use the DMSGETER (Get My
Errors) CSL routine to retrieve the detailed error passback blocks for use with DMSPCAER. This routine
is described in the z/VM: CMS Callable Services Reference. DMSGETER allows you to specify the resource
component ID and the exit name of the resource adapter for which you want extended error data. This
routine returns any detailed error blocks saved by the specified resource adapter since the last sync point.
DMSPCAER then uses the detailed error blocks to extract and return the extended error information for
the specified conversation.

Your Applications and Data Integrity

Chapter 16. Your Applications and Data Integrity 249

If your application does work unit management with multiple work units, as a server might, each work
unit can be considered as a separate instance of the application. By manipulating work units, your
application is doing some things that SAA designates as being the responsibility of the logical units. If
you want to make your application portable by using only SAA interfaces, you must refrain from doing
any work unit management. In the example outlined in Figure 38 on page 249, CMS does the work
unit management by getting a work unit during Accept. When the conversation initiator deallocates the
conversation, the partner application must end, causing CMS to return the work unit. A program that does
not need to be portable could issue DMSRETWU (Return Workunitid) CSL routine for the conversation
work unit. DMSRETWU is not an SAA interface.

For information about setting up protected conversations, see CPI Communications Reference and the
z/VM: CP Programming Services. For a sample scenario using CRR to synchronize multiple updates, see
“Scenario 3: Synchronizing Multiple Updates” on page 511.

Your Applications and Data Integrity

250 z/VM: 7.2 CMS Application Development Guide

Chapter 17. Writing a CRR Wait Routine for Multiuser
Server Applications

CRR tolerates but does not exploit CMS multitasking capabilities, so the routine it uses to wait on
asynchronous requests, the CMS-supplied CSL routine DMSCWAIT, causes CMS to go into a wait state.
This means that no work can be done on the virtual machine until the request completes. Therefore, if you
are writing an application that will perform multitasking, like a multitasking server for a shared resource,
you will want to provide your own routine for waiting on an event. This will avoid making all clients of the
shared resource wait on the event requested by one client.

Asynchronous Processing in CRR
Before discussing how to write a wait routine, however, let's look at how the synchronization point
manager (SPM) handles asynchronous processing, so we can understand how to take advantage of CRR's
tolerance for multitasking.

When the SPM receives an asynchronous request, it starts the asynchronous process and then calls
DMSCWAIT to wait for the request to complete. While the SPM—and consequently the virtual machine on
which it is running—waits, the request is processed. Once the request has been completed, the interrupt
handler for the module that processed it calls the DMSMARK CSL routine to allow the SPM to resume
processing. (DMSMARK is described in the z/VM: CMS Callable Services Reference.) The SPM then checks
the results of the asynchronous request and continues its processing. Figure 39 on page 251 outlines this
sequence.

 SPM receives an asynchronous request
 SPM starts the asynchronous process ----->
 SPM calls DMSCWAIT (to wait)
 Request is processed.
 When the request
 completes, interrupt
 handler calls DMSMARK,
 which changes the
 SPM's state.
 <--
 SPM looks at result of asynchronous
 request and continues its own
 processing.

Figure 39. Asynchronous Processing Sequence in CRR

Requests to the SPM are identified by a special integer value, called a request ID, that is associated with
the work unit originating the request. The SPM calls DMSCWAIT with this request ID.

Tolerance for multitasking during asynchronous communications can be achieved by exploiting the
following CRR operating characteristics:

1. Whenever CRR must wait on an asynchronous event, it uses a replaceable system function, the
DMSCWAIT CSL routine, to wait for the request to complete. For example, a resource adapter may be
processing a coordination exit asynchronously.

2. By specifying the ASYNC option on the DMSSSPTO (Set Synchronization Point Options) CSL routine,
you can indicate that CMS is to perform SPM processing asynchronously and call DMSCWAIT whenever
it waits.

Multitasking Scenario
There are two categories of multitasking server applications, those that use CMS threads and those
that implement their own subdispatching scheme. For these cases, the approach to using a DMSCWAIT
replacement is similar. The CMS multithreaded application can use semaphores to wait, thus allowing

Writing a CRR Wait Routine

© Copyright IBM Corp. 1990, 2022 251

other threads to be dispatched. It would associate a semaphore with each work unit and wait on the
corresponding semaphore. A thread that finds that the request is complete would signal the semaphore to
awaken the thread, which would return to the caller of DMSCWAIT. The subdispatching application would
suspend the task that was called for the DMSCWAIT and dispatch another.

Below is a simple scenario that applies to both and uses the generic term task to refer to either a CMS
thread or an application managed dispatchable unit. Your multitasking application gets a work unit for a
task and dispatches it. When the task reaches a sync point (for example, it issues a commit), the SPM
gets control so it can provide coordination if necessary. Because you previously issued DMSSSPTO with
ASYNC specified, the SPM calls DMSCWAIT when waiting for asynchronous events. Your replacement for
DMSCWAIT is actually called, so it can suspend the task making the request and associate the request
ID passed on DMSCWAIT with that task. Before your program dispatches another task, however, it should
issue a DMSCHECK NOWAIT for the request ID passed on DMSCWAIT. If the request has completed, the
task just suspended can be resumed. Otherwise, another task can be dispatched. If no tasks are ready,
your program should issue a DMSCHECK WAIT, specifying 0 for the requestid parameter.

Figure 40 on page 252 illustrates the flow of control between a multitasking application and the SPM.

Multitasking Application

 Work unit for each task

 Dispatch Task1

 do some processing

 issue a commit ------------------------> SPM

 issue DMSCWAIT
 <---

 Suspend Task1

 Dispatch Task2

 do some processing

 issue a commit ------------------------> SPM

 issue DMSCWAIT
 <---
 Suspend Task2

 Dispatch Task3
⋮
 Dispatch Task1 (after its request ID is returned on DMSCHECK)
⋮

Figure 40. Flow of Control between a Multitasking Application and the SPM

The following steps outline the operation of a replacement for the DMSCWAIT CSL routine for a
subdispatching application. See Figure 41 on page 253.

1. Call the application's context switching routine passing the request ID received as an input parameter
on the call to your replacement for DMSCWAIT.

2. If Suspend_Task was OK, then return OK.
3. Otherwise, return an "invalid request ID" code.

Note:

1. The application must maintain a one-to-one-to-one relationship between tasks and CMS work units
and request IDs. Therefore, the application (dispatcher) will have to get a work unit for each task that it
dispatches.

2. The application should map one of its tasks to the request ID passed as input on DMSCWAIT. Note that
more than one task may become ready before the request completes.

Writing a CRR Wait Routine

252 z/VM: 7.2 CMS Application Development Guide

3. For a subdispatching application, its Dispatcher must eventually:

a. Issue a check (DMSCHECK) with NOWAIT specifying this SPM request ID for the requestid
parameter, or

b. Receive this SPM request ID as output from DMSCHECK with requestid specified as 0 (any).

When ready to run, resume this task and return an OK return code.

For an application using multiple CMS threads, at processing breakpoints it should also issue the check
(DMSCHECK) as above and signal the semaphore corresponding to the request ID. This resumes the
thread on which DMSCWAIT was entered, which returns an OK return code.

Context_Switcher

 Suspend_Task

 1. Save caller's registers and return address

 2. Associate request ID with suspended task

 3. Call Dispatcher -------->

 Dispatcher

 1. Issue DMSCHECK with NOWAIT and
 the request ID from DMSCWAIT specified
 to see if the request has completed.

 2. CASE of
 1) Request completed
 Continue task just suspended
 2) Request not completed, but ready task
 Dispatch it
 3) No ready tasks
 Call DMSCHECK with WAIT option
 and request ID of 0
 Dispatch ready task
 end case.
 3. Return
 4. Return <-----------------

Figure 41. Context Switching Routine for Replacement of DMSCWAIT

Replacing DMSCWAIT
You can replace the IBM-supplied CRR Wait function by writing your own CSL routine, naming it
DMSCWAIT, and loading it to override the IBM-supplied version. For general information about writing
a CSL routine, see the z/VM: CMS Application Development Guide for Assembler. For information about the
CSLENTRY, CSLGETP, and CSLEXIT macros used in writing a CSL routine, see the z/VM: CMS Macros and
Functions Reference.

Exit Routine Parameters
The IBM-supplied CSL template file for the DMSCWAIT routine is DMS2OW TEMPLATE, shown in Figure
42 on page 253. This file identifies the routine's input and output parameters. The general format of a CSL
template file is described in the z/VM: CMS Macros and Functions Reference.

3 3 3 parms maximum, 3 required
SBIN 4 OUTPUT Return Code
SBIN 4 OUTPUT Reason Code
SBIN 4 INPUT Requestid

Figure 42. DMS2OW TEMPLATE File

DMS2OW TEMPLATE contains templates for three required parameters:

1. The return code from DMSCWAIT. Your routine must return one of the following values:

Writing a CRR Wait Routine

Chapter 17. Writing a CRR Wait Routine for Multiuser Server Applications 253

Value
Meaning

0
The operation was successful.

8
The operation was unsuccessful.

2. The reason code from DMSCWAIT. The following value is defined:
Value

Meaning
90216

Invalid request ID. There is no such request ID.
3. The request ID that specifies the asynchronous events request to be waited for.

Making Your Exit Routine Available
You must arrange to have your version of DMSCWAIT called instead of the IBM-supplied module in
VMLIB. You can do this by putting your DMSCWAIT in your own callable services library:

1. Generate a TEXT file for your routine.
2. Create a CSL control file for your library. Although you can use any file ID for the control file, you

might want to adopt the convention of using the name of your library and the file type CSLCNTRL. For
example, if you plan to name your library MYLIB, name the control file MYLIB CSLCNTRL.

In the control file, create a ROUTINE record that identifies the CSL routine name, the TEXT file name,
and the CSL template file name. For example, your ROUTINE record might look like this:

ROUTINE DMSCWAIT DMSCWAIT DMS2OW

The complete syntax of a ROUTINE record is described in the z/VM: CMS Application Development
Guide for Assembler.

3. Use the CSLGEN command to build your callable service library. You can store your library on a
minidisk or in a saved segment. For example, to build MYLIB on a minidisk accessed as file mode A,
enter:

cslgen dasd mylib from mylib

For more information about the CSLGEN command, see the z/VM: CMS Commands and Utilities
Reference.

4. Update the multitasking server's PROFILE EXEC:

a. Add a command to access the minidisk on which your library resides. (This is not necessary if your
library is in a saved segment.)

b. Add an RTNLOAD command to load your routine. For example, to load DMSCWAIT from the MYLIB
library, add:

rtnload dmscwait (from mylib system

You do not need to add a GLOBAL command because the library is specified in the RTNLOAD
command. You do not need to add an RTNDROP command either; your own DMSCWAIT overrides
the IBM-supplied version once the RTNLOAD command is executed. For more information about
the RTNLOAD command, see the z/VM: CMS Commands and Utilities Reference.

c. If applicable, release the minidisk on which your library resides.

Writing a CRR Wait Routine

254 z/VM: 7.2 CMS Application Development Guide

Chapter 18. Getting a Resource Manager to
Participate in CRR

This chapter is intended to help programmers with product development responsibility who are writing
code to enable a resource manager to participate in CMS Coordinated Resource Recovery (CRR).

What Is CRR Participation?
The part of a resource manager that resides in the application's (user's) virtual machine and provides the
communications link between the application and the separate resource manager machine is called the
resource adapter. To participate in CRR, you must write additional code for your resource adapter and
your resource manager. This chapter describes the additional function you must provide.

A single resource adapter might be able to handle multiple resources. For example, CMS provides a
resource adapter that supports multiple SFS file pool servers.

Note: Typically, the link between the resource adapter and its resource manager is established through
nonprotected APPC/VM conversations or some other mechanism that does not support coordination.
However, a variation of CRR participation is possible in which the resource manager and resource adapter
use protected APPC/VM conversations, which do support coordination. This variation has some unique
rules. For more information, see “Using Protected Conversations” on page 301.

Participation in CRR is the interaction of the resource manager and resource adapter with two parts of
CRR:

• The resource adapter interacts with the CRR synchronization point manager (SPM).

The SPM is the part of CRR that is loaded into the application's virtual machine (with CMS). The resource
adapter must register the resource with the SPM. During synchronization point (sync point) processing,
the SPM drives exits to registered resource adapters for the various sync point functions. You must write
one or two CSL routines to handle these exit calls. Your resource adapter can also use these exits to do
additional processing.

• The resource manager interacts with the CRR recovery server.

The CRR recovery server is a virtual machine that provides CRR logging and recovery functions. The
resource manager must establish communications with the CRR recovery server to exchange log names
and other data needed if resynchronization processing becomes necessary.

Note: A resource manager that supports a simple (one-phase) commit and registers with CRR as the
only write-mode resource permitted on the work unit can participate in CRR without a CRR recovery
server. This type of participation is called "limp mode". Operating in this mode makes the resource
more available to the application, but could cause some system performance degradation. In this mode,
only one protected resource on a CMS work unit can be updated, and protected conversations are not
allowed. You can still access SFS file pools in this mode, but you can commit files with integrity only
within the same file pool.

For examples of the communication flows, see Appendix I, “CRR Communications Examples,” on page
583.

CRR Participation Requirements
For an application to call CRR services, the application must:

• Use resources that have the support needed to participate in CRR
• Explicitly or implicitly call a CRR commit or rollback.

To participate in CRR, a resource must have:

Getting a Resource Manager to Participate in CRR

© Copyright IBM Corp. 1990, 2022 255

• A resource manager that supports:

– The CRR two-phase commit process and CRR resynchronization
– APPC conversations (SYNC_LEVEL=CONFIRM) for CRR recovery server communications
– Exchange Log Names and Compare States APPC general data stream (GDS) variables (modified).

• A resource adapter that:

– Registers the resource with the SPM
– Understands the exit interface with the SPM, which consists of exit calls for the following sync point

functions:

- Precoordination
- Coordination (two-phase commit)
- Postcoordination
- End of work unit
- Backout required.

– Translates resource manager-specific commit or backout requests (if Brand X has its own verbs) into
CRR commits or rollbacks

– Reflects to CRR any resource errors detected outside of a sync point.

Logging
Logging of data is a central requirement for participation in CRR. The SPM, the CRR recovery server, and
the participating resource manager all have logging responsibilities. Logging by the SPM and the CRR
recovery server is described in the z/VM: CMS File Pool Planning, Administration, and Operation.

There are two types of information that the resource manager must log:

• Resource changes being coordinated through CRR, in case the changes need to be recovered
• Information about the transaction, such as the transaction tag and the logical unit of work identifier

(LUWID). The SPM passes these values to the resource adapter in the exit call.

The resource manager may also decide to put into the log other information that it must save, such as the
CRR recovery server's LU name (locally known LU name and fully qualified LU name), transaction program
name (TPN) or resource ID, and log name.

The resource manager can give its log any name, as long as the name uniquely identifies the current
version and is not longer than 64 bytes. For example, the resource manager could use the cold start (log
initialization) time stamp as the name of the log. The resource manager also might want to provide one or
more facilities to reconfigure the log. For example, SFS provides the FILESERV LOG command.

Resource Adapter Interface with the SPM
The resource adapter's interface with the SPM consists of:

• A group of IBM-supplied CSL routines that the resource adapter calls for SPM functions. These routines,
listed in Table 30 on page 256, reside in the VMLIB callable services library.

Table 30. CSL Routines the Resource Adapter Calls for SPM Functions

Routine Description

DMSCHREG Changes resource registration values.

DMSGETER Retrieves error blocks containing warning and error data.

DMSGETRS Gets information about the CRR recovery server.

DMSMARK Marks the completion of an asychronous event.

Getting a Resource Manager to Participate in CRR

256 z/VM: 7.2 CMS Application Development Guide

Table 30. CSL Routines the Resource Adapter Calls for SPM Functions (continued)

Routine Description

DMSREG Registers a resource and its adapter with the SPM.

DMSSETR Tells the SPM that a resource has had a backout (rollback) or failure.

DMSUNREG Deletes the registration of a resource.

For more information about the format and content of these CSL routines, see the z/VM: CMS Callable
Services Reference.

• One or two CSL routines that you write as part of your resource adapter to provide sync point exits
for the SPM. After your resource adapter registers for CRR participation, the SPM drives these exits to
the resource adapter for the sync point functions shown in Table 31 on page 257. The exits provide
opportunities for functional customization by registered resource adapters.

Table 31. Resource Adapter Exits

Function Description

Precoordination Called to make sure that the resource is ready for a sync point.

Coordination Called to include the resource in a sync point.

Postcoordination Called to clean up after a sync point.

End of work unit Called for cleanup processing before the work unit ends.

Backout required Called to put the resource in a state such that a backout is required.

All exits to the resource adapter can be driven through a single CSL routine. However, because the
backout-required exit is driven from the interrupt handler, which restricts the processing allowed in that
exit, you can write a separate CSL routine to handle the backout-required function. Information about
writing the exit routines is provided later in this chapter.

• The ADAPTRC macro, supplied by IBM in the DMSGPI MACLIB, which defines the constants (sync point
functions, sync point actions, return codes, and response codes) used in the resource adapter exits. The
names of the constants begin with the letters ADA. For more information about the ADAPTRC macro,
see the z/VM: CMS Macros and Functions Reference.

Registering a Resource for CRR
To participate in CRR, a resource must be registered with the SPM. The resource adapter registers the
resource for a particular CMS work unit by calling the DMSREG (Resource Adapter Registration) CSL
routine. Data items that the resource adapter supplies in DMSREG include:

• The adapter token that the resource adapter uses to identify the resource (because the resource
adapter might be handling multiple resources)

• The names of the resource adapter's exit routines

Note: The exit routines must be loaded into the application virtual machine (using the RTNLOAD
command) before you can use DMSREG to register.

• The resource manager's fully qualified LU name and TPN
• The resource recovery TPN or PIP data
• The CMS work unit ID
• Various flags to indicate the type of registration (see “Setting the Registration Flags” on page 259).

This is not intended to be a complete list of DMSREG parameters. Some of the DMSREG parameters
are optional; many have default values. For complete information about the format and content of the
DMSREG routine, see the z/VM: CMS Callable Services Reference.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 257

The output of each registration is a unique registry token that the SPM returns to the resource adapter.
The resource adapter must save the registry token and use it in other CRR routines to identify the specific
instance of registration (resource and resource adapter pair for the CMS work unit). A resource adapter
handling multiple resources or multiple CMS work units may register many times.

Getting Information about the Resource Manager
Before calling DMSREG, the resource adapter might first have to get the following information about the
communications link with the resource manager:

• Local (resource adapter's) fully qualified LU name
• Remote (resource manager's) fully qualified LU name
• Mode name (conversation characteristics)
• Resource manager's TPN
• Session instance ID (optional DMSREG parameter)
• Access user ID (optional DMSREG parameter).

How the resource adapter gets these values depends on whether the resource adapter is using
CPI Communications (also known as the SAA communications interface) or the APPC/VM assembler
programming interface to communicate with its resource manager.

Note: If the resource adapter and resource manager are on different processors, you should set up a CMS
communications directory (COMDIR) file before using either method.

Using CPI Communications (SAA Communications Interface)
You can get the values you need (including the lengths of the variables) by calling the CSL routines
indicated in the following list.

Value CPI Communications (SAA Communications) Routine

Local fully qualified LU
name

XCELFQ (Extract Local Fully Qualified LU Name)

Remote fully qualified
LU name

XCERFQ (Extract Remote Fully Qualified LU Name)

Mode name CMEMN (Extract Mode Name)

TPN XCETPN (Extract TP Name)

Access user ID XCECSU (Extract Conversation Security User ID)

For more information about these routines, see the CPI Communications Reference.

Using the APPC/VM Assembler Programming Interface
You can get the values you need (including the lengths of the variables) through the following sequence of
macros.

1. APPCVM CONNECT establishes a communications path.

Note: You must set up an APPC/VM parameter list before using this macro.
2. CMSIUCV CONNECT requests CMS to perform a CONNECT. The connection complete extended data

returned by this macro includes:

• Local fully qualified LU name
• Remote fully qualified LU name
• Access user ID
• Session instance ID.

Getting a Resource Manager to Participate in CRR

258 z/VM: 7.2 CMS Application Development Guide

3. CMSIUCV RESOLVE places the results of a COMDIR symbolic destination name resolution into the
APPC/VM parameter list and the connection parameter list extension. These results include:

• Mode name
• TPN.

For information about the APPCVM macro, see z/VM: CP Programming Services. For information about the
CMSIUCV macro, see the z/VM: CMS Macros and Functions Reference.

Getting Information about the CRR Recovery Server
Before the first sync point (specifically, before the end of the first precoordination exit call from the SPM)
the resource manager and the CRR recovery server must exchange log names and other information
to make sure they have consistent log information about the transactions (LUWIDs) that might require
resynchronization processing. This is called resynchronization initialization. To establish communications
with the CRR recovery server, the resource manager needs certain information about the CRR recovery
server, such as its locally known LU name and TPN.

When the resource adapter allocates the conversation with the resource manager, the resource manager
receives connection pending extended data (also called allocate data). This data includes the mode name
and the "connect back" locally known LU name. The resource manager must save this information to use
when allocating the conversation with the CRR recovery server. (The CRR recovery server has the same
locally known LU name as the resource adapter because they are always on the same processor.) For a
description of this flow, see Appendix I, “CRR Communications Examples,” on page 583.

To get the CRR recovery server's TPN, the resource adapter can call the DMSGETRS (Get Recovery Server
Information) CSL routine and then pass the value to the resource manager. Although this task is not
required before registration, as part of the registration process you may want to have the resource adapter
call DMSGETRS to get the information, have the resource adapter pass the information to the resource
manager, and then have the resource manager do the exchange of log names. If the resource manager is
on the same system as the resource adapter, the resource manager can call DMSGETRS.

Note: If the resource adapter calls DMSGETRS and receives a message that the CRR recovery server
is unavailable, registration is still possible if the resource supports simple commits and is the only
write-mode resource on the work unit. This type of CRR participation is called "limp mode". No exchange
of log names is necessary (or possible). Protected conversations are not allowed. Although the resource is
more available to the application in this mode, there could also be a system performance degradation.

For complete information about the format and content of the DMSGETRS routine, see the z/VM: CMS
Callable Services Reference. For more information about exchanging log names, see “Exchanging Log
Names” on page 287.

Setting the Registration Flags
To indicate the type of registration the resource adapter is requesting, you can set the following optional
flags in the DMSREG routine. (These parameters all have default values.)

• The simple-commit flag indicates whether the resource adapter and resource manager can support a
simple (one-phase) commit call. Whenever possible, you should set this flag ON (the default) to reduce
processing.

If only one resource adapter is registered for write mode on the work unit (see the description of
the write-mode flag), and no resource adapter is registered with the simple-commit flag set OFF, the
SPM can optimize for a simple commit rather than a two-phase commit. In that case, because no
resynchronization activity is needed, no logging is done by the CRR recovery server or the resource
manager.

If the simple-commit flag is set OFF, CRR does a two-phase commit regardless of the setting of the
write-mode flag.

• The write-mode flag indicates whether the resource should be treated as if there are updates to be
committed or backed out.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 259

If you set the flag OFF (the default), the SPM and the CRR recovery server do not do any logging for
this resource. The resource is still called during coordination processing. However, if a problem occurs
during coordination, no resynchronization processing is done.

• The single-writer flag indicates, when the write-mode flag is ON, whether this is the only write-mode
resource permitted for the work unit. The default setting is OFF.

For resource managers that do not support the two-phase commit protocol (such as a VM/SP Release 6
SFS file pool server), you should set this flag ON and also set the simple-commit flag ON.

• The function flags indicate the sync point functions (precoordination, coordination, postcoordination,
end of work unit, and backout required) for which you want the SPM to call an exit to the resource
adapter. The default is to exit for all of the functions.

Under most circumstances, you should leave the end-of-work-unit flag set ON so the SPM exits to the
resource adapter to clean up and unregister when the work unit completes. Your cleanup processing
could include such things as releasing storage and severing paths to your resource manager. You must
unregister as part of the end-of-work-unit processing.

Note: If your resource manager is participating in CRR as an "interested party" that needs to know only
when sync points occur and what their outcome is, you can register in "listening mode" by setting the
postcoordination flag ON and setting all the other function flags OFF.

Changing Registration Values
The DMSCHREG (CRR Change Registration) CSL routine allows the resource adapter to change the
following registry values without having to unregister the resource and reregister:

• Write-mode flag
• Single-writer flag
• Function flags
• Recovery token.

For example, if the resource is not "in work", there is no need for the resource adapter to participate in
sync point activities. The resource adapter can avoid unnecessary processing by calling DMSCHREG and
setting all the function flags OFF (except the end-of-work-unit flag, which should be left ON). When there
is more work for the resource, the resource adapter can call DMSCHREG again and set the necessary flags
ON.

Note: Changing the flag for the sync point function already in progress will not take effect until the next
sync point. The resource adapter will continue to be called for the sync point function in progress, if it is
registered for that function, until the sync point completes.

For complete information about the format and content of the DMSCHREG routine, see the z/VM: CMS
Callable Services Reference.

Unregistering the Resource
As part of end-of-work-unit processing, the resource adapter must end the registration by calling the
DMSUNREG (Unregistration) CSL routine. The SPM will then remove the entry for this instance of
registration from its coordination list.

Note: Remember that the registration represents a resource and resource adapter pair for a specific work
unit. The same resource adapter could be registered with a different resource on the same work unit or on
a different work unit.

Unregistration takes effect immediately. Do not call this routine from any exit except postcoordination
while a sync point is in progress. Otherwise, the resource adapter will not be driven for any subsequent
processing by the SPM.

For information about the format and content of DMSUNREG, see the z/VM: CMS Callable Services
Reference.

Getting a Resource Manager to Participate in CRR

260 z/VM: 7.2 CMS Application Development Guide

CRR Exits to Registered Resource Adapters
A user application explicitly starts CRR processing when the application issues a commit or backout
(rollback) request:

• SAA resource recovery (also known as CPI resource recovery) routines:

– SRRCMIT
– SRRBACK.

• z/VM resource recovery CSL routines:

– DMSCOMM
– DMSROLLB.

• Resource manager verbs.

Note: If the application issues a resource manager commit or backout verb, the resource adapter for
that resource manager must translate the request into a CRR commit or rollback.

When the SPM is executing one of the CRR sync point functions, it calls the exit routines of the resource
adapters registered for that function for the CMS work unit being processed.

A user application implicitly starts CRR processing when it:

• Reaches CMS end-of-command processing.

When CMS reaches normal end of command, end-of-command processing issues a CRR commit for
all active CMS work units. After this is done, end-of-command processing calls exits to the resource
adapters registered for CRR's end-of-work-unit function.

• Calls DMSRETWU (Return Work Unit ID) processing.

DMSRETWU issues a CRR commit for the work unit being returned. After this is done, DMSRETWU calls
exits to the resource adapters registered for CRR's end-of-work-unit function.

• Reaches CMS end-of-subset processing.

When CMS reaches normal end of subset, end-of-subset processing issues a CRR commit for all CMS
work units obtained during subset mode. After this is done, end-of-subset processing calls exits to the
resource adapters registered for CRR's end-of-work-unit function.

• Calls DMSPURWU (Purge Work Unit IDs) processing.

When an application requests CMS to purge work unit IDs, CMS issues a CRR rollback (backout) for all
CMS work units. After this is done, DMSPURWU calls exits to the resource adapters registered for CRR's
end-of-work-unit function.

• Reaches CMS abend processing.

When an application abends, CMS issues a CRR rollback (backout) for all CMS work units. After this
is done, abend processing calls exits to the resource adapters registered for CRR's end-of-work-unit
function.

Synchronous and Asynchronous Exit Processing
The resource adapter exit interface can be used in either a synchronous or asynchronous manner. A
resource adapter's exits will be entered disabled for interrupts.

Based on performance considerations, the SPM uses the request ID field in the exit call to indicate the
type of processing the resource adapter should use to communicate with its resource manager. When a
sync point involves a single resource adapter, synchronous processing provides better performance. The
SPM indicates synchronous processing by sending a request ID value of 0. When a sync point involves
multiple resource adapters, asynchronous processing provides better performance. The SPM indicates
asynchronous processing by sending a nonzero request ID.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 261

It is a requirement that adapter exits do not enable for interrupts as part of their processing, but instead
use the asynchronous capability provided by CRR. The SPM will enable for interrupts in a carefully
controlled manner.

Synchronous Processing
A resource adapter must use the WAIT=YES parameter on any APPC/VM communications operating
synchronously in a resource adapter exit. However, operating in this fashion could have a serious impact
on the performance of the sync point if there is more than one resource participating in the sync point.

Resource adapter exits for the postcoordination and backout-required functions must operate only
synchronously.

In synchronous processing, the resource adapter's exit routine must set one of the following return codes.
RC

Meaning
0

ADACOMP (Complete). The exit has completed its activity. The response code is an output parameter
of exit processing. The error block and actual error data length (if your resource manager supports
them) should be updated if errors or warnings occurred.

8
ADACOMPD (Complete—Default Response). The exit did not recognize the action being driven by
the SPM. The SPM should not look at the response code parameter, but instead should assume the
default response.

12
ADARCAF (Adapter Failure). Exit processing had a failure. This code should be used for such things as
running out of virtual storage. The SPM assumes a response code value of ADAAERR (Adapter Failure).

An example of a resource adapter using the adapter exit interface synchronously is when all resource
processing is done within a virtual machine and there is no communication outside of the virtual machine.

Asynchronous Processing
A resource adapter should use the WAIT=NO parameter on any APPC/VM communications operating
asynchronously in a resource adapter exit. Because CPI Communications routines operate synchronously,
using these routines in a resource adapter exit could have a serious impact on performance.

In asynchronous processing, the resource adapter's exit routine must set one of the following return
codes.
RC

Meaning
0

ADACOMP (Complete). The exit has completed its activity. The response code is an output parameter
of exit processing. The error block and actual error data length (if your resource manager supports
them) should be updated if errors or warnings occurred.

4
ADAREDRV (Redrive). The exit started the action, but the exit must be redriven when some
asynchronous activity is complete, because more processing is needed to determine the correct
response.

The resource adapter's interrupt handler must call the Mark Request ID (DMSMARK) CSL routine,
passing the request ID that the resource adapter received from the SPM in the exit call. If the interrupt
handler is able to determine what the response is, it can pass the response back to the SPM in the
optional_data_word_1 parameter on DMSMARK. If this parameter contains a nonzero value, the SPM
will not redrive the exit. Otherwise, the exit will supply a response code when it completes processing
after being redriven.

Getting a Resource Manager to Participate in CRR

262 z/VM: 7.2 CMS Application Development Guide

It is a good idea to take advantage of the optional_data_word_1 parameter because the broadcast will
be faster. However, a resource adapter should not add exorbitant path length to its interrupt handler if
the response cannot be determined quickly.

If errors and warnings occurred, the error block should be updated directly by the interrupt handler
(again, only if it is able to know what the errors are), and the new actual error data length should be
passed to DMSMARK in the optional_data_word_2 parameter.

For complete information about the format and content of the DMSMARK routine, see the z/VM: CMS
Callable Services Reference.

8
ADACOMPD (Complete—Default Response). The exit did not recognize the action being driven by the
SPM. The SPM should ignore the response code parameter, and instead should assume the default
response.

12
ADARCAF (Adapter Failure). The exit processed but had a failure. This code should be used for
such things as running out of virtual storage. The SPM assumes a response code value of ADAAERR
(Adapter Failure).

The following sequence describes asynchronous communication between a resource adapter and its
resource manager:

1. The resource adapter saves the request ID passed by the resource manager in a place where its
interrupt handler can find it.

2. The resource adapter's exit routine sets the ADAREDRV (Redrive) return code to be returned to the
SPM.

3. If any participants have asked to be redriven, the SPM enables for interrupts using the CSL routine
DMSCWAIT. Otherwise, the SPM continues with the next sync point action.

4. When the resource adapter's resource manager responds to the action, the interrupt is presented by
CP.

5. When the asynchronous event completes, the resource adapter's interrupt handler gets control and
uses the DMSMARK routine to pass the saved request ID to the SPM.

6. The SPM awakens and redrives all resource adapters that set ADAREDRV and did not use the
optional_data_word_1 parameter when calling DMSMARK.

7. If the resource adapter has not finished processing, it can set ADAREDRV again to be returned to the
SPM.

8. Go back to step “3” on page 263.

CRR's Multitasking Dispatcher Exit
CRR provides a way for multitasking dispatchers (servers) to use the asynchronous exit from CRR. You
must replace the CMS-supplied wait routine, DMSCWAIT, with your own wait routine. This allows the
multitasking dispatcher to process other work while CRR waits for resource adapters, on behalf of their
resource managers involved in CRR processing, to complete their work. See Chapter 17, “Writing a CRR
Wait Routine for Multiuser Server Applications,” on page 251.

Writing Resource Adapter Exit Routines
You must write a CSL routine to handle exit calls from the SPM to your resource adapter. This section
describes the exit routine parameters and discusses the type of processing your exit routine must do for
each of the possible sync point function and action calls from the SPM. For general information about
writing a CSL routine, see the z/VM: CMS Application Development Guide for Assembler. For information
about the CSLENTRY, CSLGETP, and CSLEXIT macros used in writing a CSL routine, see the z/VM: CMS
Macros and Functions Reference.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 263

Because the backout-required exit is driven from the interrupt handler, the processing allowed in that exit
is very restricted. (See “Exit Routine Processing” on page 266.) Therefore, you may write a separate CSL
routine to handle the backout-required exit.

You identify the names of your exit routines to the SPM when you register your resource for CRR
participation. See “Registering a Resource for CRR” on page 257.

Note: The exit routines must be loaded into the application virtual machine (using the RTNLOAD
command) before the resource adapter can use the DMSREG routine to register for CRR participation.

Exit Routine Parameters
The IBM-supplied CSL template file for the resource adapter exit routine is ADAPTERX TEMPLATE, shown
in Figure 43 on page 264. This file identifies the parameters the SPM supplies on the exit call and the
parameters your exit routine must supply as output to the SPM. Even if you plan to write a separate CSL
routine for the backout-required exit, all of the exit functions use the same parameters; therefore, you
can use ADAPTERX TEMPLATE for both exit routines. For information about the general format of a CSL
template file, see the z/VM: CMS Application Development Guide for Assembler.

IBM supplies the ADAPTRC macro (in the DMSGPI MACLIB) to define the constants (sync point functions,
sync point actions, return codes, and response codes) used in the resource adapter exit routines. The
name of each constant begins with the letters ADA. For information about the contents of this macro, see
the z/VM: CMS Macros and Functions Reference.

10 10 10 Parms Maximum, 10 Required
SBIN 4 OUTPUT Return Code
SBIN 4 OUTPUT Response Code
SBIN 4 INPUT Function
SBIN 4 INPUT Action
SBIN 4 INPUT Adapter Token
SBIN 4 INPUT Request ID
FCHR 0 INOUT Error Block
SBIN 4 INOUT Usable Error Data Length
FCHR 0 INPUT LUWID
FCHR 0 INPUT Transaction Tag

Figure 43. ADAPTERX TEMPLATE File

ADAPTERX TEMPLATE contains templates for 10 required parameters:

1. The return code from the exit routine. Your routine must return one of the following codes:

Table 32. Resource Adapter Exit Routine Return Codes

ADAPTRC Constant RC Description and SPM Action

ADACOMP (Complete) 0 The exit routine has completed.

The SPM checks the response code for the results of
driving the exit.

ADAREDRV (Redrive) 4 The exit routine has started processing, and
asynchronous processing continues.

The SPM redrives the exit when asynchronous
processing completes.

ADACOMPD (Complete—Default
Response)

8 The exit routine has completed processing and
could not recognize the action value.

The SPM assumes the response code has the
default value.

Getting a Resource Manager to Participate in CRR

264 z/VM: 7.2 CMS Application Development Guide

Table 32. Resource Adapter Exit Routine Return Codes (continued)

ADAPTRC Constant RC Description and SPM Action

ADARCAF (Adapter Failure) 12 The exit routine cannot complete processing for
some reason, and the response code contains no
meaningful information.

The SPM assumes a response code value of
ADAAERR (Adapter Failure).

2. The response code from the exit routine. The response code is meaningful only when the return code
has a value of ADACOMP (Complete). There are specific response codes that your exit routine can
return for each sync point function and action call. The response codes are described in the next
section (“Exit Routine Processing” on page 266).

3. The sync point function for which the SPM calls the exit to the resource adapter. The SPM sets this
parameter to one of the values shown in Table 33 on page 265.

4. The sync point action for which the SPM drives the exit to the resource adapter. Table 33 on page 265
lists the possible actions that the SPM can specify for each sync point function.

Note: There are two sets of actions for the coordination exit call. The first set, listed in Table 33
on page 265, is used when a resource adapter is participating as an agent in the sync point. The
second set, defined in the ADAPTRC macro but not listed here, is used when the SPM drives the
resource adapter as the initiator of the sync point; that is, when the sync point involves protected
conversations.

Table 33. Synchronization Point Functions and Actions

Function Actions

ADAPRCF (Precoordination) ADAPRCOM (Precoordination Commit)
ADAPRBCK (Precoordination Backout)

ADACORF (Coordination) ADAPREP (Prepare)
ADARQCMT (Request Commit)
ADACMTD (Committed)
ADACMTDL (Committed with New LUWID)
ADANEWL (New LUWID)
ADABOUT (Backout)
ADABOUT2 (Second Phase Backout)
ADAOKBO (OK Backout)
ADAPTRS (Prepare to Resynchronize)
ADADA (Deallocate Abend)
ADAIOKBO (Initiator OK Backout)

ADAPSCF (Postcoordination) ADAPSCOM (Postcoordination Commit)
ADAPSBCK (Postcoordination Backout)
ADAPSSC (Postcoordination State Check)
ADAPSABN (Postcoordination Abnormal Termination)

ADAEWUF (End of Work Unit) ADAEWPUR (Purge Work Unit)
ADAEWRET (Return Work Unit)
ADAEWEOC (End of Command)
ADAEWABN (Abend)
ADAEWSS (End of CMS Subset)

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 265

Table 33. Synchronization Point Functions and Actions (continued)

Function Actions

ADABORQF (Backout Required) ADABRQBO (Backout)
ADABRQRF (Resource Failure)
ADABRQDA (Deallocate Abend)

5. The adapter token that your resource adapter uses to identify the resource, in case the resource
adapter is handling multiple resources. You supply this value to the SPM when you register the
resource for the work unit, and the SPM passes the value back in the exit call.

6. The request ID that the SPM associates with the adapter token. The SPM passes this value to the
resource adapter to support asynchronous processing. If the value passed is 0, the resource adapter
must use synchronous processing. See “Synchronous and Asynchronous Exit Processing” on page
261.

7. The error block allocated for this resource. You determine the size of the buffer you want to use. You
supply this value to the SPM when you register the resource.

Note: To have a usable error buffer, you must specify a value greater than 4. The first four bytes of the
buffer are used to specify the length of the buffer, so a 4-byte buffer has no room for any error data.
If you specify a value of 0, the SPM passes a default 4-byte buffer to the resource adapter on the exit
call. Values of 1, 2, or 3 are not valid.

8. The actual error data length is the amount of usable information in the error block. The SPM sets this
parameter to 4 at the start of a sync point. Until the start of the next sync point, the resource adapter
must manage this parameter to indicate how much of the error block is in use. See “Detailed Error
Passback Support” on page 285.

9. The SNA LU 6.2 architected logical unit of work identifier (LUWID). The range for this variable is 0-26
characters.

• In the ADAPRCF (Precoordination Function) call, this is the LUWID to be used with the current
sync point. If no LUWID is specified in the exit call, the SPM passes the LUWID as part of the first
coordination phase.

• In the ADACORF (Coordination Function) call, this is normally the LUWID to used with the current
sync point. However, in some cases (the ADACMTDL and ADANEWL actions, for example) this is the
LUWID to be used for the next sync point.

• In the ADAPSCF (Postcoordination Function), ADAEWUF (End-of-Work-Unit Function), and
ADABORQF (Backout-Required Function) calls, this is the LUWID to be used for the next sync point.

10. The transaction tag for this sync point (work unit), if the application has assigned one. For more
information about transaction tags, see “Setting Up to Ensure Data Integrity” on page 243 and the
description of the DMSSETAG CSL routine in the z/VM: CMS Callable Services Reference.

Exit Routine Processing
The execution attributes of a resource adapter exit are:

• Disabled for interrupts
• Supervisor state in Program Status Word (PSW)
• PSW key zero (can access system key or user key data)
• AMODE 31 (can be used in an XC-mode virtual machine).

There are certain restrictions on the type of processing that the exit routine is permitted to do:

• The exit routine may not enable itself for interrupts.
• No SVCs may be issued (applies to all exit functions except end of work unit).
• No asynchronous activity is allowed (applies only to the backout-required exit).

Getting a Resource Manager to Participate in CRR

266 z/VM: 7.2 CMS Application Development Guide

• No communications such as APPC communications can take place (applies only to the backout-required
exit).

The SPM passes the following information to the resource adapter on the exit call:

• Sync point function being called
• Action to be performed by the resource adapter
• Adapter token to identify the resource
• Request ID to be used when doing asynchronous processing
• Address of the buffer where detailed error information can be stored for the application
• Logical unit of work identifier (LUWID)
• Transaction tag to identify the sync point.

The resource adapter exit routine that you write must:

• Perform any requested action in the resource for each sync point function you intend to register for
• Pass the SPM-supplied LUWID to the resource manager
• Complete any other processing you want to do for the sync point function and action
• Return architected CRR return codes and response codes and optional error information to the SPM.

Specific exit processing considerations for each sync point function and action are described in the
following sections.

Normally, the resource adapter and resource manager maintain a continuous conversation from the
time an application first accesses the resource until the piece of work is completed. However, there
are times when a resource adapter should break its connection to the resource manager prematurely,
such as when an adapter exit is driven for the ADAPTRS (Prepare to Resynchronize) action. At that
time, the resource adapter should deallocate the conversation to prevent any further updates to the
resource. Also, if the resource adapter responds to an exit call from the SPM with a response such as
ADAPV (Protocol Violation), the SPM assumes that communications between the resource adapter and
the resource manager has already ended.

ADAPRCF (Precoordination Function) Exit
The possible actions in the precoordination exit are:

• ADAPRCOM (Precoordination Commit)
• ADAPRBCK (Precoordination Backout).

The precoordination exit gives your resource adapter a chance to do other processing before the SPM
calls the registered resources for the actual commit or backout processing. The resource adapter can use
this exit to do such things as flush buffers and release read locks. A very important task in this exit is
for the resource adapter to verify that it is in the proper state for a sync point and then inform the SPM.
Resource adapters are driven for the precoordination exit before any protected conversations are driven.

This exit provides optional asynchronous capability by using the ADAREDRV (Redrive) return code.
However, if the SPM passes a request ID of 0 on the call, the resource adapter must use synchronous
processing.

ATTENTION

This exit is intended to provide an opportunity for the resource adapter to communicate with the resource
manager to ensure that everything is ready for the sync point. It should not be used to do any work with
another resource. Except for protected conversations, which are always called last, you cannot predict the
order in which the SPM will call the resource adapters registered for the work unit; therefore, you cannot
predict when those changes will be committed.

SFS flushes its buffers before the precoordination exit. Do not use this exit to write to any SFS file pool,
because the changes will not be committed.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 267

ADAPRCOM (Precoordination Commit) Action
This action occurs before coordination exit processing. The application program has requested a commit
sync point.

Table 34 on page 268 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPRCOM action call, and the resulting action taken by the SPM for each response.

Table 34. Resource Adapter Exit Routine Response Codes for the ADAPRCOM (Precoordination Commit) Sync
Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Ready to start a commit.
Default response.

Performs coordination exit processing for
registered adapters for commit sequence
starting with the action of ADAPREP or
ADARQCMT.

ADACSCHK 76 Adapter cannot commit due to its
application state.

1. Bypasses all coordination exit processing.
2. Performs postcoordination exit processing
for registered adapters with an action value
of ADAPSSC (State Check).

ADACPERR 84 Adapter cannot commit due to
condition other than application
state.

Performs coordination exit processing for
registered adapters for backout starting with
the action of ADABOUT.

ADARF 8 Resource unavailable due to
session failure or resource
manager failure.

Performs coordination exit processing for
registered adapters for backout starting with
the action of ADABOUT.

ADAAERR 212 Adapter failed; resource
unavailable.

Performs coordination exit processing for
registered adapters for backout starting with
the action of ADABOUT.

ADAPRBCK (Precoordination Backout) Action
This action occurs before coordination exit processing. The application program has requested a backout
sync point.

Table 35 on page 268 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPRBCK action call, and the resulting action taken by the SPM for each response.

Table 35. Resource Adapter Exit Routine Response Codes for the ADAPRBCK (Precoordination Backout) Sync
Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Ready for backout.
Default response.

Performs coordination exit processing for
registered adapters for backout starting with
the action of ADABOUT or ADADA.

ADABSCHK 80 Adapter cannot back out resource
due to its application state.
(Participating resource adapters
should try to avoid using this
response code.)

1. Bypasses all coordination processing;
no backout.
2. Performs postcoordination exit processing
for registered adapterswith an action value
of ADAPSSC (State Check).

Getting a Resource Manager to Participate in CRR

268 z/VM: 7.2 CMS Application Development Guide

Table 35. Resource Adapter Exit Routine Response Codes for the ADAPRBCK (Precoordination Backout) Sync
Point Action Call (continued)

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADARF 8 Resource unavailable due to
session failure or resource
manager failure.

Performs coordination exit processing for
registered adapters for backout starting with
the action of ADABOUT or ADADA.

ADAAERR 212 Resource unavailable due to
adapter failure.

Performs coordination exit processing for
registered adapters for backout starting with
the action of ADABOUT or ADADA.

ADACORF (Coordination Function) Exit
The possible actions in the coordination exit are:

• ADAPREP (Prepare)
• ADARQCMT (Request Commit)
• ADACMTD (Committed)
• ADACMTDL (Committed with New LUWID)
• ADANEWL (New LUWID)
• ADABOUT (Backout)
• ADABOUT2 (Second Phase Backout)
• ADAOKBO (OK Backout)
• ADAPTRS (Prepare to Resynchronize)
• ADADA (Deallocate Abend)
• ADAIOKBO (Initiator OK Backout).

The SPM optimizes sync point processing for a work unit, if possible. After all precoordination exits have
completed, the SPM looks at all resources registered for the work unit to determine if a simple commit
can be done. The SPM looks at three flags in each resource adapter's registration:
coordination function flag

If this flag is ON, there is work to be coordinated for this resource; the resource adapter needs to be
involved in sync point processing.

simple-commit flag
If this flag is ON, this resource adapter and its resource manager understand a simple (one-phase)
commit. No logging is done for a simple commit, because no resynchronization activity is needed if a
simple commit fails.

write-mode flag
If this flag is OFF, the work in progress does not involve updates to this resource. For a simple commit,
only one resource can be registered as write-mode on the work unit.

The resource adapter sets these flags when it registers for CRR participation. (See “Registering a
Resource for CRR” on page 257.) The simple-commit flag does not indicate that a simple commit should
be done, but rather that the resource adapter can support a simple commit if one is done. If there is a
need for changing this flag, the resource adapter must unregister and reregister.

To ensure consistency, changes made to a resource's registration while the coordination stage of a sync
point is in progress will not take effect until the coordination stage completes. An exception to this is
the unregistration (DMSUNREG) routine, which takes effect immediately. Other changes made during
coordination will take effect prior to the adapter exits being driven for postcoordination.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 269

The SPM also optimizes a two-phase commit. No logging is done for those resources involved in the sync
point that are read-mode (write-mode flag set OFF) and understand a simple commit (simple-commit flag
set ON).

This exit provides optional asynchronous capability by using the ADAREDRV (Redrive) return code.
However, if SFS passes a request ID of 0 on the call, the resource adapter must synchronous processing.

Coordination Logging
All sync point logging done by CRR is handled during the coordination function of a two-phase commit.
If the application issues a backout verb, the participating resource manager is not required to do any
logging. The resource manager is required (by CRR) to do logging only during a two-phase commit.

For a normal two-phase commit, the participating resource manager must do these logging operations:

1. Logging agent, prepared

During the ADAPREP action, the resource manager must log the LUWID associated with the commit. It
is also recommended that the transaction tag be logged. This information must be logged before the
resource responds positively to ADAPREP.

2. Erasing the log

The resource manager can erase the log data from step 1 after it has successfully processed the
ADACMTD or ADACMTDL action.

Note: It is possible that the ADAPREP action can be followed by a backout. In that case, the resource
manager can erase the log data after the changes are backed out.

After "logging agent, prepared" has been logged, there are two states that can be logged as part of error
processing. These states represent action taken without receiving direction from CRR:

• Heuristic backout

The resource manager or an operator caused the changes to be backed out. This state could cause a
problem because other participants in the sync point might have committed their changes.

• Heuristic committed

The resource manager or an operator caused the changes to be committed. This state could cause a
problem because other participants in the sync point might have backed out their changes.

These two states should only occur if there is a long delay in the sync point, or if the communication path
to the resource adapter is lost. These states will normally be cleaned up by resynchronization recovery.
When the resynchronization recovery flow arrives, the resource manager can determine if the heuristic
action caused an out-of-sync situation. If so, the resource manager should report it to the operator. If not,
the resource manager should erase the log record according to normal resynchronization recovery logic.

The resource manager must supply facilities that the operator can use to resolve any problems in the
resource manager's log. See “Resource Manager Resynchronization Facilities” on page 286.

Break Tree Processing
The protected conversation tree (more commonly called the allocation tree) describes the structure of
nodes that are allocating protected conversations within a coordinated transaction. See the description
of allocation and sync point trees in the z/VM: CMS File Pool Planning, Administration, and Operation.
Break tree processing is done to ensure the integrity of the LUWID whenever a protected conversation
abnormally ends. An LUWID is associated with each sync point, and it is an SNA LU 6.2 requirement that
LUWIDs be unique within the SNA network.

If any error breaks a link in the allocation tree, then two smaller trees are created. An allocation tree can
have only one LUWID. The key concept of break tree processing is to let one part of the allocation tree
survive and keep the LUWID, and to break apart the other tree and give each piece a different LUWID. If
the tree gets broken above you, then you are part of the sub-tree that gets dismantled. If the break occurs
below you in the allocation tree, then you are part of the tree that lives.

Getting a Resource Manager to Participate in CRR

270 z/VM: 7.2 CMS Application Development Guide

Figure 44 on page 271 shows an allocation tree in which VMA talks to VMB, VMB talks to VMC and VMD,
and VMD talks to VME.

• If the protected conversation between VMA and VMB has an error and ends, then break tree processing
requires that all the other protected conversations end.

• If the protected conversation between VMD and VME has an error and ends, then break tree processing
requires that no other protected conversations end.

• If the protected conversation between VMB and VMD has an error and ends, then break tree processing
requires that the protected conversation between VMD and VME also ends.

Figure 44. Break Tree Processing

Break tree processing, if it occurs, is part of SPM coordination. The SPM accomplishes the break tree
processing by sending an ADADA (Deallocate Abend) action to all resource adapters registered for the
work unit. For most resource adapters, this deallocate will be a null operation. If applicable, the resource
adapter should make sure that the resource manager is aware that a new LUWID will be used for the next
sync point. The new LUWID will not be created by simply incrementing the sequence number field.

Extra Backout
In some situations, the SNA LU 6.2 architecture requires that an extra backout be done following an
attempted commit before returning to an application. This extra backout is done to make sure that SPMs
and resource managers in two separate allocation trees do not unwittingly write log records using the
same LUWID.

An LUWID is associated with each sync point. It is an SNA LU 6.2 requirement that LUWIDs be unique
within the SNA network. Normally, when a session outage occurs, one part of the tree keeps the LUWID,
and break tree processing occurs for the other part of the tree, as described above. However, there are a
few cases when a session outage is not immediately detected by part of the tree, such as when the outage
occurs on the forget flow to the initiator of the sync point.

If the session outage is not detected, resource managers might write log information using the same
LUWID for two separate allocation trees. Usually, the session outage is discovered during the next sync
point, reported as a resource failure, and the sync point becomes a backout. However, if another session
outage occurs during this second sync point, it is possible that two now-separate branches of a tree could
attempt resynchronization of unrelated work using the same LUWID.

To avoid this situation, an extra backout is done in the tree that owns the LUWID when some part of the
tree detects the session outage. The extra backout causes the sequence number field of the LUWID to be
incremented, which means that the two sub-trees have different LUWIDs.

The SPM accomplishes the extra backout by sending an ADABOUT (Backout) action to all resources
registered for the work unit. For most resource adapters, this extra backout will be a null operation. If
applicable, the resource adapter should make sure that the resource manager is aware of the new LUWID
with the incremented sequence number field.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 271

ADAPREP (Prepare) Action
This action is the start of a two-phase commit. The resource adapter should tell its resource manager to
put itself in a state from which it can either commit or back out the changes. The resource manager must
write the LUWID and other recovery information in its log.

Table 36 on page 272 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPREP action call, and the resulting action taken by the SPM for each response.

Table 36. Resource Adapter Exit Routine Response Codes for the ADAPREP (Prepare) Sync Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADARQCMT 28 Prepare has been done.
Default response code.

Continue with second phase of commit with
the action of ADACMTD or ADACMTDL.

ADAFGET 60 Resource manager has
successfully completed work for
this sync point. This response
should be used only when both
commit and backout would leave
the resource in the same state (for
example, if no updates have been
made to it).

Continue with second phase of commit for
other resources. Bypass this resource unless
the action of ADANEWL is required to send a
new LUWID to the resource.

ADABOUT 4 Unable to commit changes,
changes have been backed out.

Back out all other resources, then redrive
this resource with the action of ADAOKBO to
acknowledge the backout.

ADABORIP 68 Unable to commit changes,
changes have been backed out.
Resynchronization is in progress
for some resource.

Back out all other resources, then redrive
this resource with the action of ADAOKBO to
acknowledge the backout.

ADAPERR 208 Recoverable application error.
Changes have neither been
prepared nor backed out.

Back out all resources with the action of
ADABOUT2.

ADAHMIX 88 One or more protected resources
have committed due to a resource
manager or system administrator
decision.

Back out all other resources with the action of
ADABOUT2.

ADADA 20 The resource manager has
backed out the changes, and is
unavailable for further work.

Back out all other resources with the action
of ADABOUT2. Perform break tree or extra
backout processing.

ADARF 8 The resource manager failed, and
did not give information about the
state of the changes.

Back out all resources with the action of
ADABOUT2.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed.

Back out all other resources with the action
of ADABOUT2. Perform break tree or extra
backout processing.

ADAAERR 212 The adapter failed, and did not
give information about the state of
the resource or the changes.

Back out all resources with the action of
ADABOUT2.

Getting a Resource Manager to Participate in CRR

272 z/VM: 7.2 CMS Application Development Guide

ADARQCMT (Request Commit) Action
This action is used if the SPM determines that it is possible to perform a simple commit instead of a
two-phase commit. The resource manager should commit the changes. Because a simple commit is a
one-phase operation, for performance reasons it is preferred whenever possible. For example, a simple
commit might be performed when only one resource is registered for a work unit.

Table 37 on page 273 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADARQCMT action call, and the resulting action taken by the SPM for each response.

Table 37. Resource Adapter Exit Routine Response Codes for the ADARQCMT (Request Commit) Sync Point Action
Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADACMTD 56 Changes have been committed.
Default response.

End of processing for this resource. Commit
all read only resources with the action of
ADACMTD.

ADABOUT 4 Changes have been backed out. End of processing for this resource. Back out
all read only resources with the action of
ADABOUT.

ADAPERR 208 Changes have neither been
committed nor backed out.

Back out all the read only resources with the
action of ADABOUT.

ADARF 8 The resource manager failed, and
did not give information about the
state of the changes.

Back out all read only resources with the
action of ADABOUT and redrive this resource
adapter with ADAPTRS.

ADAAERR 212 The adapter failed, and did not
give information about the state of
the resource or the changes.

Back out all read only resources with the
action of ADABOUT and redrive this resource
adapter with ADAPTRS.

ADACMTD (Committed) or ADACMTDL (Committed With New LUWID) Action
This action is the start of the second phase of a two-phase commit, when the second phase is a commit.
The resource should commit all changes and erase the log data when done. Most resource adapters do
not act differently for the two types of committed action. The difference is that for the ADACMTDL action,
the LUWID passed to the adapter exit is the one that will be used for the next sync point.

Table 38 on page 273 lists (in order of increasing severity) the response codes your resource adapter
can return for an ADACMTD or ADACMTDL action call, and the resulting action taken by the SPM for each
response.

Table 38. Resource Adapter Exit Routine Response Codes for the ADACMTD (Committed) or ADACMTDL
(Committed with New LUWID) Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAFGET 60 Changes have been committed.
Default response.

End of processing.

ADAFRIP 64 Resynchronization is in progress
for some resources. Changes will
be committed.

End of processing.

ADAHMIX 88 One or more protected resources
have backed out due to a resource
manager or system administrator
decision.

Redrive this resource adapter with ADAPTRS.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 273

Table 38. Resource Adapter Exit Routine Response Codes for the ADACMTD (Committed) or ADACMTDL
(Committed with New LUWID) Action Call (continued)

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADARF 8 The resource manager failed, and
did not give information about the
state of the changes.

Redrive this resource adapter with ADAPTRS.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed. One or more protected
resources may have backed out
due to a protocal violation.

Report the protocol violation to the recovery
server. Perform break tree or extra backout
processing.

ADAPVPRT 48 The adapter received the protocol
violation indication from its
conversation partner and the link
has been severed.

Report the protocol violation to the recovery
server. Perform break tree or extra backout
processing.

ADAAERR 212 The adapter failed, and did not
give information about the state of
the resource or the changes.

Redrive this resource adapter with ADAPTRS.

ADANEWL (New LUWID) Action
This action is used if a resource adapter responds ADAFGET (Forget) when driven for the ADAPREP
(Prepare) action, and a new LUWID is to be used for the next sync point. This LUWID is not the current
LUWID that has been incremented, but is newly created. The new LUWID is passed as input.

Table 39 on page 274 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADANEWL action call, and the resulting action taken by the SPM for each response.

Table 39. Resource Adapter Exit Routine Response Codes for the ADANEWL (New LUWID) Sync Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 LUWID has been passed to the
resource manager if necessary.
Default response.

End of processing.

ADAPERR 208 A send error occurred, and the
resource manager did not receive
the new LUWID.

Redrive this resource adapter with ADAPTRS.

ADARF 8 The resource manager failed, and
did not receive the new LUWID.

Redrive this resource adapter with ADAPTRS.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed.

Perform break tree or extra backout
processing.

ADAAERR 212 The adapter failed, and did not
receive the new LUWID.

Redrive this resource adapter with ADAPTRS.

ADABOUT (Backout) Action
This action tells the resource adapter that it is to back out all changes, as a result of a backout being
issued by the application program, extra backout processing, or errors during precoordination commit.

Getting a Resource Manager to Participate in CRR

274 z/VM: 7.2 CMS Application Development Guide

Table 40 on page 275 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADABOUT action call, and the resulting action taken by the SPM for each response.

Table 40. Resource Adapter Exit Routine Response Codes for the ADABOUT (Backout) Sync Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOKBO 72 Changes have been backed out.
Default response.

End of processing.

ADABOUT 4 This resource independently
started a backout and should be
treated as the initiator of the
backout.

Send ADAIOKBO to this resource adapter to
acknowledge the backout.

ADAAWARN 216 Resource adapter warning. Continue backout processing.

ADAPERR 208 Application error. Changes have
neither been committed nor
backed out.

Redrive this resource adapter with ADAPTRS.

ADADA 20 The resource manager has
backed out the changes, and is
unavailable for further work.

Perform break tree or extra backout
processing.

ADARF 8 The resource manager failed, and
did not give any information about
the state of the changes.

Redrive this resource adapter with ADAPTRS.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed.

Because the resource is not in doubt, it is
assumed that the changes will be backed
out. Perform break tree or extra backout
processing.

ADAAERR 212 The adapter failed, and did not
give information about the state of
the resource or the changes.

Redrive this resource adapter with ADAPTRS.

ADABOUT2 (Second Phase Backout) Action
This action is the start if the second phase of a two-phase commit, when the second phase is a backout.
The resource should back out all changes and erase the log data when done. The resource has already
been asked to process an ADAPREP (Prepare) action, but at least one resource voted "backout" during the
first phase of the two-phase commit.

Table 41 on page 275 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADABOUT2 action call, and the resulting action taken by the SPM for each response.

Table 41. Resource Adapter Exit Routine Response Codes for the ADABOUT2 (Second Phase Backout) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOKBO 72 Changes have been backed out.
Default response.

End of processing.

ADABORIP 68 Unable to back out changes,
changes will be backed out.
Resynchronization is in progress
for some resource.

End of processing

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 275

Table 41. Resource Adapter Exit Routine Response Codes for the ADABOUT2 (Second Phase Backout) Sync Point
Action Call (continued)

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAHMIX 88 The resource manager committed
the changes.

Redrive this resource adapter with ADAPTRS.

ADARF 8 The resource manager failed, and
did not give any information about
the state of the changes.

Redrive this resource adapter with ADAPTRS.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed.

Notify the recovery server of the violation
for this resource. Report the damage to the
recovery server operator. Perform break tree
or extra backout processing.

ADAAERR 212 The adapter failed, and did not
give information about the state of
the resource or the changes.

Redrive this resource adapter with ADAPTRS.

ADAOKBO (OK Backout) Action
This action tells the resource adapter that the SPM has received the ADABOUT (Backout) response code
from the resource adapter for a previous ADAPREP (Prepare) action request (see “ADAPREP (Prepare)
Action” on page 272), and that the SPM has backed out its resources.

Table 42 on page 276 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAOKBO action call, and the resulting action taken by the SPM for each response.

Table 42. Resource Adapter Exit Routine Response Codes for the ADAOKBO (OK Backout) Sync Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Action has been sent without
error. Default response.

End of processing.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed.

Perform break tree or extra backout
processing.

ADAAERR 212 Unable to send ADAOK to the
resource manager.

Redrive this resource adapter with ADAPTRS.

ADAPTRS (Prepare to Resynchronize) Action
This action tells the resource adapter that the SPM has detected an error which requires action that is
beyond the scope of the SPM. Most of these errors will be handled by resynchronization; however, some
errors will have to be handled by the resource manager.

The resource adapter, upon receiving this action, must do whatever processing is required to ensure that
the resource manager is in the proper state for resynchronization processing. One of the actions the
resource adapter should do is sever the link between the application (resource adapter) and the resource
manager. After this action is processed, the CRR recovery server will do whatever processing it requires to
ensure that resynchronization can occur.

The resource manager should assume that if the application path is broken while in the in-doubt state,
then the affected work must wait for CRR resynchronization processing to tell the resource to commit
or back out. However, a resource manager might receive this action in a situation where there is no
resynchronization responsibility. For example, if the resource adapter returns the response code ADARF

Getting a Resource Manager to Participate in CRR

276 z/VM: 7.2 CMS Application Development Guide

(Resource Failure) to an ADABOUT (Backout) action, the SPM does not know what the state of the
changes are, so it issues the ADAPTRS action. In that case, because the resource manager is not in the
in-doubt state when ADAPTRS breaks the path, it is the resource manager's responsibility to back out the
work.

Table 43 on page 277 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPTRS action call, and the resulting action taken by the SPM for each response.

Note: Returning an ADARCAF (Adapter Failure) return code to the ADAPTRS action causes the SPM to
abend CMS. If possible, the resource adapter should do the necessary processing to return the ADACOMP
(Complete) return code with the ADAOK response code.

Table 43. Resource Adapter Exit Routine Response Codes for the ADAPTRS (Prepare to Resynchronize) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 The resource manager is ready
for resynchronization. Default
response.

Perform break tree or backout processing.

ADAAERR 212 The resource manager was unable
to get ready for resynchronization.

ABEND CMS, therefore insuring that the
link between the resource manager and the
application will be severed.

ADADA (Deallocate Abend) Action
This action tells the resource adapter to back out all changes in certain error conditions. For example, this
action is used if the CRR recovery server is needed during the sync point, but it is not available at the start
of the sync point. In this case, ADADA will be the first action in the coordination of the sync point.

It is possible that a resource adapter could be driven for backout and then driven for deallocate abend
prior to postcoordination. In this case, no action will occur for most resource adapters for the deallocate
abend.

Table 44 on page 277 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADADA action call, and the resulting action taken by the SPM for each response.

Table 44. Resource Adapter Exit Routine Response Codes for the ADADA (Deallocate Abend) Sync Point Action
Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Changes have been backed out
or the link has been deallocated.
Default response.

End of processing.

ADAPV 92 The adapter received an invalid
response code from its resource
manager and the link has been
severed.

Perform break tree or extra backout
processing.

ADAAERR 212 The adapter failed, and did not
give information about the state of
the resource or the changes.

Redrive the resource adapter with ADAPTRS.

ADAIOKBO (Initiator OK Backout) Action
A resource adapter becomes an initiator when the resource adapter responds ADABOUT to the action of
ADABOUT. The initiator is driven with the initiator OK backout action when all agents of this SPM have
responded ADAOKBO.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 277

Table 45 on page 278 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAIOKBO action call, and the resulting action taken by the SPM for each response.

Table 45. Resource Adapter Exit Routine Response Codes for the ADAIOKBO (Initiator OK Backout) Sync Point
Action Call

Response Code Macro
Value

Initiator Reason Action Taken by SPM

ADAOK 100 ADAIOKBO sent without error.
Default response.

End of the sync point.

ADARF 8 The sync point initiator failed, and
did not receive the action.

Redrive the resource adapter with ADAPTRS.

ADAPV 92 The adapter received an invalid
response code from its resource
and the link has been severed.

If there is any resynchronization
responsibility, then tell the recovery server
that the sync point was backed out. Perform
break tree or extra backout processing.

ADAAERR 212 The adapter failed, and could not
send the ADAIOKBO.

Redrive the resource adapter with ADAPTRS.

ADAPSCF (Postcoordination Function) Exit
The possible actions in the postcoordination exit are:

• ADAPSCOM (Postcoordination Commit)
• ADAPSBCK (Postcoordination Backout)
• ADAPSSC (Postcoordination State Check)
• ADAPSABN (Postcoordination Abnormal Termination).

Postcoordination processing usually entails cleanup. You might want to use this exit to do any necessary
processing before the application receives control. For example, such processing could include resetting
function flags.

Postcoordination exit processing does not begin until all coordination exit processing has completed
(all changes have been committed or backed out). There are error cases where postcoordination exit
processing occurs after precoordination exit processing has completed, with coordination exit processing
bypassed. For more information on these error cases, see the “ADAPSSC (Postcoordination State Check)
Action” on page 279.

Because CMS APPC support does not allow interrupts to occur during postcoordination, the processing
allowed in this exit is very restricted:

• No asynchronous activity is allowed. The request ID parameter is passed on the call, but cannot be
used.

• No communications such as APPC communications can take place.
• No supervisor call instructions (SVCs) may be issued.
• The exit may not enable itself for interrupts.

ADAPSCOM (Postcoordination Commit) Action
The sync point ended in a commit, which has been completed, or is being completed by
resynchronization, before the exit is called for postcoordination processing. Resource adapters may want
to use the DMSCHREG (Change Registration) CSL routine at this time to update the resource registration
to reflect the current state. When a commit is followed by an extra backout, the action passed during
postcoordination is a commit. See “Extra Backout” on page 271 for more information on extra backouts.

Getting a Resource Manager to Participate in CRR

278 z/VM: 7.2 CMS Application Development Guide

Table 46 on page 279 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPSCOM action call, and the resulting action taken by the SPM for each response.

Table 46. Resource Adapter Exit Routine Response Codes for the ADAPSCOM (Postcoordination Commit) Sync
Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. End of processing.

ADARF 8 The resource manager is no longer
available due to a session outage,
deallocate abend, or failure of the
resource manager.

End of processing.

ADAAERR 212 The resource manager is no longer
available due to failure of the
adapter.

End of processing.

ADAPSBCK (Postcoordination Backout) Action
The sync point ended in a backout, which has been completed, or is being completed by
resynchronization, before the exit is called for postcoordination processing. Resource adapters may want
to use the DMSCHREG (Change Registration) CSL routine at this time to update the resource registration
to reflect the current state.

Table 47 on page 279 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPSBCK action call, and the resulting action taken by the SPM for each response.

Table 47. Resource Adapter Exit Routine Response Codes for the ADAPSBCK (Postcoordination Backout) Sync
Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. End of processing.

ADARF 8 The resource manager is no longer
available due to a session outage,
deallocate abend, or failure of the
resource manager.

End of processing.

ADAAERR 212 The resource manager is no longer
available due to failure of the
adapter.

End of processing.

ADAPSSC (Postcoordination State Check) Action
This action means there was a sync point request, but, due to an error condition detected during
precoordination exit processing, neither commit nor backout was performed. No coordination exit
processing was performed.

Because coordination exit processing was bypassed, resource adapters may need to clean up activities
done or started during precoordination exit processing that normally would have been cleaned up during
coordination exit processing. The state of the work unit has not changed.

Table 48 on page 280 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPSSC action call, and the resulting action taken by the SPM for each response.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 279

Table 48. Resource Adapter Exit Routine Response Codes for the ADAPSSC (Postcoordination State Check) Sync
Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. End of processing.

ADARF 8 The resource is no longer
available due to a session outage,
deallocate abend, or failure of the
resource manager.

End of processing.

ADAAERR 212 The resource is no longer
available due to failure of the
adapter.

End of processing.

ADAPSABN (Postcoordination Abnormal Termination) Action
An abnormal termination occurred while the SPM was processing a sync point. If resynchronization
processing is started to complete the sync point, the SPM cannot determine whether it was a commit or a
backout.

Table 49 on page 280 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAPSABN action call, and the resulting action taken by the SPM for each response.

Table 49. Resource Adapter Exit Routine Response Codes for the ADAPSABN (Postcoordination Abnormal
Termination) Sync Point Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. End of processing.

ADARF 8 The resource is no longer
available due to a session outage,
deallocate abend, or failure of the
resource manager.

End of processing.

ADAAERR 212 The resource is no longer
available due to failure of the
adapter.

End of processing.

ADAEWUF (End-of-Work-Unit Function) Exit
The possible actions in the end-of-work-unit exit are:

• ADAEWPUR (Purge Work Unit)
• ADAEWRET (Return Work Unit)
• ADAEWEOC (End of Command)
• ADAEWABN (CMS Command Abend)
• ADAEWSS (End of CMS Subset).

The end-of-work-unit exit is driven by DMSPURWU (Purge Work Unit IDs), DMSRETWU (Return Work Unit
ID), CMS end-of-command, CMS abend, and CMS end-of-subset processing to tell registered resource
owners that the work unit might no longer exist. The work unit is already committed or backed out before
this exit is driven. In most cases, a resource adapter should leave the end-of-work-unit function flag set
ON in its registration, so the resource adapter can be called to clean up and unregister.

Cleanup might involve such things as releasing storage (control blocks) and severing paths to the resource
manager. For example, depending on the cause of the end of the work unit, it may be appropriate for a
resource adapter to deallocate (sever) any communication paths it uses to communicate with its resource

Getting a Resource Manager to Participate in CRR

280 z/VM: 7.2 CMS Application Development Guide

manager (for example, its server machine) for this work unit. Resource adapters must unregister as part
of their end-of-work-unit processing. The end-of-work-unit exit could also be used for accounting or
performance monitoring.

This exit provides optional asynchronous capability by using the ADAREDRV (Redrive) return code.
However, if SFS passes a resource ID of 0 on the call, the resource adapter must use synchronous
processing.

ADAEWPUR (Purge Work Unit) Action
The SPM drives the resource adapter for this action because the application called the DMSPURWU (Purge
Work Unit IDs) CSL routine to return all work unit IDs to CMS. For more information about DMSPURWU,
see the z/VM: CMS Callable Services Reference.

If your resource adapter has any external communication paths (such as APPC/VM connections)
associated with the work unit, the resource adapter should deallocate (sever) them. Failure to do so
could cause a security problem. Subsequent applications, particularly in a batch machine, might not be
authorized to use the communication paths, but might be able to do so if authorization checking is done
only when the communication is established.

Table 50 on page 281 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAEWPUR action call, and the resulting action taken by the SPM for each response.

Table 50. Resource Adapter Exit Routine Response Codes for the ADAEWPUR (Purge Work Unit) Sync Point Action
Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is ended.

ADARF 8 Resource no longer available due
to session outage, deallocate
(abend), or failure of the resource
manager.

Work unit is ended.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is ended.

ADAEWRET (Return Work Unit) Action
The SPM drives the resource adapter for this action because the application called the DMSRETWU
(Return Work Unit ID) CSL routine, indicating that the application has completed all work on the work unit.
For more information about DMSRETWU, see the z/VM: CMS Callable Services Reference.

CMS return-work-unit processing for CRR includes:

• Closing all work unit SFS files and directories
• Committing the work unit.

Table 51 on page 281 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAEWRET action call, and the resulting action taken by the SPM for each response.

Table 51. Resource Adapter Exit Routine Response Codes for the ADAEWRET (Return Work Unit) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is ended.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 281

Table 51. Resource Adapter Exit Routine Response Codes for the ADAEWRET (Return Work Unit) Sync Point
Action Call (continued)

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADARF 8 Resource no longer available due
to session outage, deallocate
(abend), or failure of the resource
manager.

Work unit is ended.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is ended.

ADAEWEOC (End of Command) Action
The SPM drives the resource adapter for this action because the application has ended normally. CMS
end-of-command processing for CRR includes:

• Closing all open SFS files and directories
• Committing all work units
• Discarding all work units obtained by the DMSGETWU (Get Work Unit ID) CSL routine.

Table 52 on page 282 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAEWEOC action call, and the resulting action taken by the SPM for each response.

Table 52. Resource Adapter Exit Routine Response Codes for the ADAEWEOC (End of Command) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is ended.

ADARF 8 Resource no longer available due
to session outage, deallocate
(abend), or failure of the resource
manager.

Work unit is ended.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is ended.

ADAEWABN (CMS Command Abend) Action
The SPM drives the resource adapter for this action because the application has ended abnormally. CMS
action at CMS command abend for CRR includes:

• Calling the SPM to back out all active work units.
• Calling the SPM so that all existing work units can be cleaned up. The SPM calls end-of-work-unit

exit processing with action value ADAEWABN for all existing work units (including work units where
resynchronization has been initiated).

Table 53 on page 282 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAEWABN action call, and the resulting action taken by the SPM for each response.

Table 53. Resource Adapter Exit Routine Response Codes for the ADAEWABN (CMS Command Abend) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is ended.

Getting a Resource Manager to Participate in CRR

282 z/VM: 7.2 CMS Application Development Guide

Table 53. Resource Adapter Exit Routine Response Codes for the ADAEWABN (CMS Command Abend) Sync Point
Action Call (continued)

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADARF 8 Resource no longer available due
to session outage, deallocate
(abend), or failure of the resource
manager.

Work unit is ended.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is ended.

ADAEWSS (End of CMS Subset) Action
The SPM drives the resource adapter for this action because an application started in CMS subset mode
has ended normally. CMS action at CMS end-of-subset for CRR includes:

• Closing all SFS files and directories opened during subset mode and still open.
• Committing all active subset mode work units.

CMS discards all subset mode work units at the end of subset mode.

Table 54 on page 283 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADAEWSS action call, and the resulting action taken by the SPM for each response.

Table 54. Resource Adapter Exit Routine Response Codes for the ADAEWSS (End of CMS Subset) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is ended.

ADARF 8 Resource no longer available due
to session outage, deallocate
(abend), or failure of the resource
manager.

Work unit is ended.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is ended.

ADABORQF (Backout-Required Function) Exit
The possible actions in the backout-required exit are:

• ADABRQBO (Backout)
• ADABRQRF (Resource Failure)
• ADABRQDA (Deallocate Abend).

The backout-required exit tells the resource adapter to ready itself and its resource manager for a
subsequent backout or deallocate (abend) request from CRR. Some other resource has called the
DMSSETR (Set Received) CSL routine to report an error outside of sync point processing. See “Backout
Indications” on page 285. Note that the purpose of this exit is to put the resource in the proper state for a
backout. It is not to perform a backout of the resource.

When a resource adapter is called for this function, it might want to prevent any further updates to
its resource. This processing is architected for SNA LU 6.2 protected conversations. Other types of
resources may not require any backout-required processing. The SPM will not drive a resource adapter
for a backout-required exit if the SPM previously received an indication of resource failure, or deallocate
abend, or backout for that resource since the last sync point.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 283

Because the backout-required exit is called from the interrupt handler, processing within the exit is very
restricted:

• No asynchronous activity is allowed.
• No APPC communication can take place.
• NO SVCs may be issued.
• The exit may not enable itself for interrupts.

Therefore, you can write a separate CSL routine to handle this exit.

ADABRQBO (Backout) Action
A backout indication was received on a verb outside of synchronization point processing. A participating
resource's changes were backed out, but the resource is still available.

Table 55 on page 284 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADABRQBO action call, and the resulting action taken by the SPM for each response.

Table 55. Resource Adapter Exit Routine Response Codes for the ADABRQBO (Backout Required) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is put into a backout-required state.

ADARF 8 Resource no longer available due
to session outage, deallocate
abend, or failure of the resource
manager.

Work unit is put into a backout-required state.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is put into a backout-required state.

ADABRQRF (Resource Failure) Action
One of the participating resources was lost. This will most commonly occur when a link to the resource
manager is dropped. Resource changes were either backed out, or will be backed out by the time the
resource becomes available again.

Table 56 on page 284 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADABRQRF action call, and the resulting action taken by the SPM for each response.

Table 56. Resource Adapter Exit Routine Response Codes for the ADABRQRF (Resource Failure) Sync Point Action
Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is put into a backout-required state.

ADARF 8 Resource no longer available due
to session outage, deallocate
abend, or failure of the resource
manager.

Work unit is put into a backout-required state.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is put into a backout-required state.

Getting a Resource Manager to Participate in CRR

284 z/VM: 7.2 CMS Application Development Guide

ADABRQDA (Deallocate Abend) Action
An SNA LU 6.2 protected conversation received a deallocate abend indication. Resource changes were
backed out and the resource is unavailable. This action was begun by CMS protected conversation
support processing, not a DMSSETR call.

Table 57 on page 285 lists (in order of increasing severity) the response codes your resource adapter can
return for an ADABRQDA action call, and the resulting action taken by the SPM for each response.

Table 57. Resource Adapter Exit Routine Response Codes for the ADABRQDA (Deallocate Abend) Sync Point
Action Call

Response Code Macro
Value

Resource's Reason for Issuing
This Response

Action Taken by the SPM

ADAOK 100 Default response. Work unit is put into a backout-required state.

ADARF 8 Resource no longer available due
to session outage, deallocate
abend, or failure of the resource
manager.

Work unit is put into a backout-required state.

ADAAERR 212 Resource no longer available due
to failure of the adapter.

Work unit is put into a backout-required state.

Backout Indications
A resource adapter could receive, on a non-sync point verb, an indication that a backout or failure
occurred in one of its resources. Because the backout or failure happened outside of a sync point, the
other resources registered on the work unit, the SPM, and the application are all unaware of the event and
must be notified. There are two ways that the resource adapter can do this:

• Notify the SPM by calling the DMSSETR (Set Received) CSL routine. The SPM will in turn call backout-
required exits to the resource adapters for the resources on the work unit that registered for the
backout-required function. This is the preferred (architected) method. For information about the format
and content of DMSSETR, see the z/VM: CMS Callable Services Reference.

The resource adapter must also return a return code to the application to indicate that a backout is
needed, and any attempt to do a coordinated commit will result in a backout.

• Notify the other resources on the work unit by issuing a CRR or product-specific backout verb. The
resource adapter must also return a return code to the application to indicate that a backout has
occurred.

Detailed Error Passback Support
This support provides a way for the resource manager to return product-specific error codes and
information to the application. The general sync point error codes do not supply product-specific
information.

When registering a resource with the DMSREG CSL routine, the resource adapter can define an error block
to hold warning and error data. The SPM's register function then allocates a buffer and places the buffer's
length into the first four bytes. The remaining content must be managed and documented by the resource
adapter.

Note:

1. Defining and using an error block is optional. The error block buffer length is an optional parameter in
DMSREG. If this parameter is not specified, the resource adapter will get a buffer that has no room to
store its error data.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 285

2. The size of the error block you should define depends on the type of error information your resource
manager generates and how much you want to store. For example, CMS uses a 284-byte buffer for SFS
and a 104-byte buffer for protected conversations.

Error blocks should contain the TPN (sometimes called the resource ID) for which the error occurred and
perhaps an error identifier. The resource manager might want to provide a CSL routine to convert the error
block to distinct values. For example, CMS provides the DMSWUERR routine to convert SFS error data.

The SPM keeps track of the actual error data length for each error block and resets the actual error data
length for all protected resources at the start of each sync point. The SPM passes the error block and
the actual error data length every time it drives the resource adapter's exit. An error block is considered
empty if the actual error data length is four, meaning that the block contains only the length of the block.

The resource adapter's exit processing must manage the error block content and the actual error data
length. For example, if a precoordination exit puts a warning code in the error block, and the coordination
exit finds another warning, the first warning should not be overlaid. Rather, the second warning should be
appended to the first by using and incrementing the actual error data parameter field.

When the resource adapter unregisters (DMSUNREG), the SPM deallocates the error block, if it is empty. If
the error block contains error data, SPM does not deallocate the error block until the next sync point.

CRR provides the CSL routine DMSGETER to support detailed error passback. The resource adapter can
use this routine to retrieve all error blocks generated by a resource manager, identified by component ID
or adapter exit name or both, since the start of the last commit or backout for a work unit. The component
ID and adapter exit name can be used as arguments to get specific error records. For information about
the format and content of DMSGETER, see the z/VM: CMS Callable Services Reference.

Resource Manager Interface with the CRR Recovery Server
CRR resynchronization has two interfaces. One interface is with the CRR recovery server operator.
Operation of the CRR recovery server is described in the z/VM: CMS File Pool Planning, Administration,
and Operation. The other interface is between the CRR recovery server and the resource managers that
are participating in CRR. You must support this interface to enable a resource manager to participate.

The two major functions that a resource manager must handle in cooperation with the CRR recovery
server are resynchronization initialization and resynchronization recovery. These functions include
exchanges of data between the resource manager and the CRR recovery server. A resource manager
participating in CRR must be able to allocate and accept APPC conversations in which the synchronization
level (SYNC_LEVEL) is set to CONFIRM, which allows either partner to request confirmation on the path.
The resource manager must also be able to handle APPC general data stream (GDS) Exchange Log Names
and Compare States data flows within the allocated conversations.

Resource Manager Resynchronization Facilities
There might be some problems that CRR cannot resolve, or situations where you cannot wait for CRR to
resolve the problem. Therefore, the resource manager must supply facilities that the operator can use to
manually resolve these problems. There are at least three tasks that the operator must do:

1. Display information about work that is in a prepared state, waiting to be either committed or backed
out. The display should also indicated work that has been committed or backed out by previous
operator intervention, but the history has not yet been removed from the log. (SFS provides the QUERY
PREPARED command for this purpose.)

2. Force a commit or backout of the prepared CMS work unit. These are called heuristic actions. (SFS
provides the FORCE PREPARED command for this purpose.)

Note: The resource manager must remember heuristic actions until it is certain that resynchronization
processing is complete.

3. Display information about CRR recovery servers with which the resource manager has previously
exchanged log names. (SFS provides the QUERY LOGTABLE command for this purpose.)

Getting a Resource Manager to Participate in CRR

286 z/VM: 7.2 CMS Application Development Guide

4. Remove the history of the forced work from the log. (SFS provides the ERASE LUNAME command for
this purpose.)

For information about the SFS commands to use as a guide in writing the facilities for your resource
manager, see the description of SFS participation in CRR in the z/VM: CMS File Pool Planning,
Administration, and Operation.

Exchanging Log Names
Exchanging log names ensures that the resource manager and the CRR recovery server have consistent
log data about the units of work that might require resynchronization processing. Log names are
exchanged during resynchronization initialization and resynchronization recovery. LU names, TPNs, and
status information are also exchanged. The Exchange Log Names GDS variable is used to pass the
information.

• Exchanging log names in resynchronization initialization:

To initiate the exchange of log names and notify the CRR recovery server of its readiness to accept
resynchronization communications, the resource manager must send an Exchange Log Names request
to the CRR recovery server before the first sync point precoordination exit opportunity. The CRR
recovery server sends an Exchange Log Names reply. Each partner saves the other partner's log name,
LU name, and TPN to use in later validations.

• Exchanging log names in resynchronization recovery:

To ensure consistent completion of a sync point by a registered resource, the CRR recovery server
sends an Exchange Log Names request to the resource manager. The resource manager must send
an Exchange Log Names reply. The partners validate the exchange by comparing the exchanged log
names, LU names, and TPNs with the previously saved data. These comparisons determine whether
resynchronization processing can continue.

When a resource manager is starting up processing after a failure or shutdown, it must do whatever is
required to ensure that log name validation is complete.

Table 58 on page 287 shows the format of the Exchange Log Names variable used for resynchronization
processing of z/VM resource managers participating in CRR. This format is patterned after the SNA
architected resynchronization program (06F2), but includes some revised fields. The Exchange Log
Names variable used for resynchronization processing of protected conversations in z/VM follows the
SNA architecture.

Table 58. Exchange Log Names GDS Variable for z/VM Resource Managers

Field Parameter

bytes 1 and 2 length1

bytes 3 and 4 gds_identifier

byte 5 function_status_indicator

byte 6 log_status_flag

byte 7 length2

bytes 8 to n local_fully_qualified_luname

byte n+1 length3

bytes n+2 to p tpn

byte p+1 length4

bytes p+2 to r log_name_1

byte r+1 length5

bytes r+2 to s log_name_2

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 287

As shown in Table 58 on page 287, the Exchange Log Names variable contains 12 parameters (some are
optional):
length1

is the length (s) in binary of the variable, including this length parameter.
gds_identifier

is the GDS identifier for the Exchange Log Names variable, X'1211'.
function_status_indicator

indicates the status of the Exchange Log Names function.
Value

Meaning
X'02'

Request (set by the initiator of the exchange)
X'08'

Reply—abnormal completion (log status or log name mismatch)
X'09'

Reply—normal completion
log_status_flag

indicates the status of the sender's log.
Value

Meaning
X'00'

Cold—the sender's log has not been used in any previous communication with this partner. That is,
the target's current TPN or LU name does not match the log or is not found.

X'01'
Warm—the sender's log was used in a previous communication with this partner. That is, the
target's current TPN and LU name match the data saved in the log.

A warm log could contain information about units of work that were active when a previous failure
or shutdown occurred, or a warm log could be empty (contain no active transaction data related to
this partner).

length2
is the length in binary of the local_fully_qualified_luname parameter. Values 0–17 are valid.

local_fully_qualified_luname
is the sender's fully qualified LU name, which consists of the network node ID (netid) and the LU
name.

A resource manager using CPI Communications can get this value and its length by calling the
XCELFQ (Extract Local Fully Qualified LU Name) routine. For information about XCELFQ, see the CPI
Communications Reference.

A resource manager using the APPC/VM assembler interface can get this value and its length from the
connect complete extended data provided by the CMSIUCV CONNECT macro. For information about
CMSIUCV CONNECT, see the z/VM: CMS Macros and Functions Reference.

A non-z/VM resource manager must use its own method to get this value.

length3
is the length in binary of the tpn parameter. Values 1–24 are valid.

tpn
is the sender's transaction program name (TPN).

If the sender is a z/VM resource manager, this is the standard identifier by which it identified itself
to the system, using the *IDENT system service or the XCIDRM (Identify Resource Manager) CPI
Communications routine.

Getting a Resource Manager to Participate in CRR

288 z/VM: 7.2 CMS Application Development Guide

If the resource adapter provided PIP data when it registered for CRR, the standard TPN should be
used in this field. If the resource adapter provided a resource recovery TPN in its registration, the
resource recovery TPN should be used in this field.

A non-z/VM resource manager must use its own method to get this value.

length4
is the length in binary of the log_name_1 parameter. Values 1–64 are valid.

log_name_1
is the sender's log name.

length5
is the length in binary of the log_name_2 parameter. Values 1–64 are valid. This parameter is required
only if the following parameter is included.

log_name_2
is the saved log name for the partner. This parameter is included in the Exchange Log Names request
only if the log status is warm. This parameter is not included in the Exchange Log Names reply.

Comparing States
When a sync point failure occurs, the CRR recovery server attempts to complete the action that was in
progress on the CRR logical unit of work (also called a transaction), which is identified by an LUWID. The
CRR recovery server and the resource manager must compare the sync point states of their respective
logical units of work. The Compare States GDS variable is used to pass the information. The CRR recovery
server sends the resource manager a Compare States request that specifies the LUWID and the desired
sync point state (backout or committed). The resource manager must try to achieve that same state in its
own logical unit of work. The resource manager then sends a Compare States reply to the CRR recovery
server to indicate the sync point state in the resource and to report any heuristic actions.

Table 59 on page 289 shows the format of the Compare States variable used for resynchronization
processing of z/VM resource managers participating in CRR. This format is patterned after the SNA
architected resynchronization program (06F2), but includes some revised fields. The Compare States
variable used for resynchronization processing of protected conversations in z/VM follows the SNA
architecture.

Table 59. Compare States GDS Variable for z/VM Resource Managers

Field Parameter

bytes 1 and 2 length1

bytes 3 and 4 gds_identifier

byte 5 function_status_indicator

bytes 6 and 7 state_indicator

byte 8 length2

bytes 9 to p luwid

 byte 9 length3

 bytes 10 to n fully_qualified_luname

 bytes n+1 to n+6 instance_number

 bytes n+7 to p (n+8) sequence_number

byte p+1 length4

bytes p+2 to r recovery_token

byte r+1 length5

bytes r+2 to s session_instance_id

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 289

As shown in Table 59 on page 289, the Compare States variable contains 15 parameters (some are
optional):
length1

is the length (s) in binary of the variable, including this length parameter.
gds_identifier

is the GDS identifier for the Compare States variable, X'1213'.
function_status_indicator

indicates the status of the Compare States function.
Value

Meaning
X'02'

Request (set by the CRR recovery server)
X'08'

Reply—abnormal completion (for example, a protocol violation)
X'09'

Reply—normal completion
state_indicator

indicates (in the request) the state of the CRR recovery server's logical unit of work, or (in the reply)
the resource manager's response to that request.
Value

Meaning
X'0100'

Backout (Reset)
X'0300'

In-doubt (optimized last agent only)
X'0400'

Committed
X'0500'

Heuristic Backout (resource manager only)
X'0600'

Heuristic Committed (resource manager only)
X'0700'

Heuristic Mixed (CRR recovery server only)

The states that are recorded in the CRR recovery server's sync point log can affect and reflect
these state indicators. See the explanations of the "Syncpoint State" and "Resync State" fields in the
"Responses" section of the CRR QUERY LU operator command documentation in the z/VM: CMS File
Pool Planning, Administration, and Operation.

For an explanation of the states that are recorded in a resource manager's sync point log, see Table 63
on page 298.

length2
is the length in binary of the luwid field. Values 10–26 are valid.

luwid
identifies the logical unit of work. The LUWID consists of the following components:
length3

is the length in binary of the fully_qualified_luname parameter. Values 1–17 are valid.
fully_qualified_luname

is the SNA network node ID (optional) and LU name of the CRR recovery server that generated the
LUWID. This parameter has the format

Getting a Resource Manager to Participate in CRR

290 z/VM: 7.2 CMS Application Development Guide

netid.

luname

where netid has a length 0-8 (if a value is specified, it must be followed by a period as a delimiter)
and luname has a length 1-8.

instance_number
is a unique 6-byte value that identifies the LUWID at the LU where it was generated.

sequence_number
is a 2-byte value that starts at 1 and is incremented by 1 following each commit or backout.

length4
is the length in binary of the recovery_token parameter. Values 0–8 are valid.

recovery_token
is a value that the resource manager may have assigned to identify this logical unit of work for this
resource adapter. If defined, the value was passed to the SPM in the DMSREG routine when the
resource adapter registered for sync point processing.

In a Compare States request, the CRR recovery server passes this value, if available, back to the
resource manager to use in matching up processes during resynchronization recovery if the LUWID
does not contain enough information to uniquely identify the process. The recovery_token and length4
parameters are not required in the resource manager's Compare States reply.

length5
is the length in binary of the session_instance_id parameter. Values 0–8 are valid.

session_instance_id
is a value that the resource manager may have defined to identify the communication path between
the resource manager and its resource adapter for this logical unit of work. The value is meaningful
only if the resource adapter and resource manager are on different systems, communicating through
AVS/VTAM. If defined, the value was passed to the SPM in the DMSREG routine when the resource
adapter registered for sync point processing.

In a Compare States request, the CRR recovery server passes this value, if available, back to the
resource manager so the resource manager can stop all activity on that communication path and
deallocate. The resource manager may also use this value to identify the logical unit of work if the
LUWID does not contain enough information to uniquely identify it. The session_instance_id and
length5 parameters are not required in the resource manager's Compare States reply.

How the Recovery Token and Session Instance ID Are Used
In a transaction with two partners, the partners by definition share the same LUWID value. If both
partners access the same resource, then it is possible for both to have a task for that resource manager
requiring resynchronization processing. If resynchronization recovery is necessary, the LUWID alone
cannot distinguish between the tasks. In the Compare States request, the CRR recovery server supplies a
recovery token or a session instance ID or both to help the resource manager identify the task.

The recovery token is a unique value that the resource manager can assign to each unit of work for each
resource adapter. The resource manager passes the value, if defined, to the resource adapter, which
passes it to the SPM in CRR registration (DMSREG). In resynchronization recovery, the CRR recovery
server passes the recovery token, if available, back to the resource manager to use together with the
LUWID as search arguments to find the matching task.

The session instance ID is a value that the resource manager can assign to identify the conversation
between the resource manager and the resource adapter for the logical unit of work. A session instance
ID is assigned only if the conversation is through AVS/VTAM. The resource manager passes the value,
if defined, to the resource adapter, which passes it to the SPM in CRR registration (DMSREG). In
resynchronization recovery, the CRR recovery server passes the session instance ID, if available, back
to the resource manager to identify the task.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 291

Resynchronization Initialization
The resource manager starts the resynchronization initialization function to:

• Exchange log names and other information with the CRR recovery server prior to participating in a sync
point

• Notify the CRR recovery server of its presence and readiness to accept resynchronization
communications (sometimes called a "shoulder tap").

The resource manager must complete resynchronization initialization before the first sync point is
requested for a logical unit of work in which the resource manager is participating (specifically, before
processing goes beyond the first precoordination exit call from the SPM).

Note: If your resource manager is participating in "limp mode" (that is, without a CRR recovery server), no
exchange of log names is necessary or possible.

Resynchronization Initialization Data Flow
The following list summarizes the general sequence of events in resynchronization initialization. For
examples of the communication flow, see Appendix I, “CRR Communications Examples,” on page 583.

1. The resource adapter allocates a conversation with the resource manager and passes the CRR
recovery server's TPN and log name in a data buffer. (The resource adapter previously obtained
these values by calling the CSL routine DMSGETRS. See “Getting Information about the CRR Recovery
Server” on page 259.)

2. The resource manager must first determine if an exchange of log names with the CRR recovery server
is required. The resource manager looks for:

a. An entry for the CRR recovery server in the resource manager's log, using the following data as
search arguments:

• CRR recovery server's locally known LU name, obtained from the allocate data for the
conversation that the resource adapter allocates with the resource manager

• CRR recovery server's TPN and log name, passed to the resource manager by the resource
adapter.

Note:

i) In VM, a resource manager could be accessed by the resource adapters on a particular
processor through more than one LU. Therefore, the resource manager's log could have multiple
entries containing the same CRR recovery server log name, but each with a different LU name.

ii) If there is an entry for the locally known LU name and TPN, but the log name is different from
the one passed by the resource adapter, the associated CRR recovery server has cold-logged
(started up with a new log). The resource manager's log is considered warm, but the resource
manager must initiate an Exchange Log Names request to give its own log name to the cold-
logged CRR recovery server.

b. A local indication that log names were exchanged. This indication can be a local flag associated
with each log name record, a local caching of the log name record, or some other device. Whatever
technique you use, its purpose is to determine if the resource manager has exchanged log names
with the CRR recovery server during the resource manager's current activation.

In cases where a resource manager could accidentally use the wrong log (as opposed to
intentionally cold-logging), such as where logs are mounted or archived, it is important to force
an exchange of log names with the CRR recovery server at least once for each activation of the
resource manager to:

• Catch a warm/warm log name mismatch, where it is possible that either the CRR recovery
server's log or the resource manager's log is the wrong one.

• Avoid having to check for this warm/warm mismatch on every allocation—just once each time the
resource manager is activated.

Getting a Resource Manager to Participate in CRR

292 z/VM: 7.2 CMS Application Development Guide

• Accomplish an exchange of log names in case the CRR recovery server has erased log entries for
the resource manager without cold-logging.

If conditions a and b are met and all the values match, the resource manager has previously been in
communication with the CRR recovery server and no new exchange of log names is required.

If either condition is not met or any value does not match, the resource manager must initiate the
exchange of log names, as described in the following steps. If the CRR recovery server's locally known
LU name did not match the log or was not found, the resource manager must hold the value to be
saved in the resource manager's log if the exchange of log names is successful.

3. The resource manager allocates an APPC conversation with the CRR recovery server, using CPI
Communications (SAA communications) routines or APPC/VM assembler interface macros. The sync
level must be set to CONFIRM.

For information about CPI Communications (the SAA communications interface), see the CPI
Communications Reference. For information about APPC/VM, see the z/VM: CMS Macros and Functions
Reference.

4. The resource manager formulates and sends to the CRR recovery server an Exchange Log Names
request that contains:

• Log status, indicating whether the resource manager's log is cold or warm relative to the CRR
recovery server.

– If the CRR recovery server's locally known LU name (obtained from the allocate data) or TPN
(obtained from the resource adapter) does not match the log or is not found, the resource
manager's log status is cold.

– If the locally known LU name and TPN match the log, the resource manager's log status is warm.
• Resource manager's fully qualified LU name and TPN
• Resource manager's log name
• (Warm log only) CRR recovery server's log name saved from previous interactions.

5. The CRR recovery server receives the Exchange Log Names request and compares the resource
manager's fully qualified LU name and TPN in the request with those saved in the recovery server's log
to determine its own log status:

• If the values match, the CRR recovery server's log status is warm.
• If either value does not match, or is not found, the CRR recovery server's log status is cold.

The CRR recovery server's subsequent actions are shown in Table 60 on page 293.

Table 60. Resynchronization Initialization Exchange Log Names Request. This table describes the CRR recovery
server's actions after receiving the request from the resource manager.

Resource
Manager's Log
Status

Recovery
Server's Log
Status

Recovery Server's Actions

COLD or WARM COLD The recovery server saves the resource manager's fully qualified LU name,
TPN, and log name in its log and sends an Exchange Log Names reply to the
resource manager indicating normal completion of the request.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 293

Table 60. Resynchronization Initialization Exchange Log Names Request. This table describes the CRR recovery
server's actions after receiving the request from the resource manager. (continued)

Resource
Manager's Log
Status

Recovery
Server's Log
Status

Recovery Server's Actions

COLD WARM The recovery server checks the work unit records in its log that relate to this
resource manager:

• If the records do not contain active data, the recovery server updates the
resource manager's log name saved in the log and sends an Exchange Log
Names reply to the resource manager indicating normal completion of the
request.

• If the records contain active data, the recovery server issues CMS error
message 3311E to the recovery server operator and sends an Exchange
Log Names reply to the resource manager indicating abnormal completion
of the request. The recovery server operator must manually resolve the
error condition by forcing the active data from its log.

WARM WARM The recovery server compares the resource manager's log name sent in the
request with the name that the recovery server has saved in its log. The
recovery server also validates its own log name, if specified in the request.

• If the log names match, the recovery server sends an Exchange Log
Names reply to the resource manager indicating normal completion of the
request.

• If the log names do not match, the recovery server issues CMS message
3312E to the recovery server operator and sends an Exchange-Log-Names
reply to the resource manager indicating abnormal completion of the
request.

The log name mismatch could be caused by one partner using the wrong
log. If so, that partner must be restarted with the correct log. If the correct
log cannot be supplied, one or both partners must be cold-started.

6. The CRR recovery server formulates and sends to the resource manager an Exchange Log Names reply
that contains:

• Function status, indicating normal or abnormal completion of the Exchange Log Names function
• Log status, indicating whether the recovery server's log is cold or warm relative to the requesting

resource manager
• Recovery server's fully qualified LU name and TPN
• Recovery server's log name.

7. The resource manager receives the Exchange Log Names reply. The resource manager's subsequent
actions are shown in Table 61 on page 294.

8. The CRR recovery server deallocates the conversation.

Table 61. Resynchronization Initialization Exchange Log Names Reply. This table describes the resource
manager's actions after receiving the reply from the CRR recovery server.

Recovery
Server's Log
Status

Reply
Function
Status

Resource
Manager's Log
Status

Resource Manager's Actions

COLD or WARM NORMAL COLD The resource manager saves or updates the recovery
server's locally known LU name, fully qualified LU name,
TPN, and log name in its log and sends an explicit APPC
confirmation to the recovery server.

Getting a Resource Manager to Participate in CRR

294 z/VM: 7.2 CMS Application Development Guide

Table 61. Resynchronization Initialization Exchange Log Names Reply. This table describes the resource
manager's actions after receiving the reply from the CRR recovery server. (continued)

Recovery
Server's Log
Status

Reply
Function
Status

Resource
Manager's Log
Status

Resource Manager's Actions

COLD NORMAL WARM The resource manager checks the work unit records in its
log that relate to the recovery server:

• If the records do not contain active data, the resource
manager updates the recovery server's log name saved
in the log and sends an explicit APPC confirmation to
the recovery server.

• If the records contain active data, the resource
manager issues a product-specific equivalent to CMS
message 3373E to the resource manager operator and
does a deallocate (abend).

The resource manager's participation in sync points
must be delayed until the error condition is resolved.
The resource manager operator should contact the
recovery server operator to determine the reason for
the status mismatch. The resource manager operator
might have to manually force some units of work
from its log. See “Resource Manager Resynchronization
Facilities” on page 286.

WARM NORMAL WARM The resource manager compares the recovery server's
log name sent in the reply with the name that the
resource manager has saved in its log:

• If the log names match, the resource manager sends
an explicit APPC confirmation to the recovery server.

• If the log names do not match, the resource manager
issues its equivalent to CMS message 3372E to the
resource manager operator and does a deallocate
(abend).

The resource manager's participation in sync points
must be delayed until the error condition is resolved.
The resource manager operator should contact the
recovery server operator to determine the reason for
the log name mismatch. The resource manager or the
recovery server might be using the wrong log, and
should be restarted with the correct log. If the correct
log cannot be supplied, both partners must be cold-
started.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 295

Table 61. Resynchronization Initialization Exchange Log Names Reply. This table describes the resource
manager's actions after receiving the reply from the CRR recovery server. (continued)

Recovery
Server's Log
Status

Reply
Function
Status

Resource
Manager's Log
Status

Resource Manager's Actions

WARM ABNORMAL COLD or WARM The resource manager issues its equivalent to CMS
message 3371E to the resource manager operator and
does a deallocate (abend).

The resource manager's participation in sync points must
be delayed until the error condition is resolved. The
resource manager operator should contact the recovery
server operator to determine the reason for the error.

If the problem is a log name mismatch, one of the
partners might be using an incorrect log and should be
restarted with the correct log. If the correct log cannot be
supplied, both partners must be cold-started.

Resynchronization Recovery
The CRR recovery server initiates the resynchronization recovery function to ensure consistent
completion of the sync point by all registered resources for which data was logged. Using information
stored in its log, the CRR recovery server determines which resource managers should be included in the
recovery and allocates APPC conversations with them.

To allocate an APPC conversation with a resource manager, the CRR recovery server uses information that
the resource manager provided when its resource adapter registered with the SPM (using the CSL routine
DMSREG). For example, the resource manager (resource adapter) had to provide one of the following
types of information during registration:

• Resource recovery TPN

The resource manager can assign a special TPN for recovery. The CRR recovery server then uses this
resource recovery TPN when allocating the resynchronization recovery conversation with the resource
manager. This lets the resource manager know that the conversation is for resynchronization and not
a normal data request. If a resource recovery TPN is assigned, the resource manager must use the
*IDENT system service to make this ID known as a global resource. For more information about *IDENT,
see z/VM: CP Programming Services.

• Program Initialization Parameters (PIP data)

If a resource recovery TPN is not assigned, the resource manager must supply PIP data. When
allocating a conversation with the resource manager for resynchronization, the CRR recovery server
uses the resource manager's TPN but includes the PIP data to let the resource manager know that the
conversation is for resynchronization. The definition and validation of the PIP data is the responsibility
of the resource manager. For more information about PIP data, see z/VM: CP Programming Services.

The resynchronization recovery transaction between the CRR recovery server and the resource manager
consists of two functions:

• Exchanging log names

The CRR recovery server initiates this exchange with the resource manager to ensure that the data they
saved from resynchronization initialization is still valid. See “Exchanging Log Names” on page 287.

• Comparing states

The CRR recovery server initiates this exchange with the resource manager to compare the state of the
CRR logical unit of work with the state of the resource manager's logical unit of work.

Getting a Resource Manager to Participate in CRR

296 z/VM: 7.2 CMS Application Development Guide

Resynchronization Recovery Data Flow
The following list summarizes the general sequence of events in resynchronization recovery. For examples
of the communication flow, see Appendix I, “CRR Communications Examples,” on page 583.

1. The CRR recovery server allocates an APPC conversation with the resource manager. The sync level is
set to CONFIRM.

Note: If the resource adapter registered with a resource recovery TPN, the CRR recovery server
establishes a conversation with that TPN. Otherwise, the CRR recovery server passes PIP data
on the allocation so the resource manager will recognize that the incoming conversation is for
resynchronization.

2. The CRR recovery server formulates the Exchange Log Names and Compare States requests and
passes them in the same buffer to the resource manager:

• The Exchange Log Names request contains:

– Recovery server's fully qualified LU name and TPN
– Recovery server's log status (warm)
– Recovery server's log name
– Expected (saved) log name for the resource manager.

• The Compare States request contains:

– State of the CRR logical unit of work (committed or backout). The CRR recovery server will attempt
to complete the action that was in process when the failure occurred, as indicated in its log
records.

– LUWID
– Recovery token or session instance ID or both, if specified in the resource registration (DMSREG).

These values can be used to uniquely identify the logical unit of work being resynchronized. (For
more information, see “How the Recovery Token and Session Instance ID Are Used” on page 291).

3. The resource manager receives the Exchange Log Names and Compare States requests. First, the
resource manager processes the Exchange Log Names request, as shown in Table 62 on page 297.

Table 62. Resynchronization Recovery Exchange Log Names Request. This table describes the resource
manager's actions after receiving the request from the CRR recovery server.

Recovery
Server's Log
Status

Resource
Manager's Log
Status

Resource Manager's Actions

WARM COLD The resource manager holds the recovery server's log name from the
request but does not update its own log or process the Compare States
request. The resource manager sends an Exchange Log Names reply to the
recovery server indicating cold log status and normal completion of the
request. The resource manager waits for indication of a deallocate (abend)
by the recovery server, then does a deallocate (normal).

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 297

Table 62. Resynchronization Recovery Exchange Log Names Request. This table describes the resource
manager's actions after receiving the request from the CRR recovery server. (continued)

Recovery
Server's Log
Status

Resource
Manager's Log
Status

Resource Manager's Actions

WARM WARM The resource manager compares the recovery server's log name in the
request with the name that the resource manager has saved in its log. The
resource manager also validates its own log name specified in the request.

• If the log names match, the resource manager formulates (but does
not send) an Exchange Log Names reply indicating normal completion
of the request. The resource manager deallocates the conversation with
the resource adapter used for the logical unit of work identified in the
Compare States request (if that conversation is still allocated), then
processes the Compare States request (Step “4” on page 298). After the
resource manager completes the Compare States processing, it sends
both replies in the same buffer.

• If the log names do not match, the resource manager issues its equivalent
to CMS message 3372E to the resource manager operator and sends an
Exchange Log Names reply to the recovery server indicating abnormal
completion of the request. The resource manager does not process the
Compare States request. The resource manager waits for indication of
a deallocate (abend) by the recovery server, then does a deallocate
(normal).

The resource manager operator should contact the recovery server
operator to determine the reason for the log name mismatch. The
resource manager might be using the wrong log. If so, the resource
manager should be restarted with the correct log. If the correct log cannot
be supplied, the resource manager must be cold-started. If the recovery
server is using the wrong log and cannot locate the correct log, the
resource manager might have to manually force some units of work from
its log. See “Resource Manager Resynchronization Facilities” on page 286.

4. If the log name exchange was satisfactory, the resource manager processes the Compare States
request, as shown in Table 63 on page 298. Some resource managers might not keep enough
information to distinguish all the logical-unit-of-work states shown. The resource manager can handle
these logical-unit-of-work states as it pleases, as long as the resource is restored to a consistent state.

In addition, a resource manager must remember heuristic actions associated with a unit of work until it
is certain that resynchronization processing is complete. Normally, the CRR recovery server will tell the
resource manager what information can be discarded. However, if the CRR recovery server cold-logs,
the resource manager will not receive any such notification. In that case, the resource manager must
use its own facilities to determine what information should be discarded from its log. See “Resource
Manager Resynchronization Facilities” on page 286.

Table 63. Resynchronization Recovery Compare States Actions

LUWID State at
Resource Manager

LUWID State Sent by Recovery Server

Backout Committed

Resource Manager's Actions

LUWID Not Found Send normal completion reply
indicating Backout state.

Send normal completion reply
indicating Backout state.

Syncpoint Pending Send normal completion reply
indicating Backout state.

Send normal completion reply
indicating Backout state.

Getting a Resource Manager to Participate in CRR

298 z/VM: 7.2 CMS Application Development Guide

Table 63. Resynchronization Recovery Compare States Actions (continued)

LUWID State at
Resource Manager

LUWID State Sent by Recovery Server

Backout Committed

Resource Manager's Actions

Backout (Reset) Send normal completion reply
indicating Backout state.

Protocol violation—send abnormal
completion reply.

In-doubt (Prepared) Drive backout of resource and send
normal completion reply indicating
Backout state.

Drive commit of resource and send
normal completion reply indicating
Committed state.

Committed Protocol violation—send abnormal
completion reply.

Send normal completion reply
indicating Committed state.

Heuristic Backout Send normal completion reply
indicating Heuristic Backout state.

Send normal completion reply
indicating Heuristic Backout state.
Operator notification is appropriate.

Heuristic Committed Send normal completion reply
indicating Heuristic Committed state.
Operator notification is appropriate.

Send normal completion reply
indicating Heuristic Committed state.

Note: The SFS resource manager writes to the sync point log after completing the sync point actions,
thereby avoiding certain intermediate states such as Syncpoint Pending and Committed. Also, the
sequence of sync point operation and logging is such that SFS resynchronization actions can safely
mirror the LUWID states sent by the CRR recovery server (in resynchronization recovery) when there
is an LUWID Not Found state for the SFS log entry. This would not be possible if SFS wrote to the log
before processing the sync point actions. The Compare States actions are therefore slightly different
for SFS, as shown in Table 64 on page 299.

Table 64. SFS Resource Manager's Compare States Actions

LUWID State at SFS
Resource Manager

LUWID State Sent by Recovery Server

Backout Committed

SFS Resource Manager's Actions

LUWID Not Found Send normal completion reply
indicating Backout state.

Send normal completion reply
indicating Committed state.

In-doubt (Prepared) Drive backout of resource and send
normal completion reply indicating
Backout state.

Drive commit of resource and send
normal completion reply indicating
Committed state.

Heuristic Backout Send normal completion reply
indicating Heuristic Backout state.

Send normal completion reply
indicating Heuristic Backout state.
Operator notification is appropriate.

Heuristic Committed Send normal completion reply
indicating Heuristic Committed state.
Operator notification is appropriate.

Send normal completion reply
indicating Heuristic Committed state.

5. The resource manager formulates the Compare States reply, then sends the Exchange Log Names and
Compare States replies to the CRR recovery server in the same buffer:

• The Exchange Log Names reply contains:

– Function status (normal or abnormal completion)
– Log status (warm or cold)

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 299

– Resource manager's fully qualified LU name and TPN

Note: If the resource adapter registered with a resource recovery TPN, the resource manager
must use that TPN here.

– Resource manager's log name.
• The Compare States reply contains:

– Function status (normal or abnormal completion)
– State that the resource manager was able to achieve in its logical unit of work, including heuristic

actions.
6. The CRR recovery server processes the Exchange Log Names reply as shown in Table 65 on page 300.

Table 65. Resynchronization Recovery Exchange Log Names Reply. This table describes the CRR recovery
server's actions after receiving the reply from the resource manager.

Resource
Manager's Log
Status

Reply
Function
Status

Recovery
Server's Log
Status

Recovery Server's Actions

COLD NORMAL WARM The recovery server issues CMS message 3311E to the
recovery server operator and does a deallocate (abend).
The recovery server operator must resolve the active
records in its log.

WARM NORMAL WARM The recovery server compares the resource manager's
log name sent in the reply with the name that the
recovery server has saved in its log.

• If the log names match, the recovery server confirms
completion of the resync transaction (including the
Compare States flow).

• If the log names do not match, the recovery server
issues CMS message 3312E to the recovery server
operator and does a deallocate (abend).

The recovery server then goes into a timed-wait state.
In this state, the recovery server waits a specific
interval (specified by the RESYNCINTERVAL start-up
parameter in the DMSPARMS file), then retries the
resync transaction. The recovery server will keep
cycling in this manner until the situation either resolves
itself or the recovery server operator intervenes to
resolve it manually.

The log name mismatch could be caused by one
partner using the wrong log. If so, that partner must
be restarted with the correct log. If the correct log
cannot be supplied, the resource manager must be
cold-started.

Getting a Resource Manager to Participate in CRR

300 z/VM: 7.2 CMS Application Development Guide

Table 65. Resynchronization Recovery Exchange Log Names Reply. This table describes the CRR recovery
server's actions after receiving the reply from the resource manager. (continued)

Resource
Manager's Log
Status

Reply
Function
Status

Recovery
Server's Log
Status

Recovery Server's Actions

WARM ABNORMAL WARM The recovery server issues CMS message 3310E to the
recovery server operator and does a deallocate (abend).

The recovery server then goes into a timed-wait state.
In this state, the recovery server waits a specific
interval (specified by the RESYNCINTERVAL start-up
parameter in the DMSPARMS file), then retries the resync
transaction. The recovery server will keep cycling in
this manner until the situation either resolves itself or
the recovery server operator intervenes to resolve it
manually.

The log name mismatch could be caused by one partner
using the wrong log. If so, that partner must be restarted
with the correct log. If the correct log cannot be
supplied, one partner must be cold-started. The other
partner might have to manually force some units of work
from its log.

Note: If the CRR recovery server discovers a protocol violation in the Exchange Log Names or Compare
States reply, the CRR recovery server issues CMS message 3313E, does a deallocate (abend), and goes into
timed-wait state. The resource manager must correct the error and resend the replies.

7. If the CRR recovery server confirms completion of the resynchronization transaction, the resource
manager resolves the records in its log relating to the transaction and confirms.

8. The CRR recovery server deallocates the conversation.

Forward Recovery
When writing the changes for your resource manager, you should consider including "forward recovery"
capability, if the resource manager does not already provide it. If a resource manager with this capability
has a media failure, it can recover all the data, including transactions that have been processed since the
last backup. A resource manager without this capability can recover only up to the last backup. If one or
more resource managers without this capability participate in CRR, a resource media failure might result
in inconsistent data.

Using Protected Conversations
In designing and developing your resource manager's modifications to support CRR, there are certain
cases where you can use or must use protected conversations. Two such cases are:

• Your resource manager is not itself directly maintaining the resources.

Figure 45 on page 302 shows an example of a resource manager (RM1) that supports objects made
up of files that are in SFS file pools maintained by other resource managers (RM2 and RM3). RM1
uses a protected conversation (PC) to communicate with the application. RM1 uses non-protected
conversations (non-PC) to communicate with the other resource managers, and they use nonprotected
conversations to communicate with their respective file pools.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 301

Figure 45. How a Resource Manager Not Directly Maintaining the Resources Uses Protected Conversations
• Your resource manager directly maintains the resources but is distributed (made up of two or more

separate resource managers).

Figure 46 on page 303 shows an example of a resource manager (RM1) that is the primary
resource manager in a tree of resource managers. A single logical unit of work identifier (LUWID)
must be maintained within all parts of the application and within all of the participating resource
managers. In this case, protected conversations (PC) are required because they support the LUWID
maintenance. RM1 uses protected conversations to communicate with the application and with the
other resource managers in the tree. Each resource manager uses nonprotected conversations (non-PC)
to communicate with its respective resource.

Getting a Resource Manager to Participate in CRR

302 z/VM: 7.2 CMS Application Development Guide

Figure 46. How Distributed Resource Managers Use Protected Conversations

When using protected conversations, there are some special rules for CRR participation:

• A resource adapter using protected conversations must not register for the coordination exit.
Coordination for protected conversations is handled by CMS APPC support.

• The resource adapter should register for the precoordination exit. Within that exit, all data that the
resource adapter controls that is related to the commit should be flushed to the resource manager.

• You should set the simple-commit flag OFF to ensure that CRR does a two-phase commit.
• During coordination, if your resource manager receives return codes on the protected conversation to

commit or back out, it should issue the system commit or backout to call the SPM.
• The SPM handles the system commit or backout in a synchronous manner. That is, it does not return

to your resource manager until the process is complete. If your resource manager supports multiple
users, and you want to overlap the processes for your users, you should replace the CMS-supplied
wait routine, DMSCWAIT, with your own CSL routine. This allows your resource manager to get control
when the system is waiting for processing to complete within the CRR exits. For more information, see
Chapter 17, “Writing a CRR Wait Routine for Multiuser Server Applications,” on page 251.

• If your resource manager does not directly maintain the resources (RM1 in Figure 45 on page 302),
it is not required to register for CRR at all. However, the resource managers that do directly maintain
the data (RM2 and RM3) must have resource adapters in your resource manager's virtual machine that
register for CRR, including the coordination exit.

When your resource manager receives a commit or backout return code on the protected conversation
and issues the system commit or backout to the local SPM, the SPM communicates with all protected
conversations and registered resource adapters to make sure that the work is committed or backed out
in a coordinated way. The SPM does this without further participation by your resource manager.

After the commit or backout is completed, the SPM returns to your resource manager. Your resource
manager is now ready to receive or send the next message, end the conversation, and so on, depending
on the protocol you have established between your resource manager and its resource adapter.

Getting a Resource Manager to Participate in CRR

Chapter 18. Getting a Resource Manager to Participate in CRR 303

• If your resource manager directly maintains a resource in a distributed environment (see Figure 46 on
page 303), it must have a resource adapter that registers for CRR, including the coordination exit, in the
resource manager's own virtual machine. As the primary resource manager (RM1), it must also have an
adapter that registers for CRR in the application's virtual machine.

In this case, your resource manager prepares for the commit, actually does the commit or backout, and
supports resynchronization. Your resource manager must support commit or backout of changes for an
LUWID asynchronously after a termination. This resynchronization support is provided for any LUWID
for which your resource manager was prepared to commit, and for which the system or subsystem
terminated before the commit or backout could be completed.

• If the resource adapter registers for postcoordination, that function should be used only for tasks such
as freeing buffers. Do not attempt to send any data.

Getting a Resource Manager to Participate in CRR

304 z/VM: 7.2 CMS Application Development Guide

Chapter 19. Creating and Manipulating the CMS
Libraries

This chapter describes:

• How to create and manipulate macro libraries, text libraries, and load libraries
• How to use callable services libraries
• How to use ISPF/PDF libraries.

Most operating systems provide library facilities. These help you develop programs and maintain an
orderly environment for managing your files. All the CMS library types have a similar structure. Each one
contains one or more members and has an internal directory. The library facilities use this directory
to locate members. Because libraries are unlike other CMS files, you create, update, and use them
differently than you do other CMS files.

The CMS libraries are:
Macro Library (MACLIB)

Macro libraries have a file type of MACLIB. They contain COPY files usually written in a high-level
programming language or MACRO files usually written in assembler language. These files are
referenced when you invoke either a compiler or assembler to process an application. Some MACLIBs
are provided with the individual programming language compilers. These MACLIBs contain routines
used during the compilation process. Therefore, before compiling or assembling your application,
you may need to make these routines available to the compiler or assembler by issuing the GLOBAL
command. See “Identifying Libraries to Be Searched” on page 45 for information on using the GLOBAL
command to access MACLIBs. You can also use the MACLIB command to create or change the
contents of a macro library.

Text Library (TXTLIB)
Text libraries have a file type of TXTLIB. They contain files (sometimes called object files) that
are compiled or assembled. Some TXTLIBs are provided with the individual programming language
product you are using. Therefore, before executing your application, you may need to make these
TXTLIBs available to CMS by issuing the GLOBAL command. See “Resolving External References by
Identifying Libraries” on page 52 for information on using the GLOBAL command to access TXTLIBs.
You can also create your own TXTLIBs with routines written for use in one or more applications.

Load Library (LOADLIB)
Load libraries have a file type of LOADLIB. They contain executable load modules that have been
compiled or assembled and link-edited.

Callable Services Library (CSL)
Callable services libraries have a file type of CSLLIB, CSLSEG, or TEXT, depending on whether the
library is located on DASD, in a logical saved segment, or in the CMS nucleus. Files within these
libraries contain routines that are written in the assembler language. Your high-level language or
assembler application can call these routines to perform a specific function. z/VM provides you with
libraries named VMLIB and VMMTLIB that contain many routines your applications can call.

Interactive System Productivity Facility/Program Development Facility (ISPF/PDF)
An ISPF/PDF library can be a set of CMS files, MACLIBs, or TXTLIBs. Organizing this information in an
ISPF/PDF library allows many people to share the code and data.

Creating and Manipulating the CMS Libraries

© Copyright IBM Corp. 1990, 2022 305

Figure 47. CMS Libraries

Creating and Manipulating Macro Libraries
A CMS macro library (MACLIB file type) contains one or more copy files (COPY file type) usually written in
a high-level language or one or more macro files (MACRO file type) usually written in assembler language.
A COPY file contains predefined source statements that are included in a source program when the COPY
statement is encountered. When used in an assembler language program, macrodefinitions in a MACRO
file generate code in line by referencing the macro name. These files are referenced when you invoke
either one of the compilers or the assembler to process a program.

Use the MACLIB command to change or create the contents of MACLIBs. Use the GLOBAL command to
identify the macro libraries to be searched for macros and copy files when processing source code.

A MACLIB is similar to an OS partitioned data set (PDS). It has individual members that you can create
using the editor or that you can copy from other source files. For a member to be added to a MACLIB, it
must be in a CMS file with a file type of COPY or MACRO. Use the file type COPY for files containing source
code to be included in a MACLIB. The file type MACRO is usually used for assembler language macros.

CMS provides you with macro libraries on the system disk. These macro libraries contain various CMS and
OS/MVS assembler language macros that you may want to use in your programs. However, you can use
the MACLIB command, commands from the MACLIST screen, and some CMS commands to:

• Create a MACLIB

Creating and Manipulating the CMS Libraries

306 z/VM: 7.2 CMS Application Development Guide

• List the contents of a MACLIB
• Add members to a MACLIB
• Replace members in a MACLIB
• Delete members from a MACLIB
• Compress a MACLIB
• Edit members of a MACLIB
• Print and display members of a MACLIB
• Manipulate members of a MACLIB.

Note: You should not use the OS/MVS STOW macro to create or modify MACLIBs; only use the MACLIB
command to manipulate MACLIBs. You should not use any OS macros to create or update MACLIBs. OS
Partitioned Data Sets and CMS MACLIBs interpret certain common fields differently. For this reason, OS
macros, which were written to support OS conventions, do not create CMS libraries that can be used
reliably.

A macro library file may reside in an SFS directory. If you perform MACLIB command functions on a macro
library that resides in an SFS directory and the resulting library has no members, an empty macro library
is maintained in the SFS directory to preserve any authorities to the macro library file. You should use only
the MACLIB command to perform functions on an empty macro library.

Using System MACLIBs
The macro libraries on the system disk, supplied as part of the system, are:

• DMSGPI contains CMS macros that are programming interfaces. In prior releases, these macros were in
DMSSP MACLIB and CMSLIB MACLIB, which no longer exist.

• DMSOM contains programming interface macros and CMS internal macros. The TEOVEXIT, IO, CMSCB,
and DMSJNEPL macros are the only macros in DMSOM MACLIB that you can use as a programming
interface. All other macros in DMSOM are designed for CMS internal use and should not be used as
programming interfaces.

• OSMACRO contains the macros that CMS provides for execution of programs using MVS interfaces.
• MVSXA contains the simulated MVS/XA versions of the OS/MVS macros for the execution of programs

using MVS interfaces.
• OSMACRO1 contains the non-simulated versions of OS/MVS macros that are used only for assembly on

CMS. Because CMS does not simulate these macros you should not use them in programs you intend to
run on CMS.

• OSVSAM contains the subset of supported OS/VSAM macros.
• HCPGPI contains CP programming interface macros. The IUCV macro and the APPCVM macro are

examples of macros that reside in this macro library.
• HCPPSI contains additional programming interface macros.

Creating a MACLIB
The GEN function of the MACLIB command generates a CMS macro library from input files specified on
the command line. The input files must have a file type of either MACRO or COPY.

For example, to create the macro library, TESTMAC MACLIB A1, from the following files:

TEST1 MACRO A1
TEST2 MACRO A1
TEST3 MACRO A1
TEST4 COPY A1

enter:

maclib gen testmac test1 test2 test3 test4

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 307

If a library named TESTMAC MACLIB A1 already exists, it is replaced by this new library.

When the input file is a COPY file, the member name(s) are taken from the name of the COPY file or from
the *COPY statement(s) in the COPY file. When the input file is a MACRO file, the member name(s) are
taken from macro prototype statements in the MACRO file. If a file contains more than one macro, the
MACLIB command gets the library member names from the macro prototype statements of each macro in
the file.

For example, suppose that several macrodefinitions, including one for TEST3 MACRO, are in the TEST1
MACRO file.

For example, the TEST1 MACRO file might look like this:

TEST1 MACRO
 ⋮
 MEND
TEST1A MACRO
 ⋮
 MEND
TEST3 MACRO
 ⋮
 MEND

If you issue the same MACLIB GEN command shown earlier, TESTMAC MACLIB has the following
members in this order:
TEST1

from TEST1 MACRO A1
TEST1A

from TEST1 MACRO A1
TEST3

from TEST1 MACRO A1
TEST2

from TEST2 MACRO A1
TEST3

from TEST3 MACRO A1
TEST4

from TEST4 COPY A1
The TEST3 macro, which appears in both the TEST1 MACRO file and the TEST3 MACRO file, now exists
as two members in TESTMAC MACLIB. However, there is only one entry in the MACLIB directory. The
MACLIB command does not check for duplicate macro names. Later, when a program requests TEST3
macro from TESTMAC MACLIB, it uses the first TEST3 macro it meets (from the TEST1 MACRO file).

Examining Contents of a MACLIB
To examine the contents of a macro library, you may use either the MACLIB or MACLIST command.

Using MACLIB Command
The MAP function of the MACLIB command lists information about members in a macro library. This
information includes:

• Member name
• Size of the member
• Sequential position in the library.

You can obtain this information as a:

• File on your A-disk (the DISK option, the default)
• Spooled printer file (the PRINT option)
• Display on your terminal (the TERM option).

Creating and Manipulating the CMS Libraries

308 z/VM: 7.2 CMS Application Development Guide

For example, to list the members of TESTMAC MACLIB, enter:

maclib map testmac

You can also retrieve information for specific members of a library by indicating the member names
following the MAP operand. For example, to list the TEST1 members of TESTMAC MACLIB, enter:

maclib map testmac test1

The DISK option creates a file with the file type MAP. The file name is the same as the MACLIB being
mapped. All three options erase any existing MAP file for the specified MACLIB.

If you want to place that information in the program stack, use the STACK option of the MAP operand.
The information can be stacked FIFO (first-in, first-out) or LIFO (last-in, last-out). The default order when
STACK is specified alone is FIFO. The options STACK, STACK FIFO, and FIFO are equivalent. The options
STACK LIFO and LIFO are equivalent. For example:

maclib map testmac test2 test3 (stack fifo

stacks, in the program stack, the MAP output for the TEST2 and TEST3 members of TESTMAC in first-in,
first-out order.

Using MACLIST Command
The MACLIST command displays a list of all members in the specified macro library. MACLIST provides
you with an easy way to select and edit CMS MACLIB members. If you issue the MACLIST command on
a macro library that resides in an SFS directory and the specified macro library does not contain any
members, you will receive the following message:

DMSWML213W Library fn ft has no members

You can type commands that operate on member names in the list directly on the lines of the MACLIST
display. When you press ENTER, all commands typed on the lines in the file displayed on the current
screen are executed. Symbols can represent operands in the command to be executed. Symbols are
needed if the command to be executed has operands or options that follow the file ID.

In the MACLIST environment, information that is normally provided by the MACLIB command (with the
MAP option) is displayed under the control of XEDIT. You can use XEDIT subcommands to manipulate the
list itself.

To create the MACLIB screen shown in Figure 48 on page 310, enter:

maclist testmac

Note that the members are sorted alphabetically by member name. Members with the same name are
then sorted by index number (least to greatest).

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 309

 TESTMAC MACLIST A0 V 130 Trunc=130 Size=18 Line=1 Col=1 Alt=0
Cmd Member name Index Records Library name Library type Mode
 TEST1 190 6 TESTMAC MACLIB A1
 TEST1A 240 25 TESTMAC MACLIB A1
 TEST3 613 57 TESTMAC MACLIB A1
 TEST2 197 25 TESTMAC MACLIB A1
 TEST3 615 25 TESTMAC MACLIB A1
 TEST4 546 55 TESTMAC MACLIB A1

1= Help 2= Refresh 3= Quit 4= Sort(name) 5= Sort(index) 6= Sort(size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT 12= Cursor
====>
 X E D I T 1 File

Figure 48. Sample MACLIST Screen

Adding MACLIB Members
To add members to a macro library, you may use either the MACLIB or XEDIT command.

Using MACLIB Command
The ADD function of the MACLIB command adds members to a macro library. No checking is done for
duplicate names, entry points, or CSECTs. The new member is added at the end of the library.

Suppose you want to add TEST5 COPY to the TESTMAC MACLIB. The command for this action looks like
this:

maclib add testmac test5

TESTMAC MACLIB now contains the following members:
TEST1

from TEST1 MACRO A1
TEST1A

from TEST1 MACRO A1
TEST3

from TEST1 MACRO A1
TEST2

from TEST2 MACRO A1
TEST3

from TEST3 MACRO A1
TEST4

from TEST4 COPY A1
TEST5

from TEST5 COPY A1

If you perform the ADD function on an empty library, the GEN function will be performed on the macro
library.

Creating and Manipulating the CMS Libraries

310 z/VM: 7.2 CMS Application Development Guide

Using XEDIT Command
You could also add members to a macro library using the MEMBER option of the XEDIT command for a
member that does not exist in the library. A new file is created with the file ID of membername MEMBER
fm.

For example, you can add a new member TEST5 to the TESTMAC MACLIB by entering:

xedit testmac maclib (member test5

When you issue the FILE or SAVE command for this new member, the TESTMAC MACLIB directory is
updated. The new member and the updated library directory are added to the end of the library. If the
directory already contains a member with the same name as the one being saved, the old entry is blanked
out, so that the updated member replaces the old version.

Replacing MACLIB Members
To replace members of a macro library, you may use either the MACLIB or XEDIT command.

Using MACLIB Command
The REP function replaces members in a macro library by deleting the directory entry for the
macrodefinition in the specified library. It adds new macrodefinitions to the library and creates new
directory entries.

Suppose you want to replace the TEST2 macro with a later debugged version or one with new features or
code. The command line:

maclib rep testmac test2

causes the following actions:

1. The latest version of the TEST2 macro (in the file TEST2 MACRO A1) is added to the library.
2. The old directory entry for the last version of TEST2 is deleted from the library.
3. A new directory entry is created.

The physical order of members in the library is arranged so that the new version of TEST2 appears after
the old version. The logical order (the one in which requests for macros are satisfied) is determined by the
library directory entry—not by the physical position of the member in the library. The REP function causes
the directory entry rather than the source code to be replaced.

Using XEDIT Command
You could also replace members of a macro library using the MEMBER option of the XEDIT command for
an existing member of a library. The member is read into a file called membername MEMBER fm for you to
edit.

For example, you can replace the member TEST2 of the TESTMAC MACLIB by entering:

xedit testmac maclib (member test2

When you issue the FILE or SAVE command for this changed member, the TESTMAC MACLIB directory is
updated. The changed member and the updated library directory are added to the end of the library. If the
directory already contains a member with the same name as the one being saved, the old entry is blanked
out, so that the updated member replaces the old version.

Deleting MACLIB Members
To delete members of a macro library, you may use either the MACLIB or MACLIST command.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 311

Using MACLIB Command
The DEL function deletes members from a macro library. What it does is remove the member name from
the library directory so there are no unused entries. The macrodefinitions or copy code still takes up
space in the library but cannot be accessed because it has been deleted in the library directory entry.

If a library contains two members with the same name, only the first member is deleted from the
directory. Deleting the last remaining member of a MACLIB erases the entire MACLIB. However, if you
perform the DEL function on a macro library that resides in a SFS directory and the resulting library has
no members, an empty macro library is maintained in the SFS directory. This is done to preserve any
authorities to the macro library file. You should use only the MACLIB command to perform functions on an
empty macro library.

To delete the first version of the TEST3 macro, the one from the TEST1 file, enter:

maclib del testmac test3

The result is this:
TEST1

from TEST1 MACRO A1
TEST1A

from TEST1 MACRO A1
(TEST3

from TEST1: present but unavailable)
(TEST2

from TEST2: present but replaced)
TEST3

from TEST3 MACRO A1
TEST4

from TEST4 COPY A1
TEST2

from TEST2 MACRO A1, later version

If you have MACRO and COPY files (on any accessed minidisk or in a directory) with the same file name,
the MACRO version is used when you invoke the MACLIB command.

Using MACLIST Command
The DISCARD command from the MACLIST screen deletes a member from a library. DISCARD is
equivalent to the CMS command MACLIB DEL. DISCARD can either be typed in the command area of
the line that describes the member you want discarded, or it can be entered from the command line (at
the bottom of the screen).

Compressing a MACLIB
When you use the ADD, DEL, and REP functions repeatedly, the library ends up with dead entries or
nonmembers. These are macros and copy code that remain in the library but are no longer used because
they have no library directory entries. The COMP function compresses a library by deleting any macros or
copy blocks that do not have library directory entries.

The MACLIB command does this by copying each member of the file to a new file, using the directory. The
new file now has the temporary name of MACLIB CMSUT1. This name is always used, regardless of the
original macro library file name. After all valid library members are copied to MACLIB CMSUT1, the old
library is erased and the temporary CMSUT1 file is renamed with the old library name.

To continue our example, the earlier results show that TESTMAC MACLIB now contains two nonmembers.
One is the TEST2 macro that was replaced by a later version. The other is the TEST3 macro that was
deleted. To save DASD space, you may want to compress TESTMAC to eliminate the two nonmembers by
issuing the command:

Creating and Manipulating the CMS Libraries

312 z/VM: 7.2 CMS Application Development Guide

maclib comp testmac

The resulting library contains the same valid members as those listed earlier. However, the ones in
parentheses (the first version of TEST3 and the earlier version of TEST2) no longer occupy space in the
MACLIB. Thus, the new TESTMAC MACLIB is smaller than the old one. It lost the two files plus two
delimiter records. The directory size remains the same, because it was already compressed. The result is
this:
TEST1

from TEST1 MACRO A1
TEST1A

from TEST1 MACRO A1
TEST3

from TEST3 MACRO A1
TEST4

from TEST4 COPY A1
TEST2

from TEST2 MACRO A1
If you perform the compress function on a macro library that resides in a SFS directory and the resulting
library has no members, an empty macro library is maintained in the SFS directory. This is done to
preserve any authorities to the macro library file.

Editing MACLIB Members
To edit members of a macro library, you may use either the MACLIST or XEDIT command.

Using MACLIST Command
The MACLIST command allows you to select and edit a CMS maclib member from the list. To edit a
member, position the cursor on the line that contains the member to be edited and press PF11.

Using XEDIT Command
You can also edit a CMS maclib member by using the XEDIT command with the MEMBER option. For
example, to edit the TEST2 member of TESTMAC MACLIB, enter:

xedit mylib testmac a1 (member test2

If the TEST2 member did not exist in TESTMAC MACLIB, this new member is added to the macro library.
See “Adding MACLIB Members” on page 310 for more details.

Printing and Displaying MACLIB Members
To print or display members of a macro library, you may use the PRINT, TYPE, or MACLIST command.

Using PRINT and TYPE Commands
The PRINT and TYPE commands both accept the option MEMBER as a means of specifying a single
MACLIB member or all the members. The format of these commands is similar.

For example, to print the TEST1 member of TESTMAC MACLIB, enter the following command:

print testmac maclib (member test1

Or, if you use the MEMBER option with an asterisk (*), all the members are displayed. For example, the
following command displays all the members of TESTMAC maclib:

type testmac maclib (member *

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 313

One spool file is produced for each member printed. To print all the members of a library continuously
without separator pages between them, issue the SPOOL PRINT CONT command. Then, if you want
to return to printing files with separator pages between them, use the SPOOL PRINT NOCONT CLOSE
command.

Using MACLIST Command
To print the TEST1 member of TESTMAC MACLIB from the MACLIST screen, type directly on the line that
contains the TEST1 member:

print TEST1 266 5 TESTMAC MACLIB A1

Then, press Enter. See the MACLIST command in the z/VM: CMS Commands and Utilities Reference for
more information about using symbols in MACLIST.

Another way to enter commands that make use of member names displayed is to move the first (or only)
member you want the command to use to the current line. Then enter an EXECUTE command (in the form
EXECUTE lines command) from the MACLIST command line. This method may be used on both display
and typewriter terminals.

Extracting MACLIB Members
To extract a member from a macro library, you may use either the MOVEFILE and FILEDEF commands or
the PUNCH command.

Using MOVEFILE and FILEDEF Commands
The MOVEFILE command with an appropriate FILEDEF extracts a member from a library. The MACLIB
member you specify is copied directly from the MACLIB to your A-disk.

To copy a member from a given MACLIB onto your A-disk (for example, to make changes to it), issue a:

• File definition for the member name that is input to the MOVEFILE command
• File definition for the output file written to your A-disk
• MOVEFILE command.

Example 1
Suppose you want to make some changes to TEST5A DSECT in TESTMAC MACLIB. When you added
TEST5A DSECT to TESTMAC MACLIB, you may have erased the source copy to save some disk space. So,
the original is no longer available to you.

The following command sequence extracts the TEST5A DSECT from TESTMAC MACLIB and copies it to
your A-disk with the file identifier of TEST5A COPY A1:

filedef inmove disk testmac maclib (member test5a
filedef outmove disk test5a copy a1
movefile

Now you can edit TEST5A COPY and make the changes you want. Then you can do a MACLIB REP to
replace TEST5A in TESTMAC MACLIB.

Example 2
The MOVEFILE command in the preceding example is a simple application that makes use of the existing
FILEDEFs. But with the PDS option, you can use MOVEFILE to extract every member of a macro library.

For example:

filedef test1 disk testmac maclib a
filedef macro disk
movefile test1 macro (pds

Creating and Manipulating the CMS Libraries

314 z/VM: 7.2 CMS Application Development Guide

This sequence defines TESTMAC MACLIB as the input file for the MOVEFILE command and assigns a
temporary logical name of TEST1 to the file. The second FILEDEF command identifies what the file type of
the resulting file should be, MACRO, and where the file should be written, to your A-disk. The MOVEFILE
command then causes TEST1 (that is, TESTMAC MACLIB A1) to be moved into separate files, each with a
file type of MACRO.

Each member in this example has a file type of MACRO, including those with the original file type of COPY.
You must rename those back to their original file type of COPY by using the CMS RENAME command.

Note: All CMS files you created by this method include the MACLIB delimiter statement / / as the last
record in the file. So the first change you should make to a MACLIB member extracted in this way is to
delete this / / delimiter record.

Using PUNCH Command
You can also extract a member from a macro library by using the PUNCH command. If you use the PUNCH
command, first spool your virtual card punch to your own virtual reader:

cp spool punch to *

Then, to punch the macro library member to your virtual reader, enter:

punch testmac maclib (member get

To read it back onto disk, enter:

receive spoolid get macro

Setting MACLIST Defaults
When you issue the MACLIST command, you are placed in the XEDIT environment. Therefore, the default
XEDIT macro, PROFMLST XEDIT, is executed. If you want to invoke a different XEDIT macro, you can
specify the PROFILE option with the MACLIST command. For example, to invoke MACLIST with the
MYMCLST XEDIT macro, enter:

maclist testmac (profile mymclst

You can do the same with the COMPACT and NOCOMPACT options of the MACLIST command.

If you are using an alternate profile most of the time, you may change the default profile with the
DEFAULTS command. For example:

defaults set maclist profile mymclst

Issuing the DEFAULTS command with no options provides you with the status of defaults currently in
effect.

Creating and Manipulating Text Libraries
A text library (TXTLIB file type) contains files with a file type of TEXT. These TEXT files are relocatable
object modules that are created after you compile your program. TXTLIBs are referenced when you
use the CMS LOAD or INCLUDE command to create nonrelocatable modules. Also, certain TXTLIBs are
referenced at run time.

TXTLIBs, like MACLIBs, have directories and members. The TXTLIB command creates a TXTLIB or
changes the contents of a TXTLIB. The TXTLIB command reads the object files as it writes them into
the library. It creates a directory entry for each entry point or CSECT name or file name if the FILENAME
option is specified. The GLOBAL command defines the library for the loader program, and specifies the
member name (the entry point) in the LOAD command. The TXTLIB command has a similar format as the
MACLIB command, except that you cannot use the REP and COMP functions on the TXTLIB command.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 315

Note: You should not use the OS/MVS STOW macro to create or modify TXTLIBs; only use the TXTLIB
command to manipulate TXTLIBs. You should not use any OS macros to create or update TXTLIBs. OS
partitioned data sets and CMS TXTLIBs interpret certain common fields differently. For this reason, OS
macros, which were written to support OS conventions, do not create CMS libraries that can be used
reliably.

Text libraries, like macro libraries, can reside in SFS directories. If you perform the GEN, ADD, DEL, or
MAP functions of the TXTLIB command on a text library that resides in an SFS directory and the resulting
library has no members, an empty text library is maintained on the SFS directory. This is done to preserve
any authorities to the text file. You should use only the TXTLIB command to perform functions on an
empty text library.

Each TEXT file contains at least one of each of the following types of records:
ESD

is an External Symbol Dictionary statement. This is the first statement in the module (and therefore
the first statement in each member of a TXTLIB). The ESD statement contains the name of the entry
point (CSECT) of the module.

TXT
is a statement that contains the actual machine code of the program generated by the compiler or the
assembler.

LDT
is a Loader Termination statement. It contains data required by the loader program when the module
is loaded into storage before execution or the creation of a nonrelocatable module.

The TEXT file cannot be executed directly because it is relocatable; the addresses are all relative to
location zero. This is the standard form for all assembler and compiler output.

Using MVS/XA Linkage Editor Control Statements
You may add MVS/XA linkage editor control statements such as NAME, ALIAS, ENTRY, and SETSSI to
a TEXT file (using XEDIT) before adding it to a TXTLIB. You must follow linkage editor conventions
concerning format (column 1 must be blank) and placement within the TEXT file. Before adding the TEXT
file to a TXTLIB, the control statements are processed as follows:

NAME Statement: A NAME statement causes the TXTLIB command to create the directory entry for the
member using the specified name. Thereafter, when you want to load that member into storage or delete
it from the TXTLIB you must refer to it by the name specified on the NAME statement.

Note: The FILename option overrides any name card found in a text file. The name card functions as
before, but the specified file name becomes the member name in the TXTLIB. The name card is the only
entry point within that member name of the TXTLIB. If a name card is not found in the text file and you
specify the FILename option, the file's name is the member name. The first CSECT in the text file is the
first entry point (the remaining entry points in the text file follow) within that member.

The loader does not use name cards to resolve entry points. It is important that the name on the name
card be the same as the name on the CSECT or entry card. This ensures that the loader finds the correct
text deck and loader tables (any external references) are resolved with the entry point. If the names differ,
the loader loads the text deck based on the name card (or file name). However, the loader tables are set
up according to entry or CSECT cards encountered during the load. Any external reference using the name
from the name card is resolved as zeros.

ENTRY Statement: If you use an ENTRY statement, the entry point you specify is validated and checked
for a duplicate. If the entry point name is valid and there are no duplicates in the TEXT file, the entry name
is written in the LDT card. Otherwise, an error message is issued. When this member is loaded, execution
begins at the entry point specified.

ALIAS Name: An entry is created in the directory for the ALIAS name you specify. A maximum of 64 alias
names can be used in a single text deck. You may load the single member and execute it by referring
to the alias name, but you cannot use the alias name as the object of V-type address constant (VCON)
because the address of the member cannot be resolved.

Creating and Manipulating the CMS Libraries

316 z/VM: 7.2 CMS Application Development Guide

SETSSI Card: TXTLIB command information you specify on the SETSSI card is written in bytes 26 through
33 of the LDT card.

All other MVS/XA linkage editor control statements and commands are ignored by the TXTLIB command
and written into the TXTLIB member. When you attempt to load the member, the CMS loader flags these
cards as not valid. These cards may be added as history information to a module if you specify the HIST
option on the LOAD or INCLUDE commands and then issue a subsequent GENMOD command.

Creating a TXTLIB
The GEN function of the TXTLIB command generates a TXTLIB on your disk or directory. The TXTLIB
command reads the object files as it writes them into the library and creates a directory entry. If you
specify the FILENAME option, the member name in the text library is the file name of the text file used to
create (add) this member. If you do not specify the FILENAME option, the member name in the text library
is the entry point name or the CSECT name.

For example, suppose you have the following three text files:

• TESTPRG1 TEXT A1 with an entry point named TEST1
• TESTPRG2 TEXT A1 with an entry point named TEST2
• TESTPRG3 TEXT A1 with an entry point named TEST3

Enter the following command to create a text library:

txtlib gen testlib testprg1 testprg2 testprg3 (filename

Because you specified the FILENAME option, the member names of TESTLIB TXTLIB are the names of the
text files (TESTPRG1, TESTPRG2, TESTPRG3). The file names, as well as the entry point names, are put in
the directory.

Now, enter the following command to create a text library:

txtlib gen testlib testprg1 testprg2 testprg3

Because you did not specify the FILENAME option, the member names of TESTLIB TXTLIB are the entry
point names (TEST1, TEST2, TEST3) of the text files. You must use these entry point names to reference
the specific TXTLIB members. TEST1, TEST2, and TEST3 are the names put in the directory also.

Note: The total number of members in any given TXTLIB cannot exceed 6000. An error message is
displayed when this number is reached. When processing terminates, the TXTLIB created includes all the
text files entered up to, but not including, the one that caused the overflow.

The total number of entry points in each member cannot exceed 4048. An error message is displayed
when this limit is reached and processing has begun on a new file. When processing terminates, the
TXTLIB created includes all the text files except the one that caused the overflow.

Examining the Contents of a TXTLIB
The MAP function of the TXTLIB command lists information about the members of a TXTLIB. This
information includes:

• Names of the members of the TXTLIB
• Location of the members in the TXTLIB
• Number of entries.

You can obtain this information as a:

• File on your A-disk (the DISK option)

The DISK option creates a file with the file type MAP. The file name is the same as the TXTLIB being
mapped. If a MAP file already exists for the specified TXTLIB, it is erased and a new MAP file is created.

• Spooled printer file (the PRINT option)

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 317

• Display on your terminal (the TERM option).

Example: To display the information about the members in TESTLIB TXTLIB created earlier, enter the
following command:

TXTLIB MAP TESTLIB (TERM

If you created TESTLIB TXTLIB without the FILENAME option, the following is displayed:

 ENTRY INDEX
 TEST1 2
 TEST2 39
 TEST3 76
 3 ENTRIES IN LIBRARY

TEST1, TEST2, and TEST3 are entry point names of the text files.

Adding TXTLIB Members
The ADD function of the TXTLIB command adds a text file to a text library. If you specify the FILENAME
option, the member name in the text library is the file name of the text file. If you do not specify the
FILENAME option, the member name in the text library is the entry point name or the CSECT name.

Deletions must be made on the member names. CMS commands will treat entry point name(s) the same
as member name(s). They may be different from the CMS file name from which they originated depending
on whether you specified the FILENAME option.

Suppose you want to add TESTPRG4 TEXT, with a CSECT named TEST4, to the text library, TESTLIB. If you
specify the FILENAME option when you enter the TXTLIB command:

txtlib add testlib testprg4 (filename

TESTLIB TXTLIB has a new member called TESTPROG with TEST4 as an entry point in that member.
TESTPRG4, as well as TEST4, are added to the directory.

If you do not specify the FILENAME option when you enter the TXTLIB command:

txtlib add testlib testprg4

TESTPROG TXTLIB has a new member called TEST4. TEST4 is added to the directory.

Deleting TXTLIB Members
The DEL function of the TXTLIB command deletes members of a text library. If the TXTLIB contains more
than one member with the same name, only the first member is deleted. You must delete the member
name, which may not be the name of the text file used to create this member. It depends on whether you
used the FILENAME option when the member was added.

Any attempt to delete a specific alias or entry point within a member results in a NOT FOUND message.

For example, to delete the member TEST3 from TEXTLIB, enter:

txtlib del testlib test3

Replacing TXTLIB Members
The TXTLIB command does not have a REP function. To replace a member in a TXTLIB, use the DEL
function followed by the ADD function.

For example, suppose you want to replace the member TEST3 in TEXTLIB with TESTPRG5 TEXT, with a
CSECT named TEST5. First delete the TEST3 member by entering:

txtlib del testlib test3

Creating and Manipulating the CMS Libraries

318 z/VM: 7.2 CMS Application Development Guide

Remember that you must delete the member name, which may not be the name of the text file used to
create this member name. It depends on whether you used the FILENAME option when the member was
added.

Now, add TESTPRG5 TEXT to TESTLIB TXTLIB by entering one of the following commands, depending on
what you want the member name to be:

txtlib add testlib testprg5 (filename

or

txtlib add testlib testprg5

If you specify the FILENAME option, the member name is TESTPRG5. If you do not specify the FILENAME
option, the member name is TEST5.

Printing and Displaying TXTLIB Members
The PRINT command with the MEMBER option prints the contents of a text library or prints a specific
entry point or member of a text library. The TYPE command with the MEMBER option displays the
contents of a text library or displays a specific entry point or member of a text library. These CMS
commands will search all member names and entry point names in sequential order.

For example, to print the TEST2 member of TESTLIB TXTLIB, enter:

print testlib txtlib (member test2

One spool file is produced for each member printed. To print all the members of a library continuously
without separator pages between them, use the SPOOL PRINT CONT command. Then, if you want to
return to printing files with separator pages between them, use the SPOOL PRINT NOCONT CLOSE
command.

To display all the members of TESTLIB TXTLIB, enter the following command:

type testlib txtlib (member *

Extracting TXTLIB Members
The PUNCH command extracts a member from a text library. This CMS command will search all member
names and entry point names in sequential order. If you use the PUNCH command, first spool your virtual
card punch to your own virtual reader by entering:

cp spool punch to *

Then, to punch the TXTLIB file to your virtual reader, enter:

punch testlib txtlib (member get

To read it back onto disk, enter:

receive spoolid get text

Creating and Manipulating Load Libraries
A load library, LOADLIB, is another type of library also available. LOADLIBs, like MACLIBs and TXTLIBs,
are in CMS simulated partitioned data set format.

You create and manipulate LOADLIBs differently than you would MACLIBs and TXTLIBs. To create a
LOADLIB or a LOADLIB member, use the LKED command. To manipulate load libraries, use the LOADLIB
command. To execute a LOADLIB member, use the OSRUN command.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 319

Creating LOADLIBs Using the LKED Command
The LKED command creates a CMS LOADLIB or a member of a LOADLIB from a TEXT file. For example, to
create a LOADLIB named PROG025 LOADLIB from the PROG025 TEXT file, enter:

lked prog025

This LOADLIB contains an executable load module that you can run using the OSRUN command. See
“Using the LKED and OSRUN Commands” on page 58 for information on executing programs stored as a
member of a LOADLIB.

The LKED command produces two permanent files on your A-disk. The file name of both files is the name
specified on the LKED command. One file contains the load module(s) created by the linkage editor. It is
given the file type LOADLIB. The other file is the printed output from the linkage editor. It is given the file
type LKEDIT.

The LKED command lets you specify many different options. CMS does not use all of the options. The
CMS-related options are: TERM, NOTERM, PRINT, DISK, NOPRINT, AMODE, RMODE, NAME, and LIBE. The
remaining options are: LET, NE, OL, RENT, REUS, REFR, OVLY, XREF, MAP, LIST, NCAL, XCAL, SIZE, and
ALIGN2. See the z/VM: CMS Commands and Utilities Reference for a description of these options.

Manipulating LOADLIBs Using the LOADLIB Command
The LOADLIB command maintains CMS LOADLIBs. The LOADLIB command lists the members of a
LOADLIB, copies members from one LOADLIB to another, merges complete LOADLIBs, or compresses
a LOADLIB. See the z/VM: CMS Commands and Utilities Reference for information on the LOADLIB
command.

Creating Callable Services Libraries
The CSLGEN command is used to create a callable services library (CSL). CSLGEN can create CSLs which
reside on DASD, directory, or within a segment. For example:

CSLGEN DASD MYLIB FROM YOURLIB

will create a CSL named MYLIB from a build list called YOURLIB CSLCNTRL. While:

CSLGEN SEG MYLIB FROM YOURLIB

will create the same CSL ready to be included in a segment. For more information on placing CSLs in
segments see the z/VM: CMS Commands and Utilities Reference.

When the CSL contains direct call routines, a TXTLIB file with the same file name as the CSL is created as
well. This TXTLIB contains entries known as call routing code segments. These code segments are to be
linked to the application program so that the CSL routine call is routed to the proper address in storage.

The main input of CSLGEN is a build list which by default has the file type of CSLCNTRL. The CSLCNTRL
file provides CSLGEN with a list of all of the routines to be included in the CSL as well as what TEXT deck
and TEMPLATE file to use for each. Other optional attributes can be specified for each routine as well. For
a more complete description of the CSLCNTRL file and how to create one see the z/VM: CMS Application
Development Guide for Assembler.

Using Callable Services Libraries
CMS includes two callable services libraries named VMLIB and VMMTLIB. VMLIB contains CSL routines
that:

• Call CMS file system management functions (CMS file pool and minidisk I/O)
• Call CMS file pool administration functions
• Take advantage of CMS's data integrity capabilities

Creating and Manipulating the CMS Libraries

320 z/VM: 7.2 CMS Application Development Guide

• Access the current generation of REXX variables
• Interface with the z/VM command environment through a REXX exec
• Invoke the CMS Extract/Replace facility, which lets applications obtain or modify selected system

information without release or z/VM system dependencies
• Call data space services available on CMS
• Call program-to-program communications functions using Systems Application Architecture® (SAA)

Common Programming Interface (CPI) Communications (also known as SAA communications interface)
• Call SAA resource recovery (also known as CPI resource recovery) functions
• Provide CMS file pool exits

VMMTLIB contains CSL routines that:

• Call CMS application multitasking functions
• Call OpenExtensions services
• Get the value set for the workstation display address

DFSMS/VM provides two additional callable services libraries. FSMPPSI contains Removable Media
Services (RMS) Tape Library Dataserver interface routines. FSMPSI contains DFSMS/VM installation-wide
exit routines.

Your applications can call all these CSL routines, much like subroutines, to perform z/VM services without
writing unique assembler subroutines. These calls are not resolved until the call is made (as opposed to
when the program is linked or loaded). This lets you make changes to a CSL routine without having to
relink the routine to the application program, recompile the application, or modify any of the program's
source statements.

The following books provide information about the CSL routines listed above:

• z/VM: CMS Callable Services Reference describes the basic set of routines in VMLIB. It also describes the
VMMTLIB routine that gets the value set for the workstation display address.

• CPI Communications Reference describes the SAA CPI Communications routines.
• CPI Resource Recovery Reference describes the SAA resource recovery routines.
• z/VM: CMS File Pool Planning, Administration, and Operation describes the CMS file pool exit routines.
• z/VM: CMS Application Multitasking describes the CMS application multitasking routines.
• z/VM: OpenExtensions Callable Services Reference describes the OpenExtensions callable services.
• z/VM: DFSMS/VM Removable Media Services describes the RMS Tape Library Dataserver interface

routines.
• z/VM: DFSMS/VM Customization describes the DFSMS/VM installation-wide exit routines.

You can also create your own CSL routines and build your own CSL. You can use these routines the same
way you would use the CSL routines supplied with VMLIB and VMMTLIB. See z/VM: CMS Application
Development Guide for Assembler for information on creating your own CSL routines and building a CSL.

The following information describes how to load a CSL, manipulate CSL routines, and invoke a CSL
routine.

Making CSLs Available for Use
The GLOBAL command with the CSLLIB operand manipulates the search order of the libraries that the
RTNLOAD command uses to locate CSL routines. If you do not make the library specifically available with
the GLOBAL command, you must load a routine from the library by specifying the library directly with the
FROM option on RTNLOAD.

Note: VMLIB and VMMTLIB are always implicitly in the search order. If the GLOBAL CSLLIB command is
issued without any library name, VMLIB and VMMTLIB are still searched.

See the z/VM: CMS Commands and Utilities Reference for a complete description of the GLOBAL and
RTNLOAD commands.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 321

Loading or Dropping a CSL Routine
The RTNLOAD command loads a CSL routine from a library that is stored in a logical saved segment, on
disk, or in the CMS nucleus.

Failure to load VMLIB can cause unpredictable results. The sample system profile (SYSPROF EXEC) loads
VMLIB. If the call to RTNLOAD has been removed from SYSPROF EXEC, you can still have VMLIB loaded
automatically by adding this line to your PROFILE EXEC:

RTNLOAD * (FROM VMLIB SYSTEM GROUP VMLIB)

VMMTLIB is contained within the CMS nucleus and is automatically loaded during CMS initialization
before SYSPROF EXEC is run.

You can tailor the SYSPROF EXEC, using the RTNLOAD command, to make your own callable services
library available to many users.

The RTNDROP command drops a CSL routine that was loaded with RTNLOAD. VMMTLIB routines cannot
be dropped via the RTNDROP command, although calls to them can be intercepted by routines that are
loaded by the RTNLOAD command.

The library subgroup is an extension of the existing GROUP option used in RTNLOAD and RTNDROP. A
large library can be subdivided into functionally related subsets using the library subgroup option. You
can RTNLOAD and RTNDROP these library subgroups with one command. Such groupings can help save
storage and improve call time performance.

See the z/VM: CMS Commands and Utilities Reference for a complete description of the RTNLOAD and
RTNDROP commands.

Getting Information about Routines in a Library
You can use various commands to get more information about your CSL routines:

• The RTNSTATE command verifies that a routine is loaded.
• The CSLLIST command displays information of the contents of a callable services library.
• The CSLMAP command displays information about currently loaded CSL routines in an interactive

environment.
• The QUERY CSLLIB command displays names of the CSL libraries in the search order. The QUERY

LIBRARY command displays names of all library files.
• The RTNMAP command displays information about the CSL routines that are currently loaded.

See the z/VM: CMS Commands and Utilities Reference for a complete description of the RTNMAP,
RTNSTATE, CSLLIST, QUERY CSLLIB, and QUERY LIBRARY commands.

Programming Language Binding Files
For certain groups of CSL routines, z/VM provides programming language binding files that define entry
points, declare external functions, and define constants, such as return codes and reason codes. You
must include these binding files in your program before you invoke the CSL routines.

The following types of CSL routines use binding files:

• CMS application multitasking functions—see z/VM: CMS Application Multitasking for more information.
• OpenExtensions callable services—see the z/VM: OpenExtensions Callable Services Reference for more

information.
• VMLIB routines that use names longer than eight characters—see the z/VM: CMS Callable Services

Reference for more information.

Creating and Manipulating the CMS Libraries

322 z/VM: 7.2 CMS Application Development Guide

Invoking a CSL Routine
To invoke a CSL routine, whether it is a routine you created or one already in one of the system libraries,
you must use one of the following methods.

Note:

1. To invoke CPI Communications (also known as SAA communications interface) routines and SAA
resource recovery (also known as CPI resource recovery) routines, you must use a different call format
than the one described in this chapter. For more information on CPI Communications, see Chapter 33,
“Understanding CPI Communications,” on page 493.

2. To invoke CMS multitasking routines, you must use the call formats described in the z/VM: CMS
Application Multitasking.

Direct Call
A call routing code segment generated by CSLGEN for the CSL routine directs the call to the CSL
routine. This call interface can be used only with direct call CSL routines. It is much faster than
DMSCSL and is usable by high-level languages, unlike CSLFPI. Performance is comparable to that of
the "fastpath" interface available to assembler programs.

The call routing code segments are held in a TXTLIB file with the same file name as that of the CSLLIB,
CSLSEG, or TEXT file created by CSLGEN. The individual call routing code segment finds the proper
CSL routine version using a path assigned to the routine name on the ROUTINE line of the CSLCNTRL
file used to build the library.

Use the GLOBAL TXTLIB command to access the CSL TXTLIB files needed by your application
program. Before calling a CSL routine, the CALL Router code segment must be linked to the program
using the LOAD/INCLUDE command or the LKED control statement. Additional language-specific
statements may be necessary so that language compilers can provide the proper assembler interface.
See the z/VM: CMS Application Development Guide for Assembler for additional information on direct
call CSL routines.

Call DMSCSL
Call DMSCSL passes control to another module that searches for the specified routine, converts the
parameter list, and invokes the CSL routine. Before calling a CSL routine, DMSCSL must be linked to
the program using the LOAD/INCLUDE command or the LKED control statement. Additional language-
specific statements may be necessary so that language compilers can provide the proper assembler
interface.

CSLFPI Macro
CSLFPI is used by assembler programs to invoke CSL programs using a ‘fast path’. A program should
use a fast path when it calls the same CSL routine several times and optimum performance is
important. See “Invoking CSL Routines Frequently from Assembler Programs” on page 326 for more
information on CSLFPI.

REXX
REXX can call a CSL routine as a subroutine or as a function. See the z/VM: REXX/VM Reference for
more information on calling CSL routines from REXX.

Calling Formats
Here are the calling formats for all the supported languages:
General Format

CALL rtnname Direct Call Parameters

DMSCSL DMSCSL Parameters

VS COBOL II
CALL "rtnname" USING Direct Call Parameters

"DMSCSL" USING DMSCSL Parameters

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 323

VS FORTRAN

CALL rtnname
1

(Direct Call Parameters)

DMSCSL (DMSCSL Parameters)

Notes:
1 VS FORTRAN cannot use the longer-style routine names, such as StackBufferCreate, to make direct
calls. It must use the shorter name, such as DMSSTKC.

VS Pascal
rtnname (Direct Call Parameters) ;

DMSCSL (DMSCSL Parameters) ;

PL/I
CALL rtnname (Direct Call Parameters) ;

DMSCSL (DMSCSL Parameters) ;

C
rtnname (Direct Call Parameters) ;

DMSCSL (DMSCSL Parameters) ;

Assembler
CALL (reg) , (Direct Call Parameters)

DMSCSL , (DMSCSL Parameters)

, VL

Note:

1. When the long form of a routine’s name is used in a direct call, the routine’s address must be passed in
a register, for example:

L R15,=A(STACKQUERY)
CALL (15),(RC,RE,BUFNUM,LINES,HIGH),VL

2. For the Assembler language, addresses used with CSL routines are 32-bit fields. The high-order bit is
not used for addressing and must be zero, except that it must be set to one when it designates the
end of a parameter list. Specifying VLon the routine call sets the high-order bit to 1. If you build the
parameter list yourself and provide only the address of the list in the routine call, you must set the
high-order bit of the last address in the list (see the information on programming language binding files
in the z/VM: CMS Callable Services Reference).

Ada
CALL rtnname (Direct Call Parameters) ;

DMSCSL (DMSCSL Parameters) ;

Direct Call Parameters
retcode

, parm

Creating and Manipulating the CMS Libraries

324 z/VM: 7.2 CMS Application Development Guide

DMSCSL Parameters
rtnname , retcode

, parm

Calling CSL routines is different in REXX/VM. Routines can be called as functions or they can be called as
routines with the CALL instruction or the ADDRESS OPENVM instruction:
REXX function call

CSL (' rtnname retcode

parm

')

REXX CALL instruction
CALL CSL ' rtnname retcode

parm

'

REXX ADDRESS OPENVM instruction
ADDRESS OPENVM ' rtnname

parm

'

Note: OPENVM type CSL routines can be called from REXX only by using the ADDRESS OPENVM interface.
OPENVM routines may not follow the usual CSL conventions, such as providing return and reason codes
as the first two parameters. For more information about the ADDRESS OPENVM interface, see the z/VM:
REXX/VM Reference. To determine if a CSL routine is an OPENVM routine, you can use the CSLMAP or
CSLLIST command. For information about these commands, see the z/VM: CMS Commands and Utilities
Reference.

Parameters
rtnname

is the name of a variable that contains the name of the CSL routine being called. This is only a
parameter for the DMSCSL call and REXX.

retcode
holds the return code from the CSL routine.

parm
are the parameters passed to the CSL routine.

For information about specific CSL routines in VMLIB, see the z/VM: CMS Callable Services Reference. For
information about specific CSL routines in VMMTLIB (except the OpenExtensions routines), see the z/VM:
CMS Application Multitasking.

For information about the OpenExtensions routines in VMMTLIB, see the z/VM: OpenExtensions Callable
Services Reference.

Example
Suppose your FORTRAN program wants to find the access mode of the first read/only CMS disk. It can do
this using the extract function of the DMSERP routine. DMSERP is a CSL routine that obtains or updates
specific system information.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 325

First, your program should declare and initialize the variables to be used. For example, FUNCT, the
variable containing the function of RNAME, is set to EXTRACT. Then, use the following format of the CSL
routine to extract the access mode of the first read/only CMS disk.

CALL DMSCSL (rtnname, RETCODE, FUNCT, NUMARGS, INFONAME, BUFFER,
 DATATYP, BUFLEN, FLAGS, SRCHTYP, TOKEN, SARGNAM, SARGVAL,
 SVALTYP, SVALLEN, SARGTYP)

Return Codes
For a list of the return codes you can receive from calling a CSL routine, see the z/VM: CMS Callable
Services Reference. If the call to the CSL routine was made from a REXX program, additional return codes
are generated. See the z/VM: REXX/VM Reference for details on these return codes.

Invoking CSL Routines Frequently from Assembler Programs
If an assembler application program is going to frequently invoke the same CSL routine, you can increase
the performance of your program by using a fastpath interface with the CSLFPI macro.

You implement the fast path using these four steps:

1. Make an area that contains information about the CSL routine and its parameters. This information
includes the location of the routine and the location and size of the routine's parameters. You can build
this area using CSLFPI TYPE=AREA, or define the area and map it onto other storage using CSLFPI
TYPE=DSECT.

2. Give initial values for the CSL routine and its parameters using CSLFPI TYPE=INIT or CSLFPI
TYPE=INITD. INIT should be used if you actually built the area in step 1 (using TYPE=AREA); INITD
should be used if you mapped the area onto unformatted storage in step 1 (using TYPE=DSECT).

3. Set or change values for the address and length values for a CSL routine's parameters using CSLFPI
TYPE=SET. (This step is not required unless you wish to change the values originally established when
the fast path area was initialized.)

4. Once you have defined the necessary information for a CSL routine and its parameters, you invoke
the CSL routine using CSLFPI TYPE=CALL. You can also set or change parameter address and length
information on this macro call.

If you use the VM Data Spaces facility, see Chapter 15, “Using Data Spaces,” on page 217 for information
on calling CSL routines from access register mode using the CSLFPI macro.

Examples of each of these steps are shown later. See the z/VM: CMS Macros and Functions Reference for
detailed information on the CSLFPI macro.

1. Setting Up the Fast Path Area

The following program portions show three examples of using CSLFPI TYPE=AREA and CSLFPI
TYPE=DSECT.

• This builds an area for three parameters. It gives names for all three. FP1 is the name used to
reference the fast path area.

FP1 CSLFPI TYPE=AREA,
 PARMS=((RETR),(REAS),(P1))

• This defines a mapping for unformatted storage. (The storage would have to be previously allocated,
such as by a call to the CMSSTOR macro.) It just names four parameters.

FP2 CSLFPI TYPE=DSECT,
 PARMS=((RETR),(REAS),(P2),(P3))

• This defines a mapping within a DSECT. (The storage would have to be previously allocated, possibly
passed from another module.) The names of four parameters are specified. In addition, this defines
CSLROUT3 as the CSL routine being called.

Creating and Manipulating the CMS Libraries

326 z/VM: 7.2 CMS Application Development Guide

PLACE DSECT
FP3 CSLFPI TYPE=AREA,SERVICE=CSLROUT3,
 PARMS((RETR),(REAS),(P4),(P5))

2. Initializing the Fast Path Area

The following program portions show two examples of using CSLFPI TYPE=INIT and CSLFPI
TYPE=INITD. These examples are based on the previous TYPE=AREA/DSECT examples:

• This defines CSLROUT1 as the CSL routine being called, as well as the addresses for parameters P1,
RETR, and REAS.

 CSLFPI TYPE=INIT,AREA=FP1,SERVICE=CSLROUT1,
 PARMS=((RETR,RETURN),(REAS,REASON),(P1,PARM1))

RETURN DC F'0'
REASON DC F'0'
PARM1 DC C'This is parameter 1'

• This defines CSLROUT2 as the CSL routine being called, as well as the addresses for parameters
RETR, REAS, and P2. Note that INITD must be used because the area was mapped onto unformatted
storage with TYPE=DSECT.

INIT2 CSLFPI TYPE=INITD,AREA=FP2,SERVICE=CSLROUT2,
 PARMS=((RETR,RETURN),(REAS,REASON),
 (P2,PARM2))

RETURN DC F'0'
REASON DC F'0'
PARM2 DC F'222'

3. Modifying Fast Path Area Values

The following program portions show two examples of CSLFPI TYPE=SET. These examples are based
on the previous TYPE=AREA/DSECT and TYPE=INIT examples:

• This sets a length for parameter P1:

 CSLFPI TYPE=SET,AREA=FP1,
 PARMS=((P1,,L'PARM1)

• This sets the length and address for parameters P4 and P5:

 CSLFPI TYPE=SET,AREA=FP3,
 PARMS=((RETR,RETURN),(REAS,REASON),
 (P4,PARM4,L'PARM4),(P5,PARM5,4))

RETURN DC F'0'
REASON DC F'0'
PARM4 DC C'This is parameter 4'
PARM5 DC F'555'

Note:

a. The values and lengths of parameters should not be assigned using a TYPE=AREA statement if
directly callable CSL routines may be called.

b. A length must be set for a parameter when the parameter is defined in the CSL routine's template
as being type FCHR and having a length of zero.

c. The length attributes for parameters which are not of type FCHR, with length zero, are set
automatically at TYPE=INIT/INITD time for CSL routines that are not directly callable. They are
ignored when initializing for a directly callable routine.

d. The length of a parameter, which is followed immediately by an LEN type parameter, is not
specified as shown above. The length is supplied as the value of the LEN type parameter which
follows it.

4. Invoking a CSL Routine

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 327

The following program portions show two examples of CSLFPI TYPE=CALL. These examples are based
on the previous examples.

• This invokes the CSL routine named CSLROUT1, whose fast path area was named FP1:

 CSLFPI TYPE=CALL,AREA=FP1

• This invokes the CSL routine named CSLROUT3, whose fast path area was named FP3. Note that a
new address and length is being supplied for P4.

 LA R3,PARM6
 LA R4,L'PARM6
 CSLFPI TYPE=CALL,AREA=FP3,
 PARMS=((P4,(R3),(R4))

Using ISPF/PDF Libraries
Application programmers often work in groups to develop application programs. In many cases, a
programmer is a specialist in certain areas of application programming, such as writing assembler
language subroutines to be called by programs written in high-level languages. You may be responsible
for creating certain file structures for use in multiple applications.

For example, you may be asked to create and maintain the Data Division statements that define certain
file structures to be used by a number of COBOL programs, written by other programmers. Or, you may
need to write certain FORTRAN subprograms to be called by main programs during processing.

To help share source and object code, the Interactive System Productivity Facility (ISPF) has a companion
product called Program Development Facility (PDF) that you can use to create and maintain libraries
of shared source code, object code, data, or documentation. These libraries may be sets of CMS files,
MACLIBs, or TXTLIBs. They are identified by project name, group name, and type of information in the
library.

An ISPF/PDF library is a collection of code or data units called members. Each library generally contains
members with the same type of information. For example, all the members of one library may consist of
assembler source code. Another could contain COBOL Data Division definitions, or documentation files
written in SCRIPT. ISPF/PDF libraries are maintained internally as CMS files. Each library may consist of
a set of CMS sequential files, or it may be a MACLIB or TXTLIB. The particular organization is designated
when the library is specified to PDF using the file utility (UTILITIES on the first screen and FILE on the
second screen).

Each ISPF/PDF library is identified by:
Project name

is the common identifier for all libraries belonging to the same project.
Group name

is the identifier for a particular set of libraries.
Type

is the identifier for the type of information in the library.

PDF usually represents these characteristics the same way an OS partitioned data set is represented—you
join them with a period. For example, if your project name is PERSONNEL, the group name is TESTLIB,
and the information type is COBOL, the library would be specified as:

PERSONNEL.TESTLIB.COBOL

Most projects use a hierarchy of related libraries to maintain effective version control over the
programming development process and to reduce contention in library usage. For example, there may
be three levels of library for a given project: a master library for production, a test library, and multiple
development libraries. The master library designator could be PRODLIB, the test library TESTLIB, and the
development library DEVLIB. The development library could also be given the name of the CMS user who
owns the particular library.

Creating and Manipulating the CMS Libraries

328 z/VM: 7.2 CMS Application Development Guide

For the PERSONNEL project, you could have the following library names:

PERSONNEL.PRODLIB.COBOL
PERSONNEL.TESTLIB.COBOL
PERSONNEL.DEVLIB.COBOL

Each library is uniquely named. This gives great flexibility in accessing various members contained in
them.

Specifying ISPF/PDF Libraries and Their Members
To specify a member of an ISPF/PDF library, you must enter a project name, group name, type qualifier,
and member name. Each of these items may contain up to eight alphanumeric characters. For the project
name, group name, and type name, the first character must be alphabetic; for a member name, the
name must follow CMS file name naming conventions. PDF automatically issues the appropriate LINK and
ACCESS commands necessary to access the minidisk on which the library resides.

PDF panels prompt you for each component of the library identification as follows:

ISPF LIBRARY:
 PROJECT ===>
 GROUP ===>
 TYPE ===>
 MEMBER ===>

For example, to gain access to a member called TESTPROG, residing in the PERSONNEL.DEVLIB.COBOL
library, you would respond to the PDF panel prompts as follows:

ISPF LIBRARY:
 PROJECT ===> personnel
 GROUP ===> devlib
 TYPE ===> cobol
 MEMBER ===> testprog

If you do not specify the member name, PDF displays a list of members of the library, which you can
browse before selecting a specific member. Member lists are provided for PDF functions. Some of these
functions are BROWSE (to examine a file), EDIT (to make changes to a file), MOVE, and COPY.

Guidelines for Library Specifications
You must specify each ISPF library with the ISPF/PDF file utility (UTILITIES on the first screen and FILE
on the second screen) before it can be used. The name of the library along with the following information
must be specified:
ISPF/PDF Library Attributes

Organization, record format, and record length.
ISPF/PDF LIBRARY Location

Owner's ID and device address.
Link Access Mode

For update (write and multiwrite, among others). See ISPF/PDF Services for more information.
File type

For organization S (set of files).
File name

For organization M or T (MACLIB or TXTLIB)

An ISPF/PDF library takes one of three forms:
S

is a set of CMS sequential files, all with the same file type. The CMS file names are the same as the
ISPF/PDF library member names. The CMS file type can be anything that uniquely identifies the set of
files on a minidisk, such as COBOL, DATA, or TEXT.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 329

M
is a CMS MACLIB, with a file name that uniquely identifies the MACLIB on the disk. The member
names in the MACLIB are the same as the ISPF library member names.

T
is a CMS TXTLIB, with a file name that uniquely identifies the TXTLIB on the disk. The member names
in the TXTLIB are the same as the ISPF library member names.

ISPF/PDF Library Record Format and Length
Libraries with an organization of M or T must have a record format of F (for fixed-length records) and a
record length of 80. Libraries with S organizations may have a record format of F or V (for variable-length)
with record lengths from 1 to 32,767 bytes. (However, the PDF editor can only process records that are
longer than 9 bytes and shorter than 256.)

Location of ISPF/PDF Libraries
Each ISPF library must be completely contained on one minidisk. You specify this with the user ID of the
owner, and the virtual address of the device on which the library resides.

You can have more than one ISPF/PDF library on the same minidisk. ISPF/PDF libraries can also exist on
the same minidisk with other CMS files that are not ISPF/PDF libraries. Usually, the lowest level libraries
in a project (the DEVLIBs in our example) are private libraries, owned by the principal or only user. These
should have an organization of S to eliminate the need for compressions. Higher level libraries are usually
common libraries accessed for reading by anyone on the project, but maintained by one designated
individual.

For example, if your responsibility is to maintain test data for a given project, you would have write access
to the PERSONNEL.TESTLIB.DATA library. Everyone else on the project would only have read access. This
kind of restriction helps protect the integrity of the data. It helps ensure that everyone is using the same
files.

If you want to protect higher level libraries against unauthorized access by those outside the project,
minidisks on which they reside can be protected with read passwords. You can, for example, assign the
same read password to all minidisks containing libraries for the PERSONNEL project. This lets people
working on the project access any library, but prevents those outside the project from gaining access.

Concatenating ISPF/PDF Libraries
PDF lets you specify up to four libraries during source editing, compilation, assembly, or SCRIPT/VS
processing (plus additional MACLIBs for compilations and assemblies). Generally, the lowest level library
is specified ahead of the next higher level library, and so on, in bottom-to-top order. The following
example shows how you could specify three libraries using the PDF library (member) specification panel:

ISPF LIBRARY:
 PROJECT ===> personnel
 GROUP ===> devlib ===> testlib ===> prodlib ===>
 TYPE ===> cobol
 MEMBER ===> testprog

In this example, three libraries are specified in this order for TESTPROG COBOL:

PERSONNEL.DEVLIB.COBOL
PERSONNEL.TESTLIB.COBOL
PERSONNEL.PRODLIB.COBOL

Specifying libraries this way during editing lets you copy members to your development library. Use the
specification sequence to search the libraries for the member you want to edit. The edited member is
saved in your development library (the first library in the concatenation sequence), while the unchanged
version remains in the test or master library. When you have finished testing the new version, you can
promote it to a higher level library using the move/copy utility, PDF option (UTILITIES on the first screen
and MOVE/COPY on the second screen).

Creating and Manipulating the CMS Libraries

330 z/VM: 7.2 CMS Application Development Guide

Library concatenation during language processing makes it easy to include source segments using
INCLUDE or COPY statements (or SCRIPT imbed controls). You can debug new or modified programs
without altering the contents of the test or master libraries. The output from a compilation or assembly
(object module) is stored in the lowest level TEXT library (the first library in the concatenation sequence).

ISPF/PDF Library Statistics
When a list of library members is displayed (for example, when you leave the MEMBER field blank on the
PDF library selection panel), various statistics associated with each member are displayed, including:

• Name of the member
• Version number
• Modification level
• Creation date
• Date last modified
• Size.

These statistics help you keep track of files. Next to the name of the library member there's a blank field
that you can use to SELECT a member for editing, browsing, or other PDF functions. You do this by placing
the letter S in the blank letter field.

See the ISPF/PDF Services for additional information on ISPF/PDF libraries and the PDF functions.

Creating and Manipulating the CMS Libraries

Chapter 19. Creating and Manipulating the CMS Libraries 331

Creating and Manipulating the CMS Libraries

332 z/VM: 7.2 CMS Application Development Guide

Chapter 20. Using Execs

This chapter describes:

• The different types of execs
• XEDIT macros
• Special execs you can write and use (PROFILE EXEC and CMS EXEC)
• How to use the FILEDEF and GLOBAL commands in an exec
• How to use execs to create prototypes for applications.

An exec is a file of statements that are executed when you enter a single statement. You often need to
perform a sequence of CMS and CP commands, for example, when compiling and link editing a source
program. You can group this sequence of commands in an EXEC file and control the execution of these
statements by using exec language statements.

In its simplest form, an EXEC file may contain only one record. In its most complex form, it can contain
thousands of records and resemble a complete program written in a high-level programming language. An
exec can contain CMS commands, CP commands, or exec statements. Each exec language has its own set
of statements and language syntax. You can also call an exec from within an exec.

Execs must have a file type of EXEC. CMS first searches for an exec in storage with the specified file name
and a file type of EXEC. If the exec is not found, CMS searches for a file with the specified file name and a
file type EXEC on any currently accessed directory or disk.

There are four types of execs:

• Restructured Extended Executor (REXX) execs
• EXEC 2 execs
• CMS EXEC execs
• Alternate format execs.

Restructured Extended Executor Language
Restructured Extended Executor (REXX) language is a general-purpose, high-level language, not unlike
PL/I, which is especially suited for prototyping and personal computing as well as handling exec
command procedures. REXX is a free-format language that can be coded to emphasize its structure,
making it easier to read.

Although REXX is easy to use, REXX programs are executed using the REXX/VM interpreter; thus, it tends
to use more computer time than an equivalent compiled language.

The clause length maximum has been increased. It was 500 characters; now the actual limit is the
amount of storage that can be obtained on a single request.

Note: Throughout this chapter, the term REXX/VM interpreter is called interpreter.

Sample REXX Language Program
The following program illustrates some of the REXX language statements:

/* The first line of a REXX exec must always be a comment.
 The comments can span more than one line. */
 credits = 0
 do until credits > 5
 a = random(1,9)
 b = random(1,9)
 say "What is " a "plus" b "?"
 pull answer /* Place user's reply into answer */
 if answer = a + b
 then do

Using Execs

© Copyright IBM Corp. 1990, 2022 333

 credits = credits + 1; say "Correct."
 say "Your score is" credits
 end
 else
 say a "+" b "is" a+b
 end
 exit

This program repeatedly asks for the sum of two random numbers until it has accumulated six correct
answers. The following describes the sequence of execution:

• The comment delimiter /* on the first line indicates to CMS that this is a REXX program. This causes
CMS to call the interpreter. The last comment line must end with */.

• A value of 0 is assigned to the variable credits.
• The lines from do until to the second end are repeatedly executed as long as the value of credits

does not exceed 5.
• Variables a and b are assigned random values in the range 1 to 9. The term random(1,9) is a built-in

function; its arguments are the desired range in which the random number is to be generated. The REXX
language has over fifty built-in functions. They are listed in z/VM: REXX/VM Reference.

• The instruction say writes the values of a and b to the console along with the literals "What is",
"plus", and "?" in the order specified. One space is automatically inserted between separate literals
or variables or both. If more than one space is required, it must be incorporated into a literal (as, for
example, in "What is ").

• The instruction pull accepts the console reply into the variable answer. Comments in the REXX
language can be included on the same lines as program statements.

There are two forms of the PULL instruction:

– The form PARSE UPPER PULL, which is normally abbreviated to PULL, translates everything read from
the keyboard to upper case in the program.

– The form PARSE PULL should be used if everything is required as is, without any translation.
• In the statement if answer = a + b, the item to the right of the = sign can be an expression, in this

case a + b.
• When the test is true, more than one statement is to be executed. The do...end delimits these

statements. If only one statement is to be executed, the delimiters are not required.
• So far there has been only one REXX language statement per line. A line-end is considered to be an

implied delimiter. However, if more than one statement is to be placed on a line, the delimiter ; can be
used.

• If a correct answer requires no action, if...then ; else... would be incorrect. A semicolon does
not cause a null instruction to be executed; the no-operation instruction nop would have to be used, as
in if...then nop else....

• When the test fails, the else portion is executed. You can include the value of expressions (for example,
a+b) in the data to be displayed on the console.

For full details on REXX instructions, see the z/VM: REXX/VM Reference.

Issuing z/VM Commands
Although the preceding program contains only REXX language statements, a REXX program can also
contain CMS and CP commands. The following exec, called RUNCOB1, asks you for the name of the VS
COBOL II program you want to compile, compiles the program, and loads and executes the program.
(The file type is assumed to be COBOL.) For clarity, the z/VM commands are shown in upper case; the
interpreter, however, does not differentiate between uppercase and lowercase (except within strings and
literals, for example).

/* RUNCOB1 EXEC */
Mainpart:
 signal on error

Using Execs

334 z/VM: 7.2 CMS Application Development Guide

 say 'What is the name of the file you are compiling?'
 pull a
 'COBOL2' a
 'GLOBAL TXTLIB VSC2LTXT'
 'LOAD' a '(START'
 say 'RUNCOB1 EXEC COMPLETED'
 exit
Error:
 rcsave = rc
 'SET CMSTYPE RT'
 say "Unexpected Return Code" rcsave "from command:"
 say " " sourceline(sigl)
 say "at line number" sigl "."
 exit

The following describes the sequence of execution:

• The return code from commands is placed in the special REXX variable rc.
• In the REXX language, a clause consisting of a single symbol followed by a colon is considered a label.

The colon acts as an implicit terminator, so no semicolon is required, even when the label is followed on
the same line by another statement. (For clarity, the label Mainpart: is not indented.)

• The instruction signal on error switches on a detector in the interpreter that tests the return code
from every command. If a nonzero return code is encountered, the normal sequence of clauses is
abandoned and execution transferred to a special label Error:. This detector can be switched off by
issuing the instruction signal off error.

• The REXX control statement say prompts the users for the name of the VS COBOL II program to be
processed. Pull assigns the value, entered as a result of the prompt, to the variable a.

• The COBOL2 a command compiles the source program.
• The GLOBAL TXTLIB VSC2LTXT command identifies the text library VSC2LTXT. CMS searches

VSC2LTXT TXTLIB, along with any default system TXTLIBs, for macros, COPY files, subroutines, or
modules needed when processing the following LOAD command.

• LOAD a (START loads and executes the compiled program. If the LOAD command executes
successfully, the RUNCOB1 EXEC COMPLETED message is displayed.

• When the signal on error detector encounters a nonzero return code, the interpreter assigns the
line number of the failing command to the special program variable sigl and then transfers processing
to the label Error:. The REXX language function sourceline (n) returns the nth line in the source
file. Here sourceline(sigl) displays the failing line of code. Its position in the display is indented by
prefixing it with a literal of six spaces.

EXEC 2 Processor and CMS EXEC Processor
EXEC 2 programs and processing are similar to CMS EXEC programs, with the following differences:

• There is no 8-byte restriction on token length. The words that comprise EXEC 2 statements can be up to
255 characters long.

• You can use EXEC 2 to issue commands to specified subcommand environments, such as the editor
macro facility, as well as CMS and CP.

• EXEC 2 has extended string manipulation and arithmetic functions.
• You can define EXEC 2 subroutines and functions.
• EXEC 2 provides extensive debugging facilities.
• CMS user programs can manipulate EXEC 2 variables.

Although CMS EXEC programs can call EXEC 2 programs, and EXEC 2 programs can call CMS EXEC
programs, the language statements cannot be mixed within one exec.

Sample EXEC 2 Language Program
The following exec, called ADD, asks you for three numbers that you want to add, determines if you
entered numeric data, and adds the three numbers you entered.

Using Execs

Chapter 20. Using Execs 335

ADD EXEC contains the following:

&TRACE
&ERROR &EXIT &RETCODE
&TYPE Enter three numbers you want to add:
&READ ARGS
&IF &N = 3 &GOTO -ADDNUMS
&TYPE You must enter three numbers
&READ ARGS
&IF &N = 3 &GOTO -ADDNUMS
&GOTO -ERROR
-ADDNUMS
&TYPE1 = &DATATYPE OF &1
&TYPE2 = &DATATYPE OF &2
&TYPE3 = &DATATYPE OF &3
&IF &TYPE1 NE NUM &GOTO -ERROR
&IF &TYPE2 NE NUM &GOTO -ERROR
&IF &TYPE3 NE NUM &GOTO -ERROR
&SUM = &1 + &2 + &3
&TYPE The sum of &1 &2 and &3 is &SUM
&EXIT
-ERROR
&TYPE You did not enter three valid items. This program is ending.
&EXIT

The following describes the sequence of execution:

• The &TRACE indicates to the system that this exec is written in the EXEC 2 language.
• The &ERROR control statement specifies that if a z/VM command results in a nonzero return code,

the &EXIT statement is executed. In this example, the return code, indicated by the control word
&RETCODE, is passed upon exit.

• The &TYPE statement asks you to enter three numbers. The &READ ARGS statement reads the items
you enter and assigns them to the variables &1, &2, and &3.

• The &IF statement checks to see if you entered three items. If you did not, you are asked again to enter
three numbers. If you still do not enter three items, an error message is displayed and the program
ends.

• If you entered three items, execution flows to -ADDNUMS. The next six lines check to see if you entered
only numbers and not any other characters. The &DATATYPE OF function yields a value of "NUM" if &1,
&2, or &3 is a valid number and yields a value of "CHAR" if &1, &2, or &3 is anything else. If &TYPE1,
&TYPE2, or &TYPE3 does not contain "NUM", execution flows to -ERROR and the program ends.

• If &TYPE1, &TYPE2, or &TYPE3 contains "NUM", then &1, &2, and &3 are added together and the sum is
displayed.

Many EXEC 2 facilities are similar to CMS EXEC facilities. Some control statements and special variables
have not been covered here. For full details on the EXEC 2 processor facilities, see the VM/SP: EXEC 2
Reference.

Sample CMS EXEC Language Program
The following CMS EXEC program, called RUNCOB2 EXEC, compiles, loads, and executes a VS COBOL II
source file:

* RUNCOB2 EXEC *
&CONTROL OFF NOMSG
&IF &INDEX LT 1 &GOTO -ERR1
COBOL2 &1
&IF &RETCODE NE 0 &EXIT
GLOBAL TXTLIB VSC2LTXT CMSLIB
&IF &RETCODE NE 0 &EXIT
LOAD &1 (START
&IF &RETCODE NE 0 &EXIT
&TYPE RUNCOB2 EXEC FINISHED
&EXIT
-ERR1
&TYPE PROGRAM NAME NOT GIVEN
&EXIT

RUNCOB2 EXEC works as follows:

Using Execs

336 z/VM: 7.2 CMS Application Development Guide

• The control statement &CONTROL sets the type of execution information displayed at the console. No
execution messages or return codes are to be displayed here.

• The control statement &INDEX is a special variable that contains the number of arguments entered by
the caller. If no arguments are supplied, execution goes to label -ERR1.

• COBOL2 &1 compiles the source program, specified by &1. If the COBOL2 command does not complete
successfully, &RETCODE is nonzero and &EXIT is processed causing an immediate exit from the
exec. The special variable &RETCODE contains the return code from the most recently executed CMS
command. If &RETCODE is zero, the source program compiled successfully.

• If the GLOBAL command fails, &RETCODE is nonzero and &EXIT is processed causing an immediate exit
from the exec. If &RETCODE is zero, the TXTLIBs are successfully found and identified.

• LOAD &1 (START loads the compiled program and executes it. If the LOAD command fails, &RETCODE
is nonzero and &EXIT is processed causing an immediate exit from the exec. If &RETCODE is zero, the
program was loaded and executed and the RUNCOB2 EXEC FINISHED message is displayed.

• If too few arguments are supplied, execution is routed to the label -ERR1, where the warning message
is typed. No &EXIT is required here, because processing ends at the end of the exec.

For information on the formats for the CMS EXEC control statements, use the HELP facility by using the
HELP command.

Alternate Format Exec
An alternate format exec is executed using a processor other than the REXX/VM interpreter, the EXEC 2
processor, or CMS EXEC processor. Alternate format execs can be written in any language, including one
that you create. The first line (the header record) distinguishes an alternate format exec from other exec
languages. The header record format is described later.

An alternate exec processor is a language processor that you write or is provided to you through your
particular installation. When CMS determines that the current command is an alternate format exec, it
invokes the alternate exec processor and passes information about the exec in the extended parameter
list and in registers 0 and 1.

Once the alternate exec processor receives an exec and register information, it can execute the alternate
format exec by doing one or more of the following: interpreting the exec, enforcing its language syntax
rules, or performing any other required processing.

Naming Conventions for Alternate Format Execs
Alternate format execs must follow the CMS file naming conventions if they are to be recognized as valid
exec programs.

In addition, if you are developing an alternate format exec using the REXX language as source, you may
want to use the REXX/VM interpreter as a debugging tool. In this case, the file name of the exec you use
as input to the interpreter be the same as the file name you use as input to the alternate exec processor.

Header Record Format of Alternate Format Execs
The header record distinguishes an alternate format exec from execs written in the REXX, EXEC 2, or CMS
EXEC language. The format of this record is:

Offset Length Description

+0 4 Any 4 bytes where the first two characters are not "/*" and the first
character is not “*”.

+4 8 The string 'EXECPROC' (must be uppercase).

+12 8 The name of an alternate exec processor, left-justified, padded with blanks
if necessary, and in conformance with all the rules for CMS command
names.

Using Execs

Chapter 20. Using Execs 337

The remaining portion of an alternate format exec is in the exec language or in a format agreed upon by
the alternate format exec and its processor.

Calling the Alternate Exec Processor
Once an alternate format exec is recognized as a valid exec, some of the ways you can initiate them are:

• From the command line
• From another exec
• As an XEDIT macro
• In a REXX clause
• From a module.

Alternate format execs can also be:

• Loaded into storage with the EXECLOAD command
• Queried with the EXECMAP and EXECSTAT commands
• Dropped from storage with the EXECDROP command
• Loaded into a segment with the DCSSGEN or SEGMENT LOAD command.

Register Contents and File Status
Upon recognition of an alternate format exec, the CMS EXEC interface issues a CMSCALL macro (SVC 204)
for the alternate exec processor named in the header record. On entry, the alternate format exec can
expect:

• R0 pointing to an extended plist that has the same format as one of the extended plists supported by
REXX. The fourth word always contains the address of an FBLOCK. An alternate exec processor can
extract any information about an exec from the extended plist. See the z/VM: REXX/VM Reference for
more information.

• R1 pointing to a tokenized plist consisting of an 8-byte long string containing the name of the alternate
exec processor followed by fields containing:

– The values of R2, R1, and R0 on entry to the CMS EXEC interface.
– The address of an FBLOCK describing the exec to be processed. The FBLOCK contains only the file

name, file type, file mode, descriptor list address, and descriptor list length. If the exec is in storage,
the file mode is “*”.

– An 8-byte fence, X'FFFFFFFF'.

Note: The value of R2 on entry to the CMS EXEC interface is provided to allow the alternate exec
processor the ability to implement the non-SVC subcommand interface. This interface is documented in
the z/VM: REXX/VM Reference.

• All other registers set according to the CMSCALL process. See the z/VM: CMS Application Development
Guide for Assembler for more information.

• The file containing the alternate format exec to be in OPEN state. This file remains OPEN until end-of-
command unless explicitly closed by the alternate exec processor.

CMS Services Available to the Alternate Exec Processor
In addition to the standard services provided by CMS, alternate exec processors have access to the
following CMS services:

• Terminal input buffer line count. See the z/VM: REXX/VM User's Guide for more information.
• Disk block size determination. You can obtain this information using the Extract/Replace facility. See the

z/VM: CMS Callable Services Reference for more information.
• The non-SVC subcommand invocation that uses a minimum overhead subcommand call for issuing

commands. See the z/VM: REXX/VM Reference for more information.

Using Execs

338 z/VM: 7.2 CMS Application Development Guide

• The CMS global exit facility and the REXEXIT macroinstruction. See the z/VM: CMS Macros and
Functions Reference for more information.

• Recursion control when using the CMS subcommand interface.

– If you want to inhibit the recursion of execs, the fourth word of the extended plist must be nonzero. It
must be the address of a CSFCB containing a pointer to the 8-byte name of the current exec.

– If you do not want to inhibit the recursion of exec, the fourth word of the extended plist must be zero
(that is, there is no CSFCB).

See the z/VM: REXX/VM Reference for information on CMS command search order and how it effects
calling execs recursively.

• CMS ensures that on entry to any alternate exec processor, both tokenized and extended plists are
available. When generating calls to other commands or execs, an alternate exec processor must provide
a tokenized plist and optionally provide an extended plist. It must also set the user call-type information
to indicate the format of the plists provided. See the z/VM: CMS Application Development Guide for
Assembler for more information about creating and passing plists.

If only a tokenized plist is available, the CMS EXEC interface generates an extended plist from
information in the tokenized plist, before invoking the language processor of the called exec.

Note: Although an alternate exec processor can execute above the 16 MB line, when generating calls
to an exec written in EXEC 2 or CMS EXEC language, an alternate exec processor must ensure that the
parameter lists and the data referenced by the parameter lists reside below the 16 MB line.

Creating an XEDIT Macro
You can write execs to be used with XEDIT. These execs are known as XEDIT macros. You use them when
you use the editor to create or edit a file. These execs have a file type of XEDIT rather than EXEC. You
must use the REXX language or the EXEC 2 language when you write XEDIT macros. Otherwise, they are
like ordinary execs.

For example, the following macro places continuation characters on specified lines in the correct column
of COBOL or FORTRAN files. (For clarity, XEDIT commands are in upper case.)

/* CONTCHAR XEDIT */ Mainpart:
 'SET MSGMODE OFF'
 'PRESERVE'
 numlines = 1
 if arg() > 0 then numlines = arg(1)
 'EXTRACT/FTYPE/'
 col = 72
 if ftype.1 = 'COBOL' then col = 7
 if ftype.1 = 'FORTRAN' then col = 6
 'SET TRUNC' col
 'SET ZONE' col col
 'CHANGE/ /*/' numlines
 'RESTORE'
 'SET MSGMODE ON'
 exit

This is what the macro does:

• The message display option (SET MSGMODE) of the Editor is set off when you use the macro. Thus, its
execution appears like a regular XEDIT subcommand.

• The PRESERVE command ensures that the settings of the various XEDIT variables, such as line length,
are retained until the RESTORE command is executed.

• If an argument is supplied, the variable numlines is set to its value. Otherwise, it remains equal to 1.
• The XEDIT subcommand EXTRACT makes the file type of the file being edited available in the variable
ftype.1.

• The variable col is set to 6,7, or 72. This value defines the truncation column and then to set the zone.

Using Execs

Chapter 20. Using Execs 339

• The CHANGE subcommand causes continuation characters to be included. The macro ends by resetting
the environment to its original state.

PROFILE EXEC File
You can create a special exec file, called PROFILE EXEC, to link to a disk and define its access order, set
up some characteristics for the terminal, and initialize some macro libraries.

CP LINK DEWEY 193 193 RR
ACC 193 B/A
CP SET EMSG ON
CP TERM HILIGHT ON
GLOBAL MACLIB DMSGPI OSMACRO

Such commands are typically issued at the start of every terminal session. The PROFILE EXEC is
automatically executed the first time you press Enter after CMS is loaded.

For more information on using a PROFILE EXEC, see the z/VM: CMS User's Guide.

CMS EXEC File
You can create a special EXEC file, called CMS EXEC, by using the LISTFILE command with the EXEC
option.

Suppose you have a series of files on your disk with file names beginning with the characters "PAY" and
file types beginning with the character "D". If you enter:

listfile pay* d* a (exec

the usual LISTFILE display is placed in a file CMS EXEC. It has the format:

&1 &2 filename filetype filemode

Assume that after you entered the LISTFILE command shown, the CMS EXEC file contains:

&1 &2 PAYROLL DATA A
&1 &2 PAYDATE DOCUMENT A
&1 &2 PAYSLIP DETAIL A
&1 &2 PAY23UPD D831102 A

If you now enter:

cms disk dump

CMS executes the following commands:

DISK DUMP PAYROLL DATA A
DISK DUMP PAYDATE DOCUMENT A
DISK DUMP PAYSLIP DETAIL A
DISK DUMP PAY23UPD D831102 A

The arguments DISK and DUMP replace &1 and &2 when the file is executed.

If only one argument is passed to an exec, the succeeding variables are set to nulls. For example, if you
enter:

cms erase

CMS executes the following commands:

ERASE PAYROLL DATA A
ERASE PAYDATE DOCUMENT A
ERASE PAYSLIP DETAIL A
ERASE PAY23UPD D831102 A

Using Execs

340 z/VM: 7.2 CMS Application Development Guide

The CMS EXEC file is like any other CMS file. You can edit it, print it, sort it, and rename it. Each time you
use LISTFILE with the EXEC option, a new CMS EXEC is created and the old one is erased. You can add to
an existing CMS exec file using LISTFILE with the APPEND option.

Using the FILEDEF Command in Execs
You can use the FILEDEF command to identify to z/VM the I/O files of an OS program. The FILEDEF
command can be used in execs just like other z/VM commands, and can eliminate multiple lines of typing
before a program is executed.

The following example demonstrates this by using the FILEDEF command inside a loop. This is possible
because the ddnames and file types each contain a unique number as the last character.

/* set up payroll files */
Mainpart:
 say "Payroll Files - Weekly or Monthly (W/M)?"
 pull runtype
 say "How many Overtime files?"
 pull otime
 signal on error
 select
 when runtype = 'W' then
 do
 'FILEDEF INFILA C1 DSN STAFF.WEEKLY.PAYFILEA'
 'FILEDEF INFILB C1 DSN STAFF.WEEKLY.PAYFILEB'
 end
 when runtype = 'M' then
 do
 'FILEDEF INFILA C1 DSN STAFF.MONTHLY.PAYFILEA'
 'FILEDEF INFILB C1 DSN STAFF.MONTHLY.PAYFILEB'
 end
 otherwise
 do
 say "Incorrect reply - must be W or M - please restart"
 exit
 end
 end
 do while otime > 0
 'FILEDEF OTFIL'||otime 'DISK OVERTIME DATA'||otime 'B4'
 otime = otime - 1
 end
 'FILEDEF MASINP DISK STAFF MASTER1 B4'
 'FILEDEF MASOUT DISK STAFF MASTER2 A4'
 'FILEDEF CONSOL TERM'
 exit
Error:
 say "Failure to execute FILEDEF command at"
 say "line number" sigl "Return code" rc

This exec first requests the type of payroll file (PAYFILE) and then the number of overtime files to be
processed. Depending on the type, either weekly or monthly data sets are identified on the OS disk (in this
example, the C disk).

The exec then uses FILEDEF to relate the internal ddnames of the form OTFILn (where n is a number)
to the overtime files. These are in OS simulated data set format (on the B disk) and have CMS identifiers
OVERTIME DATAn B4 (where n is the same number used in the ddname).

The next three FILEDEF commands identify the master input and output files with ddnames MASINP and
MASOUT respectively, and the z/VM terminal with the ddname CONSOL.

Using MACLIBs and TXTLIBs in Execs

You can write an exec that contains all the front-end commands needed to execute your applications,
such as the FILEDEF and GLOBAL commands. This saves you from issuing separate commands every time
you compile, load, and execute your applications.

The following is a partial exec containing FILEDEF and GLOBAL commands:

Using Execs

Chapter 20. Using Execs 341

/* compile a cobol prog */
Mainpart:
 signal on error
 .
 .
 .
 arg progname privlib
 .
 .
 .
 'FILEDEF'
 .
 .
 .
 'GLOBAL MACLIB' privlib 'OSMACRO'
 .
 .
 .
 'COBOL2' progname 'COBOL'
 .
 .
 .
 say 'Any extra TXTLIBs required?'
 pull txtlibr
 .
 .
 .
 if arg () = 0 then
 'GLOBAL TXTLIB VSC2LTXT'
 else
 'GLOBAL TXTLIB' txtlibr 'VSC2LTXT'
 .
 .
 .
 exit
ERROR:
 .
 .
 .

• This exec processes the compilation, link editing, and execution of a COBOL program. First you
must supply two parameters: the program name (progname) and the programmer's private MACLIB
(privlib). The GLOBAL command parameters are ordered so that the compiler searches the private
library before the standard OS and TSO libraries.

• signal on error ensures that a nonzero return code from the call to COBOL2 causes execution to be
routed to the label ERROR:. Otherwise, you must request any additional TXTLIBs.

• The GLOBAL command handles text libraries in a similar fashion to macro libraries. If you specify a
private TXTLIB, txtlibr, GLOBAL incorporates it with the installation's library, VSC2LTXT.

Prototyping with REXX
REXX makes it easy for you to prototype algorithms before they are included in a larger compiled program.
This procedure leads to faster program development, since design bugs are more quickly trapped without
the need for multiple compilations. As mentioned in “Restructured Extended Executor Language” on page
333, although the interpreter does not execute as efficiently as a compiler, it takes less time to develop a
program. Therefore, sizable savings result.

Here is an example:

/* Square Root Exec */; arg val;tol = 0.0001; old=0; new=1; count=0;
do while abs(old - new) > tol
 old = new
 work1 = old ** 2 + val
 work2 = 2 * old
 new = work1/work2
 say new
 count = count + 1
 end; say 'RESULT =' new 'CYCLES =' count; exit

Using Execs

342 z/VM: 7.2 CMS Application Development Guide

This routine tests an algorithm for calculating square roots. Before incorporating it into a final compiled
program, you can test its accuracy using a REXX procedure.

The procedure accepts the value whose root is required as an argument. As the main loop is executed,
the current approximation to the root is displayed. At the end, the result is displayed, together with the
number of cycles required to calculate it.

When you use REXX as a prototyping tool, you should be careful when calling functions and subroutines.
The mechanism the interpreter uses to pass arguments and results may not correspond to the
mechanism of the compiled language that will eventually be used.

Prototyping Interactive Applications

You can conveniently use execs with ISPF applications before implementing the application in a high-level
language, such as COBOL or FORTRAN. The exec can invoke sequences of DISPLAY and SELECT services
and handle related variables.

EXEC 2 and REXX give you the facility to call ISPF panel and variable services. In EXEC 2, the format of a
call to an ISPF service is as follows:

ISPEXEC service-name parameter

Variables can be used anywhere in the statement as the service name or as a parameter. Each variable
is replaced with its current value before execution of the ISPEXEC command. You can use parameter
keywords wherever they apply. Otherwise, the parameters are positional. Here are some EXEC 2
examples:

&SUBCOMMAND ISPEXEC DISPLAY PANEL(&PNAME)
&SUBCOMMAND ISPEXEC DISPLAY PANEL(MENUPAN)

In the first example, the EXEC 2 variable &PNAME is passed as a parameter. It is assumed to have a
value MENUPAN. In the second example, this value is passed directly. You do not have to incorporate the
keyword PANEL, because the parameter is in the first position. EXEC 2 requires that you precede ISPEXEC
with a &SUBCOMMAND unless the statement:

&PRESUME &SUBCOMMAND ISPEXEC

is included in the procedure before executing the first ISPEXEC command. Some ISPF services allow
dialog variables names to be passed as parameters. If you pass such names in EXEC 2, do not precede
them with an ampersand. For example:

ISPEXEC VGET XYZ

Here XYZ is the name of the dialog variable to be passed. The VGET service can also accept a list of
variables passed as a single parameter. If you pass such a list, you must enclose it in parentheses. You
must also separate the items with blanks or commas. For example:

ISPEXEC VGET (AAA,BBB,CCC)
ISPEXEC VGET (XXX YYY ZZZ)

Here are some REXX examples:

Address ISPEXEC DISPLAY PANEL '('PNAME')'
Address ISPEXEC DISPLAY PANEL '(menupan)'

In the first example, PNAME is a REXX variable assumed to have a value MENUPAN. In the second
example, the value is passed directly.

Using Execs

Chapter 20. Using Execs 343

ISPEXEC operations end with a return code in the same way as other routines do. Thus, you can use
&RETCODE or &RC in EXEC 2 or RC in REXX to test the success of the calls.

Here is an example of using ISPEXEC in an EXEC 2 procedure:

&TRACE OFF
&PRESUME &SUBCOMMAND ISPEXEC
CONTROL ERRORS RETURN
TBOPEN EMPLTBL
&IF &RC EQ 0 &GOTO -CONT1
TBCREATE EMPLTBL (EMPSER) (LNAME FNAME)
-CONT1
&F =
&EMPSER =
VPUT (F EMPSER)
DISPLAY PANEL (MENUPAN)
&IF &RC EQ 8 &GOTO -EXIT
&IF &F GT 4 &GOTO -EXIT
TBGET EMPLTBL
&IF &F EQ 1 &IF &RC NE 0 &GOTO -CONT2
&IF &F GT 1 &IF &RC EQ 0 &GOTO -CONT3
SETMSG MSG (MSG002)
&GOTO -CONT1
-CONT2
&FNAME =
&LNAME =
-CONT3
SETMSG MSG (MSG001)
&IF &F EQ 3 &GOTO -CONT4
DISPLAY PANEL (NAMEPAN)
&IF &F EQ 1 &GOTO -CONT5
&IF &F EQ 2 &GOTO -CONT6
&GOTO -CONT1
-CONT4
TBDELETE EMPLTBL
&GOTO -CONT1
-CONT5
TBADD EMPLTBL
&GOTO -CONT1
-CONT6
TBPUT EMPLTBL
&GOTO -CONT1
-EXIT
TBCLOSE EMPLTBL
&EXIT

This exec invokes a number of ISPF functions.

• CONTROL ERRORS RETURN tells ISPF to return to dialog processing when an error condition occurs
(instead of terminating).

• TBOPEN tells ISPF to open the table EMPLTBL, if it exists. If the table does not exist, a nonzero return
code is issued. The exec tests the return code, and if it is nonzero, the EMPLTBL table is created using
the TBCREATE function.

• VPUT tells ISPF to initialize the panel variables specified (in this case, variables F and EMPSER). They
are initialized to blanks before the panel display.

• DISPLAY tells ISPF to display the specified panel (MENUPAN or NAMEPAN) on the screen.
• TBGET tells ISPF to retrieve values from the EMPLTBL table.
• SETMSG tells ISPF to display the specified message on the next panel.
• TBDELETE tells ISPF to delete the current record (the one specified on the panel) from the EMPLTBL

table.
• TBADD tells ISPF to add the current record to the EMPLTBL table.
• TBPUT tells ISPF to update the current record in the EMPLTBL table.
• TBCLOSE tells ISPF to close the EMPLTBL table.

If you want to run this exec, you have to do the following:

1. Issue various FILEDEF commands to specify the ISPF libraries to be used. The necessary FILEDEFs to
run the exec are listed in Appendix J, “ISPF Example,” on page 599.

Using Execs

344 z/VM: 7.2 CMS Application Development Guide

2. Create a panel library called USERPAN MACLIB containing the MENUPAN COPY and NAMEPAN COPY
files.

3. Create a message library, EXAMMSG MACLIB, containing definitions of messages MSG001 and
MSG002. All panels and messages are described in Appendix J, “ISPF Example,” on page 599.

4. Invoke ISPF with the CMD parameter, instead of PGM when using an exec.

For more details on the use of execs with ISPF, see ISPF Dialog Management Guide and Reference.

Using Execs with ISQL
You can easily use ISQL (Interactive SQL) when you access or update portions of tables occasionally.
When you access or update tables more frequently, you may want to group sets of ISQL commands into
an exec. An efficient way to execute these commands is to collect all the data you need, call ISQL, do the
necessary commands, and return to z/VM.

z/VM provides a stack for commands to be executed on a first-in first-out basis. You can place items onto
the stack using the REXX command QUEUE.

Here's an example of an exec to change an entry in a phone list:

/* changnum exec */
 say 'Supply last name'
 pull lnam
 say 'And now the initial'
 pull init
 say 'Enter new phone number'
 pull nnum
 queue 'COMMIT WORK'
 queue 'UPDATE PHONELIST -'
 queue 'SET PHNUM = 'nnum' -'
 queue 'WHERE LNAME = 'lnam' AND FINTL = 'init
 queue 'COMMIT WORK'
 queue 'EXIT'
 exec 'ISQL'

In this example:

• When the necessary details are supplied to the exec, the sequence of ISQL commands are placed onto
the command stack, using the QUEUE command.

• The exec variables set to the supplied details are contained within the ISQL commands inside an inner
set of quotation marks. (For clarity, the example shows them in lower case.)

• When the list is updated, the work is committed. Because we want to return to z/VM after the operation,
the ISQL command EXIT is stacked.

• Finally, the exec invokes ISQL to start processing the commands queued on the stack.

Because the interpreter executes in the CMS environment, it is not available while you are running ISQL.
The stack gives you a way to transfer commands from one to the other. In this case, you begin and end in
CMS.

You can also build execs you expect to execute during ISQL sessions. Inside the exec you set a RETURN
command as the first thing in the stack. You no longer need the QUEUE EXIT and EXEC ISQL commands
at the end of the exec. To start the exec during an ISQL session, you can enter "CMS" to get back into the
CMS mode. You can then enter "CHANGNUM" (the name of the exec.)

When you supply the data and the exec ends, the RETURN command in the stack is executed. This takes
you from CMS back into the ISQL environment. The rest of the stacked items (ISQL commands) are then
processed. Because there is no EXIT at the end of the stack, you remain in the ISQL environment. Besides
using this type of exec for less complex SQL table operations, you can use it for prototyping database
operations during design and development stages.

There is a direct interface into DB2 Server for VM called RXSQL. For more information on RXSQL see the
RXSQL Reference.

Using Execs

Chapter 20. Using Execs 345

Using Execs

346 z/VM: 7.2 CMS Application Development Guide

Chapter 21. Passing Commands and Data

This chapter describes:

• What a stack is and how it is used.
• How to manipulate a program stack.

Stacks
In CMS, the console stack is used for input or output. The console stack consists of the program stack and
the terminal input buffer. The program stack is used to pass data to certain CMS commands, or to obtain
data from them. It can be used both as a stack (LIFO – Last In/First Out) or a queue (FIFO – First In/First
Out). You can build extensions to the program stack which are called buffers. User applications or execs
control the number of buffers and the data that reside within each buffer. The terminal input buffer stores
data from the CMS command line when you type ahead and press enter while a previous command is still
executing. Under certain situations, CMS uses the terminal input buffer internally and transparently. Data
placed on the terminal input buffer is always processed on a FIFO basis.

When CMS reads a command, or when a REXX exec issues the PULL instruction to read data, all levels of
the program stack are checked first for an entry, followed by the terminal input buffer. If there is nothing
on the program stack or terminal input buffer, then execution is suspended and 'VM READ' or 'Enter your
response in vscreen VNAME' will be displayed in the status area. Execution will not resume until data is
entered at the console.

Figure 49 on page 347 shows the structure of the console stack. For more information, see the z/VM:
REXX/VM User's Guide.

Figure 49. Elements of a Console Stack

Using the Program Stack to Pass Data Between Programs
The following example describes one way of how you can use the program stack. CMSHELLO EXEC first
asks for your first name, last name, and the language of your source program. Then CMSHELLO EXEC
places your first name and last name on the program stack. Then, depending on the language of your
source program, CMSHELLO EXEC places the name of the source program on the program stack and calls
the corresponding compiler exec to compile, load, and execute a source program.

Passing Commands and Data

© Copyright IBM Corp. 1990, 2022 347

Suppose, in our example, the source program is a FORTRAN program. Therefore, CMSHELLO EXEC
identifies HELLO FORTRAN as the source program and calls the compiler exec called COMPFORT EXEC.
COMPFORT EXEC compiles, loads, and executes the HELLO FORTRAN program. The HELLO FORTRAN
program welcomes you to CMS by displaying a message.

You do not have to respond to program prompts in the source program because the HELLO FORTRAN
reads the lines stacked in CMSHELLO EXEC. By using CMSHELLO EXEC, you do not have to know the name
of the source program that welcomes you to CMS or the commands needed to compile, load, and execute
the source program.

CMSHELLO contains the following:

/* This is a setup exec to determine what source file
 will be used to welcome you to CMS. */
say 'What is your first name?'
pull firstname
say 'What is your last name?'
pull lastname
say 'What language are you using: FORTRAN, COBOL, PL/I, or C?'
pull lang
/* Putting your last name and first name on the stack. */
push lastname
push firstname
/* Determining what language you are using, placing the name of the
 corresponding source file on the stack, and invoking the
 correct compiler exec. */
select
 when lang='FORTRAN' then do
 push 'HELLO'
 'EXEC COMPFORT'
 end
 when lang='COBOL' then do
 push 'HELLO'
 'EXEC COMPCOB'
 end
 when lang='PL/I' then do
 push 'HELLO'
 'EXEC COMPPLI'
 end
 when lang='C' then do
 push 'HELLO'
 'EXEC COMPC'
 end
 otherwise
 say 'No language was specified. Your program has ended!'
end
'DROPBUF'
exit

COMPFORT EXEC contains the following:

/* the executor language version of COMPILE EXEC */
'SET CMSTYPE HT'
Mainpart:
 signal on error
 pull pname
 'FORTVS2' pname
 if rc¬=0
 then signal on error
 else do
 'SET CMSTYPE RT'
 'GLOBAL TXTLIB VSF2FORT CMSLIB'
 'GLOBAL LOADLIB VSF2LOAD'
 'LOAD' pname
 'GENMOD' pname
 pname
 end
 exit
 Error:
 rcsave = rc
 'SET CMSTYPE RT'
 say "Unexpected return code" rcsave "from command at line number "sigl":"
 say " " sourceline(sigl)
 exit

To invoke this exec, enter:

Passing Commands and Data

348 z/VM: 7.2 CMS Application Development Guide

cmshello

Once you answer the prompts, the following appears on the screen:

What is you first name?
John
What is your last name?
Doe
What language are you using: FORTRAN, COBOL, PL/I, or C?
FORTRAN
Welcome to CMS, John Doe

Using the Program Stack to Pass Data to CMS
Another way the program stack can be used is as a mechanism to pass data between your program and
CMS. SORTPRT EXEC in Figure 50 on page 349 demonstrates this interaction. Assume you want to sort
a file in alphabetic order before it is printed, but you do not want to change the original file. SORTPRT
EXEC in Figure 50 on page 349 does this by using the CMS SORT command. The SORT command prompts
you for the sort fields and will create a new file containing the sorted records. But, because you have
queued the response to the prompt on the program stack, you will not have to enter in the sort fields
at the console. Remember, when the read for the prompt is done, the program stack is checked first for
entries.

You will notice that SORTPRT EXEC also creates its own buffer on the program stack by issuing the CMS
MAKEBUF command. Before exiting, it deletes this buffer by issuing the CMS DROPBUF command. This
is to insure that any other stack activity is not affected if the SORT command encounters an error before
reading the data from the program stack.

/* Sort and print */
'MAKEBUF'
QUEUE "1 8"
'SORT DATA FILE A WORKDATA TEMP A'
if rc¬=0 then do
 say "unexpected return code",
 rc "from sort command"
 end
else 'PRINT WORKDATA TEMP A'
'DROPBUF'
exit

Figure 50. SORTPRT EXEC

Figure 51 on page 350 illustrates how local buffers affect the system when you do the local stack
example. The following takes place:

1. Your program gets control.
2. Your program stacks the message for the CMS sort.
3. Your program issues the SORT command, transferring control.
4. The SORT command reads from the console stack and performs the sort.
5. Your program performs the final steps, then exits.
6. CMS regains control.

Passing Commands and Data

Chapter 21. Passing Commands and Data 349

Figure 51. Example of Local Stack Usage

Manipulating the Program Stack
Some statements and commands that put data into a program stack are:

• For the REXX language:
QUEUE

queues data FIFO.
PUSH

pushes data LIFO.
CHAROUT

writes characters to the stack
LINEOUT

writes lines to the stack
• For the CMS EXEC or EXEC 2 language:

&STACK FIFO
queues data FIFO.

&STACK LIFO
pushes data LIFO.

Some statements and commands that read data from a program stack are:

• For the REXX language:
PULL

reads the next item.

Passing Commands and Data

350 z/VM: 7.2 CMS Application Development Guide

CHARIN
reads characters from the stack

LINEIN
reads lines from the stack

• For the CMS EXEC or EXEC 2 language:
&READ

reads the next item.
• Any CMS commands that access stack elements.

The order in which stacked items are retrieved is determined at the time they are placed in the stack.

CMS commands, macros, and callable service library routines that manipulate the program stack are
listed in “Program Stack I/O” on page 115. They can be used in assembler and many high-level
languages.

Using Program Stacks
The best way to use the program stack is to maintain control of it with the MAKEBUF and DROPBUF
commands. The MAKEBUF command creates a new buffer within the program stack. The buffer number
for the new buffer is returned in register 15 by CMS.

Note: If an &ERROR statement is in effect in an EXEC that invokes this command, the return code causes
it to execute. Therefore, it is important to ensure that no &ERROR statement is in effect at the time.

After the MAKEBUF command is issued, you can determine how many entries are already on the program
stack by issuing the REXX QUEUED() function. This instruction returns the number of entries in the stack
(A similar function is available with the SENTRIES command.). Here again, the value is returned in register
15. Be careful not to create an incorrect execution of the SIGNAL ON ERROR statement. The result of
the QUEUED function or SENTRIES command can be used by the program as a processing cutoff to avoid
using any stack elements from another program or the terminal input buffer.

Passing Commands and Data

Chapter 21. Passing Commands and Data 351

Passing Commands and Data

352 z/VM: 7.2 CMS Application Development Guide

Chapter 22. Using CMS Pipelines

CMS Pipelines introduces to CMS a data flow model approach to programming. CMS Pipelines lets you
solve a large problem by breaking it up into a series of several smaller, less complex programs. These
program, called stages, then can be hooked together to form a pipeline to give you the results you want.

Some advantages of using CMS Pipelines are:

• Numerous CMS Pipelines stage commands and pipeline subcommands provide the ability to transform
data in many different ways.

• CMS Pipelines provides an interface that allows you to write your own stage commands in the REXX or
Assembler language.

• Code is reused each time a stage is run in a pipeline and requires no modification or recompilation.
• Using CMS Pipelines simplifies application development because there are no device interface

dependencies.

You must use the PIPE command to invoke CMS Pipelines. You can use the PIPE command from the
command line or from an application. This chapter discusses using CMS Pipelines from REXX, EXEC 2, or
Assembler programs. It includes:

• Concepts and functions of CMS Pipelines
• Writing execs using CMS Pipelines
• Writing your own stage commands.

For complete information on CMS Pipelines, refer to the z/VM: CMS Pipelines User's Guide and Reference.

Basic Concepts and Functions of CMS Pipelines
The operand of the PIPE command consists of at least one pipeline. A pipeline is a series of stages,
separated by a character called a stage separator.

A stage reads data, processes the data, and writes the data to the next stage. The output from one
stage is the input to the next stage. Each stage reads its input and writes its output through a device-
independent interface without concern for other stages in the pipeline. Because data enters a pipeline
and moves through a pipeline's stages, the data is said to flow through a pipeline. The flow of data records
into a stage is called an input stream and the flow of data out of a stage is called an output stream.

CMS Pipelines includes an extensive set of stage commands that:

• Issue CP and CMS commands
• Read from or write to your terminal
• Read, create, or append to a CMS file
• Read a CMS file backwards
• Copy records
• Select a subset of records
• Manipulate multiple records
• Rearrange the contents of records
• Sort records
• Discard or retain duplicate records
• Truncate records
• Count lines, blank-delimited words, and bytes
• Block data

Using CMS Pipelines

© Copyright IBM Corp. 1990, 2022 353

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

• Deblock external data formats.

Filters, device drivers, and host command interfaces are three types of stage commands. Filters transform
data by performing operations such as sorting, truncating, and selecting records. Device drivers and
host command interfaces read data from or write data to a device, CMS, CP, or other host environments
(such as, DB2, ISPF, XEDIT). Another term for these types of stage commands is built-in, meaning their
functions are provided by CMS Pipelines. A user-written stage command may be built with pipelines
subcommands and Assembler macros when there is no built-in function available to perform the required
task. Both built-in and user-written stage commands are invoked with the PIPE command.

To further extend the versatility of CMS Pipelines, an unlimited number of interconnected pipelines are
supported. One PIPE command can specify multiple pipelines.

Using CMS Pipelines in Execs
When first using CMS Pipelines in execs, you may just put a commonly used PIPE command in an exec so
you will not have to type the whole PIPE command each time.

You can also use CMS Pipelines to enhance the functions already provided by REXX/VM. For example,
CMS Pipelines provides a set of stage commands that work with REXX variables. Using the STEM stage
command and the SORT stage command, you can use the following PIPE command in an exec to sort in
ascending order the items in the stemmed array bananas and put them in the stemmed array bunch.

/* */
⋮
"pipe stem bananas. | sort | stem bunch."
⋮
exit

You can also use CMS Pipelines to convert data in REXX variables. For example, the C2F operand of
the SPECS stage command converts System/390®® internal format for double-precision floating-point
numbers to scientific notation. CMS Pipelines provides many other conversion operands on the SPECS
stage command.

Using the function CMS Pipelines provides, you no longer need to use the EXECIO command. CMS makes
reading from and writing to a file, printer, punch, reader, tape, stack, and variables much easier. See the
z/VM: CMS Pipelines User's Guide and Reference for information on using stage commands rather than the
EXECIO command.

Using REXX and CMS Pipelines, you can specify arguments on a user-written stage command and your
REXX program can receive them as arguments using the PARSE ARG instruction.

Calling CMS Pipelines from Assembler Programs
You may have an existing Assembler program that can just be modified to call a pipeline, perform a
function, and return to continue processing. The CMSCALL in your program will actually pass control to
CMS Pipelines, and return control to the Assembler program when the pipeline is finished processing.

An example showing the CMSCALL to a pipeline follows:

Using CMS Pipelines

354 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

ASMPIPE CSECT
ASMPIPE AMODE ANY
ASMPIPE RMODE ANY
 STM R14,R12,12(R13)
 USING ASMPIPE,R12
 LR R12,R15
 ST R13,SAVEAREA+4
 LA R15,SAVEAREA
 ST R15,8(R13)
 LR R13,R15
 CMSCALL CALLTYP=CMS,PLIST=PC,EPLIST=EPLIST
 L R13,SAVEAREA+4
 LM R14,R12,12(R13)
 SLR R15,R15
 BR R14
 DS 0D
PC DC CL8'PIPE'
 DC CL8'LITERAL'
 DC CL8'RUN A'
 DC CL8'SIMPLE'
 DC CL8'PIPELINE'
 DC CL8'|CONS'
PIPE DC C'PIPE'
PARAMS DC C'literal Run a simple pipeline|cons'
DONE EQU *
EPLIST DC A(PIPE)
 DC A(PARAMS)
 DC A(DONE)
SAVEAREA DS 18F
 REGEQU
 END

Figure 52. Assembler Program to Run a Pipeline

Use the High Level Assember Language compiler (HLASM) to compile your program, then load it into a
module and run it by issuing:

run asmpipe

Programming Tips When Using CMS Pipelines
When your PIPE command contains many stages, putting each stage on a separate line makes it easier to
write and read a PIPE command. For example:

/* SAMPLE EXEC */
'pipe',
 'stage1',
 '| stage2',
 '| stage3',
 '| stage4'
exit rc

Figure 53. Format for Writing a PIPE Command

Writing Your Own Stage Commands
When CMS Pipelines does not provide the necessary stage commands to perform a particular function,
you can write your own stage commands. These user-written stage commands are REXX exec procedures.
The file type of a user-written stage command should be REXX. The significant difference between
user-written stage commands and other REXX programs is that user-written stage commands also
interact with CMS Pipelines. The PIPE command sets up its own subcommand environment and pipeline
subcommands in the user-written stage command are recognized by CMS Pipelines.

You use user-written stage commands in a pipeline the same way you use the built-in stage commands
provided by CMS Pipelines; as operands on the PIPE command. A pipeline that consists of several stages
can be cumbersome and time-consuming to retype each time at your terminal. In cases like this, it is
more efficient to put this sequence of stages in a user-written stage command where it can be modified
and reused. The sequence of stages is written as the operand of the CALLPIPE pipeline subcommand,

Using CMS Pipelines

Chapter 22. Using CMS Pipelines 355

all within the user-written stage command. Basically, you are inserting a new section of a pipeline in the
pipeline that called your user-written stage command.

Unlike the CALLPIPE pipeline subcommand which runs another pipeline of many stage commands, you
can write a stage command using subcommands to perform the function of a single stage command. For
instance, you can use a combination of the READTO and OUTPUT pipeline subcommands to read one
record from an input stream and write the record to an output stream. To accompany the READTO and
OUTPUT pipeline subcommands, CMS Pipelines provides a set of pipeline subcommands that you can use
to manipulate and modify the records that are read by READTO and written by OUTPUT.

Figure 54 on page 356 shows the basic programming model of a REXX user-written stage command.

/* MYSTAG REXX */
signal on error
do forever
 'readto record'
 /* place your task specific commands here */
 /* to modify the record */
 'output' record
end
error: exit RC*(RC¬=12) /* return 0 if end of file */

Figure 54. Model of a REXX User-Written Stage Command

See the z/VM: CMS Pipelines User's Guide and Reference for an example of an Assembler user-written
stage.

Using CMS Pipelines

356 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf

Chapter 23. Using the Batch Facility

The CMS batch facility provides a way of submitting jobs for batch processing in CMS. You can use the
CMS batch facility when:

• You have a job (like an assembly or execution) that takes a lot of time, and you want to be able to use
your terminal for other work while the time-consuming job is running.

• You do not have access to a terminal.

The CMS batch facility is really a virtual machine generated and controlled by the system operator. The
operator logs on z/VM using the batch user ID and initiating the CMS batch facility by issuing one of the
following:

• Issuing the BATCH parameter in the PARM field of the IPL command
• Issuing the NOSPROF parameter of the IPL command and issuing CMSBATCH when the VM READ status

appears.

All jobs submitted for batch processing are spooled to the user ID of this virtual machine, which
sequentially executes the jobs. To use the CMS batch facility at your location, you must ask the system
operator what the user ID of the batch virtual machine is.

Submitting Jobs to the CMS Batch Facility
Under a real OS or DOS system, JCL specifications control jobs submitted in batch mode. Batch jobs
submitted to the CMS batch facility are controlled by the control cards /JOB, /SET, and /*, and by CMS
commands.

Any application or development program written in a language that z/VM supports can be executed on
the batch facility virtual machine. However, there are restrictions on programs using certain CP and CMS
commands, as described later in this section.

Input to the Batch Machine
Input records must be in card-image format and may be punched on real cards, placed in a CMS file with
fixed-length, 80-character records, or punched to your virtual punch. These jobs are sent to the batch
virtual machine in one of two ways:

• By reading the real punched card input into the system card reader, or
• By spooling your virtual punch to the virtual reader of the batch virtual machine.

When you submit a real card deck to the batch machine, the first card in the deck must be a CP ID card.
The ID card takes the form:

ID userid

ID must begin in card column one, and userid is the batch facility virtual machine user ID.ID and userid
must be separated by one or more blanks.

For example, if the batch virtual machine for your installation has a user ID of BATCH1, punch the
following card and place it in front of your deck:

ID BATCH1

When you are going to submit a job using your virtual punch, you must first be sure that your punch is
spooled to the virtual reader of the batch virtual machine. For example:

Using the Batch Facility

© Copyright IBM Corp. 1990, 2022 357

spool punch to batch1

Batch Considerations for Shared File System (SFS) Files
It is not recommended that you use the CMS batch facility for files that contain SFS commands or SFS
Callable Services Library (CSL) routines. However, if you choose to do so, you should use the following
guidelines to ensure that your jobs are properly executed.

When you submit a job to the batch machine, it connects to the SFS file pool server by using the user ID
of the batch machine. With the batch machine user ID, the application checks the authorization of the files
and directories it must access to run your job. Therefore, if you want to submit jobs to refer to SFS files or
directories, you must issue commands to authorize the batch machine to access them. The batch machine
must also be enrolled in your file pool (or if an ENROLL PUBLIC command was issued, the batch machine
can connect).

Note: Some batch facilities may be set up to run batch jobs under the user ID of the virtual machine
submitting the job. Your system administrator can tell you if the batch facility you are using is set up that
way. If it is, the batch machine runs your job under your user ID. For example, if you place an explicit lock
on a file or directory, the job running on the batch machine can still use that file. However, if your batch job
has a file open for update, any job you are running (from your user ID) will be barred from updating the file
until the batch job is finished. Note that the batch facility provided with z/VM does not run under the user
ID of the virtual machine submitting the job, but rather under its own user ID.

Attention: You should be aware that by authorizing the batch machine to access files and directories, you
may be creating a security problem. Other batch machine users can connect to your file pool and use your
files or directories.

Because batch jobs use the user ID of the batch machine, it is important that you explicitly state your user
ID in ACCESS commands. If you use a period (.) to refer to your user ID in an SFS directory, your batch
job may fail. For example, if you (YOURID) submit a batch job that accesses the PUBS:YOURID.SALES
directory with a file mode of B, you must state the command as follows:

access pubs:yourid.sales b

If, instead, you specify:

access pubs:.sales b

The batch machine substitutes its own user ID, (for example, BATCH1) for the user ID. Because the
directory will be identified incorrectly, the batch job will fail, or if batch1.sales b exists, you will get
unexpected results.

Therefore, if you are writing an application or exec that may eventually be run on a batch machine, be sure
to specify the user ID.

The same problem may occur if you write an application or exec that allows the file pool ID to default. The
default will not be the default file pool ID of the submitting machine. Instead, it will be the default (if one
is defined) for the batch machine. Therefore, if you want to allow the file pool ID to default, you should
also submit a SET FILEPOOL command with your batch job.

Finally, if you submit a batch job with FILEWAIT on and the resource is being used, your batch job and all
other batch jobs in queue will wait until the required resource is freed. This could conceivably tie up the
batch facility for the maximum job limit of up to 131,068 seconds. Therefore, it is suggested that you do
not set FILEWAIT on when submitting jobs to the CMS batch facility.

Submitting Virtual Card Input to the CMS Batch Facility
Virtual card input can be spooled to the batch machine in several ways. You may create a CMS file that
contains the input control cards and use the CMS PUNCH command to punch the virtual cards:

punch batch jcl (noheader

Using the Batch Facility

358 z/VM: 7.2 CMS Application Development Guide

When you punch a file this way, you must use the NOHEADER option of the PUNCH command, since the
CMS batch facility cannot interpret the header card that is usually produced by the PUNCH command. As
it does with cards in an incorrect format, the batch virtual machine would erase the header card.

You can use an EXEC procedure to submit input to the batch machine. From an EXEC, you can punch one
line at a time into your virtual punch, using the EXECIO command. When you do this, you must remember
to issue the CP CLOSE command to release the spool punch file when you are finished. For example:

close punch

If you are using the exec to punch individual lines and entire CMS files to be read by the batch virtual
machine as one continuous job stream, you must remember to spool your punch as follows:

/* EXEC to submit a batch job to CMS BATCH */
'SPOOL PUNCH CONT TO BATCH3'
'EXECIO 1 PUNCH (STRING /JOB MCGUIRE 999888'
'PUNCH BATCH JCL * (NOHEADER'
'SPOOL PUNCH NOCONT CLOSE'

/JOB and /* Cards
A /JOB card must precede each job to be executed under the batch facility. It identifies your user ID to the
batch virtual machine and provides accounting information for the system. It takes the form:

/JOB userid accntnum

jobname

comments

/JOB must begin in card column one.
userid

is your user identification or the user ID under which you want the job submitted. This parameter
controls:

• The user ID charged by the CP accounting routines for the system resources used during a job.
• The name and distribution code that appear on any spooled printer or punch output. Any spooled

output will be spooled under the user ID specified.
• The user ID to whom status messages are sent while the batch machine is executing the job.

Note: The first and second items are correct only if the directory for the batch virtual machine involved
contains the accounting option.

accntnum
is your account number. This account number appears in the accounting data generated at the end of
your job. It overrides the account number in the CP directory entry for the user ID specified for this
job.

jobname
is an optional parameter that specifies the name of the job being run. If you specify jobname, it
appears as the CP spool file identification in the file type field. The file name field always contains
CMSBATCH. See “Batch Facility Output” on page 363 for more information.

comments
may be any additional information you want to provide.

The /* card indicates the end of a job to the batch facility. It takes the form:
/*

/* must begin in card column one. The batch facility treats all /* cards after the first as null cards.
Therefore, if you want to ensure against the previous job not having a /* end-of-job indicator, you should
precede your /JOB card with a /* card.

Using the Batch Facility

Chapter 23. Using the Batch Facility 359

The /* card is also treated as an end-of-file indicator when a file is being read from the input stream. This
is a special technique used in submitting source or data files through the card reader and is discussed
under “Batch Exec for a Non-CMS User” on page 366.

Note:

1. Both "/JOB" and "/*" must begin in column 1.
2. The /* card can contain only the characters "/*". No other characters can appear on this input card.

/SET Card
The /SET card sets limits on a system's time, printing, and punching resources during the execution of a
job. It takes the form:

/SET

TIME seconds PRINT lines PUNCH cards

/SET must begin in card column one.
seconds

is a decimal value that specifies the number of virtual CPU seconds the job can use.
lines

is a decimal value that specifies the maximum number of lines a job can print.
cards

is a decimal number that specifies the maximum number of cards a job can punch.

The default values for the batch facility are set at 131,068 seconds, printed lines, and punched cards per
job. Any new limits defined using the /SET card must be less than these maximum settings. The system
resources can be set at lesser values than the default values by an installation's system programmer; be
sure you know the maximum installation values for batch resource limits before you use the /SET card.

A /SET card appears anywhere in the job following the /JOB card. The new limits defined by the /SET card
apply only to the part of the job that follows the /SET card.

A job can contain up to three /SET cards (one for each operand); a /SET card cannot be entered more than
once for the same operand.

Only use /SET cards for the operands whose values you want to change from the default; the default
values are reset between jobs. A /SET card for an operand overrides its default but does not reset the
other operands.

The /SET card for CMSBATCH is designed to set an approximate limit on the amount of resources a single
batch job can use so that one job will not exclude other jobs from a resource. The actual amount of
resource used is compared to the limit set at a logical checking point (for example after a buffer has been
printed when using the PRINT command). Because the comparison is done at a logical checking point, the
maximum specified may have been exceeded at any time since the last comparison check. The job will
stop at the point when a comparison is done and the specified limit is reached or exceeded.

Note:

1. "/SET" must begin in column 1.
2. Programs can issue the STIMERM macro without interfering with batch time limits. If STIMER REAL is

issued, the CMSBATCH time limit will never expire.

Other Input Records
The remainder of input records in the batch job consist of CP and CMS commands that are entered. (For a
description of command restrictions, see “Restrictions on CP and CMS Commands in Batch Jobs” on page
362). EXEC, EXEC 2, or REXX statements cannot be imbedded in the input stream.

Using the Batch Facility

360 z/VM: 7.2 CMS Application Development Guide

How the Batch Facility Works
The CMS batch facility, once initialized, runs continuously. When it begins executing a job, it sends a
message to the user ID of the user submitting the job. If you are logged on when the batch machine
begins executing a job that you sent it, you receive the message:

MSG FROM batchid: JOB yourjob STARTED

When the batch machine finishes processing a job, it sends the message:

MSG FROM batchid: JOB yourjob ENDED

yourjob is the job name you specified on the /JOB card. Before it reads the next job from its card reader,
the batch virtual machine:

• Closes all spooling devices and releases spool files
• Resets any spooling devices identified by the CP TAG command
• Detaches any minidisk devices that were accessed
• Punches accounting information to the system
• Reloads CMS.

All of this is done by the CMS batch facility so that each job that is executed is unaffected by any previous
jobs.

If a job that you sent to the batch virtual machine abnormally terminates (abends), the batch machine
sends you the following message:

MSG FROM batchid: JOB yourjob ABEND

The batch machine also spools a CP storage dump of the batch virtual machine to the printer. Then, the
batch virtual machine stops processing your job and the job is flushed.

Whenever the batch virtual machine has read and executed all of the jobs in its reader, it waits for more
input.

Preparing Jobs for Batch Execution
When you want to submit a job to the CMS batch facility for execution, you should provide the same CMS
and CP commands you would use to prepare to execute the same job in your own virtual machine.

You must provide the batch virtual machine with read access to any input files that are required for the
job. You do this by supplying the LINK and ACCESS commands necessary. The batch virtual machine has
a minidisk at virtual address 195 with file mode A, so you can issue commands to access your minidisks
or SFS directories as read-only extensions. For example, if you wanted the batch machine to execute a
program module named LONDON on your 291 minidisk, your input file might contain the following:

/JOB FISH 012345
CP LINK MCGUIRE 291 291 RR SECRET
ACCESS 291 B/A
LONDON

Similarly, if you are using the batch virtual machine to execute a program using input and output files, you
must supply the file definitions:

CP LINK ARDEN 391 391 RR FOREST
ACCESS 391 B/A
FILEDEF INFILE DISK VITAL STAT B
FILEDEF OUTFILE PUNCH
CP SPOOL PUNCH TO MCGUIRE
LONDON

Using the Batch Facility

Chapter 23. Using the Batch Facility 361

If you expect printed or punched output from your job, you may need to include the spooling commands
necessary to control the output. In the previous example, the punch of the batch machine is spooled to
the virtual machine associated with user ID MCGUIRE.

Any output printer files produced by your job are spooled by the batch virtual machine to the printer.
These files are spooled under your user ID and with the distribution code associated with your
user ID, provided the batch machine's directory has the accounting option set. You can change the
characteristics of these output files with the CP SPOOL command. For example:

cp spool e class t

If you want output to appear under a name other than your user ID, use the FOR operand of the SPOOL
command. For example:

cp spool e for jonson

Output punch files are spooled, by default, to the real system card punch (under your user ID), unless you
issue a SPOOL command in the batch job to control the virtual card punch of the batch virtual machine.

Note: If you are using the batch machine for files stored in SFS directories, you may not want to set
FILEWAIT on. If your batch job is accessing several files in different directories, the job could wait too
long and hold up other jobs.

Restrictions on CP and CMS Commands in Batch Jobs
The batch facility permits many CP and most CMS commands.

Note: If a batch job uses PIPE to issue a CP command, the batch machine will process the command. It
will not restrict the execution.

The following CP commands are permitted and can be used to control the batch virtual machine:

CHANGE MSG
CLOSE QUERY
DEFINE REWIND
DETACH SMSG
DUMP SPOOL
DISPLAY STORE
LINK TAG
LOADVFCB

These CP commands are subject to the following restrictions in batch jobs.

• CHANGE, CLOSE, and SPOOL cannot be used to affect devices RDR or 00C.
• DETACH can not be used to affect devices RDR, PUN, PRT, 00C, 00D, or 00E.
• Do not use the CHANGE, CLOSE, and SPOOL commands to affect the virtual reader.
• Do not use the DETACH command to detach any spooling devices or the system, IPL, or 19E disks.
• You must enter the LINK command on one line in the following format:

CP LINK userid vaddr1 vaddr2 mode password

You cannot use the LINK command keywords “To”, “As”, or “PASS=”.

The userid cannot be “TO” or “T”. The vaddr2 cannot be “A”; you can use “0A”. The password cannot be
“PASS=”.

If the minidisk does not have a password associated with it, the password must be “ALL”.

A maximum of 26 links can be in effect at any one time.
• If a DIAGNOSE code X'08' is issued, the CHANGE and SPOOL commands will have an effect on the

virtual card reader.
• Preface all CP commands in a batch job with CP.

Using the Batch Facility

362 z/VM: 7.2 CMS Application Development Guide

• If you are running a CMS, EXEC 2, or REXX exec in the batch environment, the return code may be
different than if the same exec is run in CMS. BATCH intercepts some commands and checks their
validity for the CMSBATCH environment. The return code may be from BATCH and not from CP.

The following restrictions apply to CMS commands used in batch jobs:

• Because the batch virtual machine reads input from its reader, do not use the following commands or
operands that affect the reader:

ASSGN SYSxxx READER (CMS/DOS only)
DISK LOAD
FILEDEF READER
READCARD
RECEIVE

• Jobs running under the CMS batch machine should not use the RDCARD macro.
• Do not use the following CMS SET command operands:

 AUTODUMP LOADAREA
 AUTOREAD OUTPUT
 BLIP PROTECT
 IMESCAPE REDTYPE
 IMPCP RELPAGE
 INPUT SERVER
 KEYPROTECT STORECLR

All of the other CMS SET command operands can be used in a job executing in the batch virtual
machine. However, if the SET TRAPMSG command is invoked with the STOP option while in batch mode,
the STOP option will be ignored.

• Concatenation of commands by using the new line character (usually an X'15') results in an error
message.

Batch Facility Output
Any files that you request to have printed during the execution of your job are spooled to the real system
printer under your user ID, unless you have spooled it otherwise. Once released for processing, these
output files are under the control of the CP spooling facilities; if you are logged on, you can control
the disposition of these files before they are printed with the CLOSE, PURGE, ORDER, and CHANGE
commands. See “Purging and Reordering Batch Jobs” on page 366.

Output files produced by the batch virtual machine are identifiable by the file name CMSBATCH in the CP
spool file name field. The spool file type field contains the file type JOB, unless you specified a jobname
on the /JOB card. This applies to both printer and punch output files.

In addition to your regular printed output, the CMS batch facility spools a console file that contains a
record of all the lines read in, and the responses, error messages, and return codes that resulted from
command or program execution. The file name and file type of this spool file is BATCH CONSOLE.

Using Exec Files for Input to the Batch Facility
There are a variety of ways that exec procedures can help facilitate the submission of jobs to the CMS
batch facility. The following examples are very simple. You probably would not go to the trouble of
sending such a job to the batch virtual machine for processing. The examples do, however, illustrate the
two basic ways that you can use exec procedures with the batch facility:

• Initiating an exec procedure from a batch virtual machine
• Using an exec procedure to create a job stream for the batch virtual machine.

Example 1: You can prepare an exec file that contains all of the CMS commands you want to execute, and
then pass the name of the exec to the batch virtual machine.

Suppose you have the following file, COPY JCL:

/JOB CARBON 999999
CP LINK MCGUIRE 191 391 RR LINKPASS

Using the Batch Facility

Chapter 23. Using the Batch Facility 363

ACCESS 391 B/A
EXEC COPYF
/*

and the file, COPYF EXEC:

/* */
'COPYFILE FIRST FILE B SECOND = A'
'COPYFILE THIRD FILE B FOURTH = A'

If you enter the commands:

spool punch to cmsbatch
punch copy jcl * (noheader

the commands in COPYF EXEC are executed by the batch virtual machine.

Example 2: You could also use an exec to punch input to the batch virtual machine. Using the same
commands as in the previous example. Suppose you have the following exec named BATCOPY that
contains the same commands used in the previous example:

/* exec to submit a batch job */
'CP SPOOL PUNCH TO BATCH3 CONT'
punch = 'EXECIO 1 PUNCH (STRING' /* initializing a variable */
punch '/JOB CARBON 999999'
punch 'CP LINK MCGUIRE 191 391 RR LINKPASS'
punch 'ACCESS 391 B/A'
punch 'COPYFILE FIRST FILE B SECOND = A'
punch 'COPYFILE THIRD FILE B FOURTH = A'
punch '/*'
'CP SPOOL PUNCH NOCONT CLOSE'

Then, when you enter the exec name:

batcopy

the input lines are punched to the batch virtual machine.

In either case, the execs you use may be simple or complicated. In the first instance, an exec might
contain many steps, with control statements to conditionally control execution, error routines, and so on.

In the second instance, you might have an exec that is versatile so that it can be used with different
arguments so as to satisfy more than one situation. For example, you can create a simple exec to send any
job to the batch virtual machine to be assembled. This exec, called BATCHASM EXEC, might contain:

/* An exec for batch assemblies */
'CP SPOOL PUNCH TO BATCH3 CONT'
arg filename .
punch = 'EXECIO 1 PUNCH (STRING' /* initializing a variable */
punch '/JOB MCGUIRE 888888'
punch 'CP LINK MCGUIRE 191 391 RR LINKPASS'
punch 'ACCESS 391 B/A'
punch 'ASSEMBLE' filename '(PRINT'
punch 'CP SPOOL PUNCH TO MCGUIRE'
punch 'PUNCH' filename 'TEXT A'
punch '/*'
'CP SPOOL PUNCH NOCONT CLOSE'

Now, whenever you want the CMS batch facility to assemble a source file for you, enter:

batchasm filename

The batch virtual machine will assemble the source file (filename), print the listing, and send you a copy of
the resulting TEXT file.

Sample System Procedures for Batch Execution
To extend the previous example a little further, suppose you wanted to process source files in languages
other than the assembler language. You want, also, for any user to be able to use this exec. You might
have a separate exec file for each language and an exec to control the submission of the job. Figure 55 on

Using the Batch Facility

364 z/VM: 7.2 CMS Application Development Guide

page 365 shows the controlling file and BATCH EXEC, and Figure 56 on page 365 shows the language file
and ASSEMBLE EXEC.

/* This exec submits assemblies/compilations to CMS Batch
 - Punch batch job card
 - Call appropriate language exec to punch executable commands */

 arg accnt filename language
 if language = ''
 then do
 say 'Correct form is: BATCH accnt filename language'
 exit 100
 end
 punch = 'EXECIO 1 PUNCH (STRING'
 trace errors
 signal on error
 'CP SPOOL D CONT TO BATCHCMS'
 punch '/JOB' Userid() accnt filename
 punch 'CP LINK' Userid() '191 291 RR SECRET'
 punch 'ACCESS 291 B/A'
 'EXEC' language filename Userid()
 punch 'RELEASE 291'
 punch 'CP DETACH 291'
 punch '/*'
 'CP SPOOL D NOCONT CLOSE'
 exit
 Error: exit rc

Figure 55. BATCH EXEC

/* Correct form is : ASSEMBLE fname userid
 Punch commands to:
 - Invoke CMS assembler
 - Return text deck to caller */

 arg fname userid
 signal on error
 trace errors
 punch = 'EXECIO 1 PUNCH (STRING'
 punch 'GLOBAL MACLIB UPLIB DMSGPI OSMACRO'
 punch 'CP MSG' userid 'Asmbling' fname
 punch 'ASSEMBLE' fname '(PRINT NOTERM)'
 punch 'CP MSG' userid 'Assembly done'
 punch 'CP SPOOL D TO' userid 'NOCONT'
 punch 'PUNCH' fname 'TEXT A1'
 punch 'CP CLOSE D'
 punch 'CP SPOOL D OFF'
 exit
 Error: exit rc

Figure 56. ASSEMBLE EXEC

Suppose FAY (user ID = FAY) invokes the BATCH EXEC by issuing the following command:

batch 1111 payroll assemble

The BATCHCMS virtual machine's reader should contain the following statements (in the same general
form as a FIFO console stack):

/JOB FAY 1111 PAYROLL
CP LINK FAY 191 291 RR SECRET
ACCESS 291 B/A
GLOBAL MACLIB UPLIB DMSGPI OSMACRO
CP MSG FAY Asmbling PAYROLL
ASSEMBLE PAYROLL (PRINT NOTERM)
CP MSG FAY Assembly done
CP SPOOL D TO FAY NOCONT
PUNCH PAYROLL TEXT A1
CP CLOSE D
CP SPOOL D OFF
RELEASE 291
CP DETACH 291
/*

Using the Batch Facility

Chapter 23. Using the Batch Facility 365

When the batch facility executes this job, the commands are executed as you see them: if you are logged
on, you receive, in addition to the usual messages that the batch facility issues, those messages that are
included in the exec.

Batch Exec for a Non-CMS User
Many installations run the CMS batch facility for non-CMS users to submit particular types of jobs. Usually,
a series of exec files are stored on the system disk so that each user only needs include a card to use the
exec, which executes the correct CMS commands to process data included with the job stream.

For example, if a non-CMS user wanted to compile FORTRAN source files, the following BATFORT EXEC
file could be stored on the system disk:

/* EXEC for batch FORTRAN Compiles */
arg filename
'FILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL 80'
'FILEDEF OUTMOVE DISK' filename 'FORTRAN A1 (RECFM F LRECL 80 BLOCK 80'
'MOVEFILE'
'GLOBAL TXTLIB VSF2FORT'
'FORTVS2' filename '(PRINT)'
fortret = rc
if rc = 0 then
 'PUNCH' filename 'TEXT A1'
exit fortret

To use this exec, a non-CMS user might place the following real card deck in the system card reader:

ID CMSBATCH
/JOB JOEUSER 1234 JOB10
BATFORT JOEFORT
⋮
source file
⋮
/* (end-of-file indicator)
/* (end-of-job indicator)

When the batch virtual machine executes this job, it begins reading the exec procedure and executes
one line at a time. When it encounters the MOVEFILE command, it begins reading the source file from
its card reader (the batch facility interprets a terminal read as a request to read from the card reader). It
continues reading until it reaches the end-of-file indicator (the /* card) and then resumes processing the
exec on the next line following the MOVEFILE command.

Additional functions may be added to this exec procedure, or others may be written and stored on the
system disk to provide, for example, a compile, load, and execute facility. These exec procedures would
let an installation accommodate the non-CMS users and maintain common user procedures.

Purging and Reordering Batch Jobs
If you are logged on to the batch user ID, you can control the execution of batch virtual machine jobs
when required by purging, reordering, and restarting them; by the same token, because all the closed
printer files are queued for system output under the submitting user ID, you can change, purge, or reorder
these files before processing on the system printer.

To purge a job executing under the batch monitor, use the following procedure:

1. Signal attention so VM READ appears in the status area of the batch machine console.
2. Issue the HX (halt execution) Immediate command.
3. Disconnect the virtual machine using the #CP DISCONN command. # is the default line end character.

The HX command causes the batch facility to abnormally terminate. This provides the user with an error
message and a CP dump of the batch facility virtual machine. The batch monitor then loads itself again
and starts the next job (if any).

The batch monitor normally runs with the console spooled NOTERM. Therefore, if you are logged on to the
batch user ID, and you want to see the current job stream execution (if any) or the results of any of the
following commands, issue a #CP SPOOL CONS TERM.

Using the Batch Facility

366 z/VM: 7.2 CMS Application Development Guide

To purge an individual input spool file that is not yet executing, enter the following CP PURGE command:

#cp purge reader spoolid

spoolid is the spool file number of the job to be purged from the job queue of the batch virtual machine.

To reorder individual spool files in the job queue of the batch facility, enter the following CP ORDER
command:

#cp order reader spoolid1 spoolid2...

spoolid1 and spoolid2 are the assigned spool file identifications of the jobs to be reordered.

You can determine which jobs are in the queue by entering the following CP QUERY command:

#cp query reader all

This QUERY command lists the file names and file types of all the jobs in the batch virtual machine's job
queue. You can then reorder them using the ORDER command.

Using the Batch Facility

Chapter 23. Using the Batch Facility 367

Using the Batch Facility

368 z/VM: 7.2 CMS Application Development Guide

Chapter 24. Creating an Interactive Program

This chapter describes two dialog management systems:

• The Interactive System Productivity Facility (ISPF)
• The Display Management System for CMS (DMS/CMS).

Your application can communicate with the terminal by writing one line at a time and reading one data
item at a time. However, applications using several data items are greatly simplified by using dialogs
between the user and the computer.

A common way to create dialogs is using full-screen displays or panels. Although it is possible to create
panels as data areas in programs and write them to the terminal one line at a time, this uses a lot
of storage and is time-consuming. Also, the task of dialog management itself—that is, controlling the
flow from one panel to the next—can be very complex. That is why it is better to use a standard data
communications interface or dialog management system.

ISPF provides services that complement standard z/VM services and that implement interactive
processing. The Display Management System for CMS (DMS/CMS) provides a way to implement
interactive processing in z/VM. DMS/CMS lets you design panels that can be displayed from applications
written in REXX, EXEC 2, CMS EXEC, COBOL, PL/I, RPG II, or assembler. DMS/CMS is a simple and
fast panel generation tool used in application development. It may be used by any customer with VM
application development requirements as an alternative to ISPF.

Using ISPF for Dialogs
The Interactive System Productivity Facility (ISPF) provides services that lets you create interactive
applications. As an application programmer, you can use ISPF to:

• Display messages or predefined full-screen images (panels)
• Originate and maintain tables of user information
• Generate output files to be processed by other applications
• Define and control symbolic variables
• Control the various kinds of operational modes during processing
• Interface to Edit and Browse facilities (using ISPF/PDF).

An application that runs under ISPF is called a dialog. You can code your dialog in various programming
languages. You can even use more than one language in a dialog. There are also facilities that let you use
REXX.

Each dialog is made up of various programs and data elements. There are five types of dialog elements,
some of which are optional. These are the three most commonly used elements:

• Functions are command procedures or programs that perform processing requested by you, such as
display of panels and messages, building of tables, generation of output files, and control of operational
modes.

• Panels are predefined display images, such as menus, data entry panels, and information-only panels.
• Messages are comments that provide special information to you, such as confirmation that a user-

requested action is in process or completed, or a report of an error in the user's input.

There are two elements that are not as commonly used:

• Tables are two-dimensional arrays used to maintain data. Tables can be temporary or retained across
sessions and shared among several applications.

• File Tailoring Skeletons are generalized images of sequential data that can be customized during a
dialog to produce an output file.

Creating an Interactive Program

© Copyright IBM Corp. 1990, 2022 369

Panel definitions, message definitions, and skeletons are stored in libraries before execution of the
dialog. You create them by editing directly into the panel, message, or skeleton libraries. No compiling or
preprocessing step is required. Tables are generated and updated during dialog execution. Functions are
programs or sequences of commands that you write to invoke and control the various ISPF elements and
services.

The following sections show you how to use ISPF to develop a dialog. See Appendix J, “ISPF Example,” on
page 599 for a complete FORTRAN program using ISPF.

Developing an ISPF Dialog
To develop a dialog, you use an editor to enter the various components. You can use either XEDIT, or the
edit option of the ISPF/Program Development Facility (ISPF/PDF).

You create panels by editing a file panel, defining the panel by keywords and options, and then saving the
file as a member of an ISPF library.

A panel definition closely resembles the 3270 screen image that appears when the panel is displayed.
Each character position in the panel definition is mapped to the same relative position on the display
screen. You control where variable and literal data appear by entering the variable name or literal itself on
the panel definition exactly where you want it to appear.

You create messages in the same way, but they are saved in a message library. Each member of a
message library can contain several messages, each one referenced by a unique message ID. You specify
the message text, the name of the corresponding HELP panel (to be displayed if the user requests help
when the message is displayed), and an indication whether an audible alarm will be sounded. You can
also specify a short message text to be displayed in the upper right-hand corner of the screen or some
other position you specify.

You also create functions with the editor. Your FORTRAN program, for example, can invoke ISPF services
by calling an ISPF service interface routine called ISPLNK. On the call statement, you describe the
services required. For example, suppose you have a panel called USRNAME in your panel library.

To display USRNAME from a FORTRAN program, code:

INTEGER DSPSRV(2),PANEL(2)
DATA DSPSRV/'DISP','LAY '/
DATA PANEL/'USRN','AME '/
 .
 .
 .
LASTRC=ISPLNK(DSPSRV,PANEL)

The same panel can be displayed from a REXX EXEC by using Address ISPEXEC:

Address ISPEXEC 'DISPLAY(USRNAME)'

How to Begin Using ISPF
To use ISPF, certain requirements must be met. First of all, ISPF must be available to you, usually by
means of a CMS system disk such as the S-disk or the Y-disk. If you are not sure where the ISPF licensed
program resides, ask your supervisor. Each installation can install ISPF to suit their own needs, which can
vary considerably. You will need the various libraries distributed with the ISPF licensed program.

The ISPF libraries distributed are:
ISPPLIB MACLIB

Panel Libraries
ISPMLIB MACLIB

Message Libraries
ISPTLIB MACLIB

Table Input Libraries

Creating an Interactive Program

370 z/VM: 7.2 CMS Application Development Guide

You also need the ISPSTART command to begin dialog processing. If these commands and libraries are
not available to you, consult your supervisor or system administrator.

Before you invoke ISPF, your virtual device 191 must be accessed as the A-disk. During operation, ISPF
assumes that this minidisk is always in read/write mode and that no other user has write access to it. (In
some cases, ISPF permits multiple write access to minidisks other than 191, provided that such access is
performed under the control of ISPF.)

The libraries distributed with ISPF are system libraries. To make these as well as your own libraries
available to applications running under ISPF control, you need to issue some FILEDEF commands, which
should remain in effect throughout your ISPF session. Suppose you have a panel library called USRPANEL,
and a message library called USRMESGS. You need to concatenate these libraries with the corresponding
distributed libraries, and you want your libraries accessed ahead of the distributed libraries. The next
sequence of commands (which can be included in your PROFILE EXEC or in another exec) make these
libraries available to ISPF functions:

FILEDEF ISPPLIB DISK USRPANEL MACLIB * (PERM CONCAT)
FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM CONCAT)
FILEDEF ISPMLIB DISK USRMESGS MACLIB * (PERM CONCAT)
FILEDEF ISPMLIB DISK ISPMLIB MACLIB * (PERM CONCAT)

Notice that the ddname in each pair of FILEDEFs is the same as the file name of the distributed ISPF
library. Other ISPF libraries follow the same pattern:
ISPTLIB

is the ddname for all the table input libraries.

There are four optional libraries that are user-defined:
Skeleton library

ddname ISPSLIB
Table Output library

ddname ISPTABL
File Tailoring Output library

ddname ISPFILE
Profile library

ddname ISPPROF

The PERM option ensures that the FILEDEF remains in effect throughout an ISPF session. The CONCAT
option concatenates two or more libraries under the same ddname. The order that libraries are searched
is the same as the order that the FILEDEFs are issued. (You do not have to issue a GLOBAL MACLIB
command before invoking ISPF.)

If the ISPF commands and libraries are not on a system disk, but are available by means of the LINK
command, you might want to write an EXEC to link the ISPF system disk and issue the FILEDEFs
you need. If the ISPF system disk is on a minidisk with a virtual address of 591, owned by a user
called ISPMAINT, with a read password of ALL (that is, not requiring a password to link), the following
statements in REXX do this:

/* ACCESS ISPF SYSTEM */
'CP LINK ISPMAINT 591 591 RR'
'ACCESS 591 Z/A'
'FILEDEF ISPPLIB DISK USRPANEL MACLIB * (PERM CONCAT)'
'FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM CONCAT)'
'FILEDEF ISPMLIB DISK USRMESGS MACLIB * (PERM CONCAT)'
'FILEDEF ISPMLIB DISK ISPMLIB MACLIB * (PERM CONCAT)'

Note: See Chapter 20, “Using Execs,” on page 333 for a discussion of execs.

You can create panel and message libraries by using XEDIT together with the MACLIB command. Create
each panel with the editor first, then build the panel library with the MACLIB command.

Note: The panels and groups of messages must have a CMS file type of COPY. When using the editor to
create a panel and to specify a file type of COPY, be sure to enter the editor subcommand SERIAL OFF to
prevent the editor from inserting serial numbers in the panel file in columns 73 - 80. If these numbers are

Creating an Interactive Program

Chapter 24. Creating an Interactive Program 371

present, they will cause ISPF errors. You can also use a different file type (for example, PANEL or MSG)
and then rename the file before building the library.

The following steps outline a method of building a panel or message library:

1. XEDIT MENUPAN PANEL
2. (Create Panel)
3. FILE MENUPAN COPY
4. XEDIT NAMEPAN PANEL
5. (Create Panel)
6. FILE NAMEPAN COPY
7. MACLIB GEN USERPAN MENUPAN NAMEPAN.

In steps 1 and 4, the panel members are created by using a file type of PANEL to bypass serialization.
In steps 2 and 5, edit subcommands create the panel members. In steps 3 and 6, a form of the FILE
subcommand is used to write the files to disk with a file type of COPY. In step 7, the MACLIB command is
used to create USERPAN MACLIB. This library contains the two members MENUPAN COPY and NAMEPAN
COPY.

After you create the panels and messages you need, you can develop an application using REXX, or you
can develop your specific language application.

Once your programs are compiled and exist either as text or load modules, you need to make them
available to ISPF by issuing the appropriate FILEDEF command. For example, if you write a program
called TESTPROG and compile it, you have a file called TESTPROG TEXT A1 on you A-disk. If you want to
include TESTPROG in a TXTLIB called DEVLIB TXTLIB A1, issue the TXTLIB GEN or TXTLIB ADD command
to insert the TEXT file into the library. This command makes the library available to ISPF:

FILEDEF ISPXLIB DISK DEVLIB TXTLIB * (PERM)

If you have included the module in a LOADLIB, use:

FILEDEF ISPLLIB DISK DEVLIB LOADLIB * (PERM)

When a text module is invoked (either as a TEXT file or as a member of a TXTLIB), any other text modules
that it calls are loaded automatically by automatic call reference. The modules must also be TEXT files
on a ISPF-accessible minidisk or members of the TXTLIB allocated to ddname ISPXLIB. If you have more
than one TXTLIB, use the CONCAT option of the FILEDEF command to concatenate the libraries under the
same ddname, ISPXLIB.

If your program is in a LOADLIB, use the ddname ISPLLIB. You can also specify a concatenated sequence
for LOADLIBs. No automatic call referencing occurs with load modules. All load module references must
be resolved before invocation by ISPF. Load modules can be used only for programs that are reenterable.

Note: Avoid using nonrelocatable files whenever possible. User nonrelocatable files can create a very
complex operational environment, because CMS subset mode is turned on to prevent nonrelocatable
files from overlaying relocatable programs already in storage. When using split screen mode, CMS subset
mode is not turned off until all relocatable programs associated with logical screens have completed
execution.

When you have created the dialog functions you need, you can invoke the ISPF environment by means of
the ISPSTART command, using the appropriate PANEL, CMD, or PGM parameter.

• The PANEL parameter causes the panel specified to be displayed, and passes any options to it that are
specified on the ISPSTART command line.

• The CMD parameter specifies the name of an exec to be invoked as the first dialog function.
• PGM specifies the program name to be invoked as the first dialog function.

Creating an Interactive Program

372 z/VM: 7.2 CMS Application Development Guide

ISPF Dialog Organization
You can organize dialogs in a number of ways to suit the needs of the application. A typical dialog, for
example, starts with a display of the highest menu in a hierarchy. This is the primary option menu. User
options selected from this menu can invoke a dialog function, or display a lower level menu. The lower
level menu can also cause functions to receive control, or pass control on to still other lower level menus.
This hierarchical organization (tree structure) might look like Figure 57 on page 373.

Figure 57. A Typical Dialog Starting with a Menu

Eventually, a dialog function receives control. When it does, it can use any of the dialog services provided
by ISPF, including panel display for data entry. When the function completes execution, control is passed
back up the tree to the panel from which the function was selected. Control eventually returns to the
primary option menu. The process can now begin again with a different dialog path.

Controlling Dialog Flow with the SELECT Service
Your first major task in developing a dialog application is to design the dialog itself. That is, you have to
define the structure and flow of panels, services and functions that make it up. Controlling the flow in a
dialog is made possible by the SELECT service. ISPF uses the SELECT service during its initialization to
invoke a function or selection panel that begins a dialog. During dialog processing, SELECT can be used to
display menus and invoke program or command procedure functions.

The same parameters used on the ISPSTART command line (PANEL, CMD, and PGM) can be passed to the
SELECT service to specify the next action to be taken. If the CMD parameter is used, the exec it invokes
can in turn invoke other execs, without requiring use of the SELECT service. When the PGM parameter is
specified, the function it invokes can call other programs, which are considered part of the same function.
If you call a function from within a program, use the SELECT service. Figure 58 on page 374 illustrates
how the SELECT service invokes and processes a dialog.

Creating an Interactive Program

Chapter 24. Creating an Interactive Program 373

Figure 58. SELECT Service Used to Invoke and Process a Dialog

ISPF Panel Definition
You define a panel in ISPF using up to seven sections, of which only two (the BODY and END sections) are
required for all panels. The PROC section is required for all selection panels. The seven sections are:

1. Attribute section defines the special characters used in the body of the panel definition to represent
attribute (start-of-field) bytes, such as high intensity, low intensity, and input field.

2. Body section defines the format of the panel as seen by the user, and defines the name of each
variable field on the panel.

3. Initialization section specifies the processing that will occur before the panel is displayed. You
usually use this section to define how variables are to be initialized.

4. Reinitialization section specifies the processing that will occur before redisplay of a panel.
5. Processing section specifies the processing that will occur after the panel is displayed. You usually

use this section to define how variables are verified and translated.
6. Model section (required for table display only; not allowed for other types of panels) specifies the

format for displaying each row of the table.

Creating an Interactive Program

374 z/VM: 7.2 CMS Application Development Guide

7. End section consists of only the)END statement. ISPF ignores any data that appears on lines following
the)END statement.

The panel display service recognizes these default field attribute characters:
+

text (protected) field, low intensity
%

text (protected) field, high intensity
_

input (unprotected) field, high intensity.

Each panel definition section begins with a statement that indicates the section being defined. There are
seven statements, one for the start of each of the sections. The statements are:
)ATTR

attribute section
)BODY

body section
)INIT

initialization section
)REINIT

reinitialization section
)PROC

processing session
)MODEL

model section (table displays only)
)END

end of panel definition

You can define all data entry panels of a dialog using only the)BODY and)END statements and the default
field attributes. The following screen definition does not contain the other statements.

)BODY
%--------------------------- EMPLOYEE RECORDS ------------------------------
%COMMAND ===>_ZCMD
%
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EMPLOYEE NAME:
+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +
+ INITIAL%===>_I+
+
+ HOME ADDRESS:
+ LINE 1 %===>_ADDR1 +
+ LINE 2 %===>_ADDR2 +
+ LINE 3 %===>_ADDR3 +
+ LINE 4 %===>_ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
+ LOCAL NUMBER%===>_PHNUM +
+
)END

Figure 59. Sample ISPF Panel Definition

When this panel is displayed to the user, it looks like this:

Creating an Interactive Program

Chapter 24. Creating an Interactive Program 375

 --------------------------- EMPLOYEE RECORDS ---------------------------
 COMMAND ===>

 EMPLOYEE SERIAL:

 TYPE OF CHANGE ===> (NEW, UPDATE, OR DELETE)

 EMPLOYEE NAME:
 LAST ===>
 FIRST ===>
 INITIAL ===>

 HOME ADDRESS:
 LINE 1 ===>
 LINE 2 ===>
 LINE 3 ===>
 LINE 4 ===>

 HOME PHONE:
 AREA CODE ===>
 LOCAL NUMBER ===>

Figure 60. Sample ISPF Panel, When Displayed

For detailed information on how to define panels, see the ISPF/PDF Services.

ISPF Message Definition
You create message definitions using an editor, such as the System Product Editor. They are saved in a
member of the message library. As with panel definitions, no compilation is required. Each message in
the message library consists of two lines. The first line contains the message ID (required), short message
text (optional), name of corresponding HELP panel (optional), and audible alarm indicator (optional). The
second line contains the full message text.

The following message definitions contain all the fields:

MSG001 'OPERATION COMPLETED' .HELP=MSGOK01 .ALARM=YES
'THE OPERATION SPECIFIED HAS BEEN COMPLETED.'
MSG002 'INVALID OPERATION' .HELP=MSGNG01 .ALARM=YES
'ENTER A NUMBER FROM 1 TO 5 IN THE SPACE PROVIDED.'

If you want the first message to be issued during a dialog, you refer to the message by the identifier
MSG001. The panel MSGOK01 can be invoked by the user with the HELP service. When the message is
displayed, the audible alarm sounds. Finally, a short form of the message is provided for display in the
upper right hand corner of a panel, in case you do not want the full message displayed right away.

ISPF Variable Definition
Variable services let you define and use dialog variables. Dialog variables are the main communication
vehicle between dialog functions (program modules or execs) and ISPF services. Program modules,
execs, panels, messages, tables and skeletons can all reference the same data through the use of dialog
variables.

The value of a dialog variable is a character string from zero to 32KB long. Some services restrict the
length of dialog variable data; you can control the valid length of any dialog variable during panel and
function definition.

You reference dialog variables by name. The name is composed of 1 to 8 characters, depending on the
language you are using. Alphanumeric characters (A-Z, 0-9, #, $, or @) can be used in the name, but the
first character must be nonnumeric. In the sample panel definition shown earlier the names TYPECHG,
LNAME, FNAME, I, ADDR1, ADDR2, ADDR3, and ADDR4 are all names of dialog variables.

Creating an Interactive Program

376 z/VM: 7.2 CMS Application Development Guide

If you write a function in a language like FORTRAN, identify the internal variables to be used as dialog
variables to ISPF with the ISPF variable service VDEFINE. The program can also access and update dialog
variables using VCOPY and VREPLACE. These services do not apply to execs.

ISPF Panel Services
You can use two ISPF panel services to manipulate panels.
DISPLAY

displays data entry panels.
SELECT

displays a hierarchy of selection panels (menus).

The DISPLAY service controls the display of individual panels, such as data entry, informational, or
HELP panels. The SELECT service is used in a dialog to create a hierarchy of functions and menus that
determine the sequence in which those functions and menus are processed.

The DISPLAY service reads a panel definition from the panel library, initializes variable panel fields from
corresponding dialog variables, and displays the panel on the screen. A message can also be displayed
with the panel.

The user can enter information in fields specified on the panel definition as input fields. After the user
presses Enter, the contents of the input fields are stored in dialog variables specified on the panel
definition. Then, any processing specified on the panel definition using the)PROC statement is performed.
The DISPLAY service returns to the calling function. Optionally, the cursor can be positioned at the start of
any field in the panel definition.

For example, in a FORTRAN program, to display a panel called USRNAME, plus a message in the message
library called PERX110, and to position the cursor at the field called LNAME, use the following calling
sequence:

INTEGER DSPSRV(2),PANEL(2),PRX110(2),CRX110(2)
DATA DSPSRV/'DISP','LAY '/
DATA PANEL/'USRN','AME '/
DATA PRX110/'PERX','110 '/
DATA CRX110/'LNAM','E '/
 .
 .
 .
LASTRC=ISPLNK(DSPSRV,PANEL,PRX110,CRX110)

From a REXX exec, the command is:

Address ISPEXEC 'DISPLAY PANEL(USRNAME) MSG(PRX110) CURSOR(CRX110)'

You can also use the DISPLAY service to display messages, independently of panels. Do this by omitting
the PANEL parameter; this causes the)REINIT section to be processed, and the current panel is overlaid
with the message specified in the MSG parameter.

If you do not specify the panel-name or message-id, the)REINIT section is processed, and the current
panel is redisplayed without a message.

You use the SELECT service to display and control a hierarchy of selection panels. Menus (selection
panels) make up a special class of panels. A menu must have an input field to be used for the entry
of selection options by the user of the application. This field, the standard name of which is ZCMD, is
usually the first input field on line two of the panel. Corresponding to the ZCMD variable there must be
a processing section in the panel definition in which ZCMD is translated and stored in the variable ZSEL.
ISPF uses ZSEL as input to the SELECT services. This parameter can be used to select a still lower panel
definition. In this way, a path from the primary option menu can be defined down to the lowest level.

ISPF Variable Pools
To maintain multiple levels of control, dialog variables are organized into groups called variable pools,
according to the dialog function and application with which they're associated.

Creating an Interactive Program

Chapter 24. Creating an Interactive Program 377

A variable pool is basically a list of variable names that lets ISPF access the associated variables. When
an ISPF service encounters a dialog variable name (for example, in a panel or message table), it searches
these pools to access the value of the dialog variable. There are three types of variable pool:
Function pool

contains variables only accessible by a given function.
Shared pool

allows functions and selection panels to share access to dialog variables.

Shared pools are created by the SELECT service when it processes the ISPSTART or ISPF command
and when the NEWAPPL or NEWPOOL keywords are specified with the SELECT service. When SELECT
returns, the shared pool is deleted and the previous shared pool (if any) is reinstated.

Application profile pool
contains variables retained for the user from one ISPF session to another. Profile variables are
automatically available when an application begins and are automatically saved when it ends.

ISPF Variable Services
Many services are available in ISPF to control dialog variables:
VGET

retrieves variables from a shared pool.
VPUT

updates variables in a shared pool or profile pool.
VDEFINE

defines function variables.
VDELETE

removes definition of function variables.
VRESET

resets function variables.
VCOPY

copies data from a dialog variable to the program.
VREPLACE

copies data from the program to a dialog variable.

VGET and VPUT can be invoked from any function. The other variable services are for use from program
modules only.

Like the panel and message services, you can invoke variable services from a FORTRAN program, for
example, using ISPLNK. You can use the following FORTRAN statements to invoke the VDEFINE service.
The statements define the function variable LNAME and initialize it:

IMPLICIT INTEGER (A-Z)
DIMENSION LNAME(4)
LASTRC = ISPLNK('VDEFINE', '(LNAME)',LNAME, 'CHAR',16)

(LNAME) is the name of the function variable. LNAME is the field to contain the value of the variable
function. LNAME is initialized to spaces. CHAR is the literal "CHAR", which indicates the format of the
variable. The length of the variable field, 16 bytes.

Other ISPF Services
Other services are available in ISPF for dialog management. You can invoke each service from a program
as shown for ISPLINK (COBOL) or ISPLNK (FORTRAN).

Creating an Interactive Program

378 z/VM: 7.2 CMS Application Development Guide

Table Services
ISPF table services let you maintain and access sets of dialog variables. A table is a 2-dimensional array
of information in which each column corresponds to a dialog variable. Each row contains a set of values
for those variables.

A table can be either temporary or permanent. Temporary tables exist only in virtual storage and can't be
written to disk storage. Permanent tables are created in virtual storage, but can be saved on disks.

File Tailoring Services
Another type of ISPF service is the file tailoring service. These services read skeleton files from a library
and write tailored output that can be used to drive other functions. The file tailoring output can be
directed to a library, a sequential file, or both that has been specified by the ISPF function. It can also be
directed to a temporary sequential file provided by ISPF.

Each skeleton file is read record-by-record. Each record is scanned to find any dialog variable by name.
When a variable name is found, its current value is substituted from a variable pool.

The file tailoring services are:
FTOPEN

prepares the file tailoring process. It specifies whether the temporary file will be used for output.
FTINCL

specifies the skeleton to be used, and starts the tailoring process.
FTCLOSE

ends the file tailoring process.
FTERASE

erases (deletes) an output file created by file tailoring.

Miscellaneous Services
In addition to display, variable, table, and file tailoring services, ISPF provides EDIT, BROWSE, LOG, and
CONTROL services.

The EDIT and BROWSE services are available only if PDF is installed. These services let you invoke the
PDF edit or browse programs from a dialog function, specifying a CMS file.

The LOG service lets a dialog function write a message to the ISPF log file, which can be used as an audit
or tracking mechanism.

The CONTROL service lets a dialog function condition ISPF to expect certain kinds of display output, or to
control the disposition of errors encountered by ISPF services. The CONTROL service lets you:

• LOCK the terminal keyboard during a display
• Split a display screen if required (or inhibit screen splitting)
• REFRESH the entire screen on the next display
• Permit panels to be processed without displaying them.

Error-handling CONTROL parameters lets you terminate the dialog function upon receipt of a return code
of 12 or higher (CANCEL parameter), or to RETURN control to the dialog function on all errors.

Using DMS/CMS for Dialogs
The Display Management System for CMS (DMS/CMS) provides a way to implement interactive processing
in z/VM. DMS/CMS lets you design full screen images (called panels) that can be displayed from
applications written in COBOL, PL/I, RPG II, assembler, REXX, EXEC 2, or CMS EXEC.

DMS/CMS has three functional parts:

1. Panel Formatter

Creating an Interactive Program

Chapter 24. Creating an Interactive Program 379

Panel designers use the Panel Formatter to design the content and format of panels (DMS/CMS calls
designed screens panels). The word ‘screens’ is used to mean the DMS/CMS interactive screens. Panel
designers use a display terminal to design panels. There are only a few basic DMS/CMS rules a panel
designer must follow. Generally, anyone who can use a display terminal can design panels.

2. Panel Manager

Programmers use the Panel Manager to associate their COBOL, PL/I, RPG II, and assembler
application programs or their REXX, EXEC 2, or CMS EXEC procedures with defined panels.
Programmers must know how to write programs in the language they choose to use with the Panel
Manager.

3. Write Full Screen

Assembler programmers may use the Write Full Screen to take advantage of DMS/CMS's full-screen
I/O capability to a 3270-type graphics device. While this part can be very useful to a assembler
programmer, it can be ignored by most DMS/CMS users.

Note: DMS assumes that it is the only full screen panel manager running at the time of use. If DMS
panels are being used with another full screen editor or writer application, it may be necessary to
release the DMS panels and reset the DMS environment and buffers. DMS is not recommended to be
used with any other full screen editor or writer at one time.

DMS/CMS Users
There are three tasks to consider when talking about how to use DMS/CMS.

1. Application End Use

The end user enters information on the DMS/CMS panels. This person needs to know how to use a
display terminal.

2. Panel Designing

The panel designer used DMS/CMS to lay out the panels to be used by the application end user. The
panel designer must know how to use a display terminal and follow the DMS/CMS rules. The end user
and the panel designer may be the same person.

3. Programming

The programmer writes the application program or EXEC procedure that works with the designed
panels. The programmer needs to know how to use the programming language or EXEC procedure
being employed. This person may also be the panel designer and a user.

Programmers use the Panel Manager to associate their programs or EXEC procedures with the designed
panels. They may use COBOL, PL/I, RPG II, or assembler to write programs; REXX, EXEC 2, or CMS EXEC
to write EXEC procedures.

The following table lists the features of DMS/CMS for each of the tasks described above.

Table 66. Features of DMS/CMS

Task DMS/CMS Features

Application End Use • Interactive use of display terminal
• Extended Highlighting
• Color
• Wide screen usage
• Selector light pen usage

Creating an Interactive Program

380 z/VM: 7.2 CMS Application Development Guide

Table 66. Features of DMS/CMS (continued)

Task DMS/CMS Features

Panel Designing • Interactive test of panels without programming
• Ability to change delimiters that identify fields
• Display of field type and number
• Can issue PANEL command with panel name as operand
• Can define multiple panels with one call
• Can override the automatic cursor skip at the end of field

Programming • REXX, EXEC 2, CMS EXEC, Assembler, COBOL, PL/I, and RPG II
• Can position cursor anywhere on displayed panel
• User's cursor position is returned to program
• Can dynamically change protection for data fields
• Can control how data entered on a displayed panel is passed to the

program

System Support Functions
Applications using DMS/CMS services may execute on the 24-bit or 31-bit architecture machines.

DMS/CMS calls operation system services using standardized interfaces so that DMS/CMS is affected less
during operating system release migrations.

Panel Formatter Functions
The panel designer uses the Panel Formatter to design panels that the end user uses. Among the
functions DMS/CMS offers to help in panel design are:

1. Interactive formatting on a number of different display terminals, including large-screen, wide-screen,
and color terminals.

2. Ability to define types of fields (data, text, or light-pen selectable) and to define the characteristics of
the field. The possible characteristics include protected or not protected, alphanumeric or numeric,
color, intensity, highlighting, or autoskip at field end. Programs may further modify the existing panel
format.

3. Editing commands to help in panel design. Among the commands offered are those to copy or move
lines, to duplicate lines, to delete lines, to center lines, to shift lines left or right, to scroll the display
forward or backward, and to display the panel as the end user will see it.

Panel Manager Functions
The programmer uses the Panel Manager to associate a program with the designed panels. Among the
functions DMS/CMS offers to help the programmer are:

• The ability to program in different languages.
• The ability to use EXEC procedures (REXX, EXEC 2, or CMS EXEC).
• Cursor control. The programmer can position the cursor anywhere on the displayed screen. The position

of the user's cursor can be returned to the program.
• The ability to change field attributes dynamically.
• The ability to control how user-entered data is passed to the program (left or right justification and fill,

and upper or mixed case).

Creating an Interactive Program

Chapter 24. Creating an Interactive Program 381

Panel Size Considerations
DMS/CMS works with terminals having several different size screens. Terminal screens with widths of 80
or 132 characters and heights of 24, 27, 32, or 43 rows can be used with DMS/CMS.

A panel designer working on a terminal screen of one size can design a panel for a terminal screen of
another size.

If a designer is working on a terminal screen smaller than the screen that the panel is to be used on,
only part of the panel will be visible at any one time. DMS/CMS has features to assist a designer in this
situation.

If a designer presses a program function (PF) key, DMS/CMS shows the other side of the panel. Thus,
when designing a 132-character wide panel on an 80-character wide terminal screen, DMS/CMS displays
columns 1-70 of the panel being designed on the Design Grid screen (the grid occupies the other 10
spaces). The designer presses the PF key and DMS/CMS displays columns 63-132. When the PF key is
pressed again, DMS/CMS redisplays columns 1-70.

Similarly, when designing a panel for a 27-row terminal on a 24-row terminal, not all of the 27 rows will be
visible at any one time. DMS/CMS provides commands to scroll the display forward or backward.

Figure 61 on page 382 depicts the example given above. It shows how a designer uses a terminal with
a size of 80 columns by 24 rows to design a panel for a terminal size of 132 columns by 27 rows. Many
other size combinations are possible, and they would be handled in a similar fashion.

+----------------+-----+
| | |
| (Designer's | |
| screen) | <-------Use PF2 to see this part
| | | of panel.
| 80 x 24 screen | |
| | |
+----------------+ |
| |
| 132 x 27 panel |
| <-------------------Use DMS/CMS command FORWARD
| | or BOTTOM to see this part.
| |
+----------------------+

Figure 61. Designing a Panel for a Larger Size Terminal Screen

For more information, see the Virtual Machine Display Management System for CMS, Version 2 Guide and
Reference and the Virtual Machine Display Management System for CMS, Version 2 General Information.

Creating an Interactive Program

382 z/VM: 7.2 CMS Application Development Guide

Chapter 25. Developing Commands Using the Parsing
Facility

This chapter describes how to:

• Use the parsing facility, which consists of creating a definition language for command syntax (DLCS) file
and issuing commands to process the DLCS file.

• Use the parsing facility from a DBCS language.
• Use the parsing facility from a REXX program and an Assembler program.
• Create your own CMS commands.

The CMS parsing facility parses and translates command arguments. Your programs can use the parsing
facility to see if the user specifies the proper arguments on invocation and to see what the arguments are.

To use the parsing facility, you must define command syntax in a special language, the definition language
for command syntax (DLCS). You keep the DLCS definitions in CMS files. A DLCS file can contain more than
one DLCS definition. The parsing facility parses a specified command by checking whether all operands,
options, keywords, and so on, are specified according to the DLCS definition for that command.

Defining command syntax in a DLCS file and using the parsing facility has the following advantages:

• Syntax checking is unnecessary in your program.
• All keyword abbreviations are expanded for you.
• Command syntax is defined separately from your program and can be translated into different national

languages.
• When a national language is in use, keywords in that language are translated into the language

recognized by your program.
• You do not have to write scanning code.
• The address and length of each token is provided.
• Validation codes are provided to identify the type of each token.

Note: If an application supplies system parser and synonym files (xxxSPAcc TEXT and xxxSSYcc TEXT,
generated from a system DLCS file), application users can override and customize the application
command syntax by creating user DLCS files. However, if an application supplies user parser and synonym
files (xxxUPAcc TEXT and xxxUSYcc TEXT, generated from a user DLCS file), application users can change
the application command syntax only by modifying the DLCS source file and generating new TEXT files.
System parser and synonym files must reside in a saved segment.

Using the Parsing Facility
To use the parsing facility, follow these steps:

1. Create a DLCS file.
2. Enter the GENCMD command with the CHECK option to check for any DLCS coding errors.
3. Enter the GENCMD command to put your syntax file into a machine readable form the parsing facility

can use.
4. Enter the SET LANGUAGE command to enable the user's DLCS definitions.
5. Enter the PARSECMD command from a REXX program or EXEC 2 exec or the PARSECMD macro from

an assembler program to invoke the parsing facility and to obtain the parsed and translated parameter
lists.

Developing Commands Using the Parsing Facility

© Copyright IBM Corp. 1990, 2022 383

Step 1. Creating a DLCS File
A DLCS file consists of:

• A DLCS statement
• Command syntax definitions.

The DLCS file can have any file name. It can also have any file type not reserved for some other function.
For a list of reserved CMS file types, see the z/VM: CMS User's Guide. The convention is to use a file type of
DLCS, which is the default for input to the GENCMD command.

The DLCS Statement
The DLCS statement identifies the application where the commands in the DLCS file are parsed, to specify
whether the commands are system or user commands, and to specify the national language for the file.

The format of the DLCS statement is:
:DLCS applid System

User

langid : ;

applid
is an application identifier. It must be three alphanumeric characters, and the first character must be
alphabetic (for example, DMS, HCP, OFS, AGW, DKK, and so on).

System|User
specifies whether the file contains system or user syntax definition statements. (Only the first letter is
significant.)

langid
is the identifier for the language you are working in. It must be one to five alphanumeric characters
(for example, UCENG or AMENG). The language identifiers for supported languages are defined in the
VMFNLS LANGLIST file.

Note:

1. The DLCS statement must be the first noncomment statement in the DLCS file, and it must be the only
DLCS statement in the file.

2. The CMS command search order uses translations and translation synonyms defined in DLCS files with
an application identifier of DMS.

3. The DLCS statement determines the file name and file type of the output files.

Command Syntax Definitions
Each command must be defined. Here is a standard CMS command string format:

COMMANDNAME

operands (Options

)

comments

DLCS has the following statements:
:CMD

for a command name
:OPR

for an operand
:OPT

for an option
A few other statements you can use in DLCS include:

Developing Commands Using the Parsing Facility

384 z/VM: 7.2 CMS Application Development Guide

:SYN
to define synonyms

:KW.n
for command name modifiers

:*
to specify comments

For example, the RDRLIST command has the following format:
RDRLIST

(

PROFile fn Append)

Here is how the syntax for RDRLIST is coded in DLCS:

:CMD D9K.RDRLIST RDRLIST RDRLIST 4 :;
 :SYN RLIST 2 :;
 :OPT KWL(<PROFILE 4>) FCN(FN) :;
 :OPT KWL(<APPEND 1>) :;

Step 2. Checking for DLCS Coding Errors
You can use the CHECK option of GENCMD to make sure your DLCS syntax descriptions are correct. In
addition, you can issue GENCMD with the CHECK option while you XEDIT the DLCS file to help remove
errors.

See the z/VM: CMS Commands and Utilities Reference for a description of GENCMD.

Step 3. Converting Your DLCS File
When all DLCS syntax errors are corrected, use the GENCMD command to convert the DLCS file into an
machine readable form the parsing facility can use.

Step 4. Setting Command Name Synonyms and Translations
The SET TRANSLATE command sets user translation synonyms, user translations, system translation
synonyms, and system translations on or off. The QUERY TRANSLATE command displays the contents
of the system synonym tables, system translate tables, user synonym tables, and user translate tables.
These commands work similarly to the CMS SYNONYM and QUERY SYNONYM commands.

(See the z/VM: CMS Commands and Utilities Reference for descriptions of SET TRANSLATE, QUERY
TRANSLATE, SYNONYM, and QUERY SYNONYM.)

Step 5. Invoking the Parsing Facility
You can invoke the parsing facility in two ways:

1. Use the CMS PARSECMD command in an EXEC 2 or REXX exec. The name of the exec must be the CMS
name of the command, as defined on the :CMD statement in the DLCS file.

The PARSECMD command uses the EXECCOMM interface and creates exec variables that describe
the translated command string. See Figure 64 on page 398 for an example using the PARSECMD
command.

See the z/VM: CMS Commands and Utilities Reference for a description of the PARSECMD command.
2. From assembler programs, use the PARSECMD macro.

The PARSECMD macro call should be in the beginning of the program. Upon return from the parsing
facility, the syntax of the command is verified and detailed information on the translated command
string is available. See “Assembler Program Calling the Parsing Facility” on page 400 for an example
using the PARSECMD macro.

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 385

See the z/VM: CMS Macros and Functions Reference for a description of the PARSECMD macro.

Command keywords are uppercased according to the national language uppercase table for the active
application. If one is not found, the CMS national language table is used.

Coding Your Command Definitions
Define each command as follows:

• Specify the name of the command and its national language equivalent using a :CMD statement.
• Define any synonyms using :SYN statements immediately following the :CMD statement.
• Define a two word command using the first word as the command name and using the KW.1 statement

to define the second word. If the command is a three word command, use the KW.2 statement to define
the third word. (The second and third words are command name modifiers.) You can also have a four
word command, a five word command, and so forth.

• Define the syntax for the command with zero or more :OPR statements followed by zero or more :OPT
statements.

• Use the comment statement to add explanations to your DLCS file.

Rules to Remember
Some rules to remember while coding in DLCS are:

• Use special characters : , < > and ' in your data tokens (keyword names, function names, or function
values) only if they are enclosed in single quotation marks. The quotation marks are not counted as part
of the token.

• Use :; to specify the end of a statement.
• Do not use lowercase characters to specify your keyword names, function names, or function values

(variables). Specify these exactly as they would appear after the command line is uppercased by the
system at execution time with the language in effect.

• Only the first 72 characters of any line of the DLCS file are used. Any characters beyond 72 are ignored.
You can use as many blanks as you want between tokens, and you can continue DLCS statements on the
following line.

• Because only one system and one user DLCS file for an application can be active at any time, all
command syntax definitions for an application are usually in one DLCS file. When both a user DLCS file
and a system DLCS file have the same application ID name, the definitions in the user file override the
definitions in the system file. If no user file is found for an application, the definitions in the system file
are used.

• Your DLCS file must be merged with your user file for the application you currently have. You can have
only one user table; therefore, if you have another command or receive a command from someone, you
have to merge it with the other commands in the user table. (For example, if you want the CMS search
order to find your command, define the command in a DLCS file with DMS application ID.)

• You can define the translation of some keywords to be the same as the keyword the command
recognizes. For more information on translation, see the z/VM: CMS User's Guide.

Defining the Command Name Using the :CMD Statement
The :CMD statement defines the name of a command as the system sees it and as the national language
sees it.

The format of the :CMD statement is:

:CMD uniqueid sl-name
sl-name sl-n

nl-name nl-n

: ;

Developing Commands Using the Parsing Facility

386 z/VM: 7.2 CMS Application Development Guide

uniqueid
identifies the syntax definition name for the command within the DLCS file. This is required, and
it must be unique for each syntax definition. When you invoke the parsing facility, the uniqueid is
matched to the uniqueid you specify on the PARSECMD command. These IDs must match exactly, that
is even the uppercase and lowercase letters must match. For example, Anne=Anne but ANNE¬=Anne.

uniqueid is any combination of up to 16 characters. For quick access to the syntax definitions, the
first one or two characters are used as an index. If the first two characters of uniqueid are valid
hexadecimal digits, their value is used as the index. Otherwise, the EBCDIC value of the first character
is used. For example, D9xxx and Rxxx have the same index value of 217. CMS can find syntax
definitions faster if the unique IDs have different index values.

sl-name
is the command name as CMS sees it. The exec from which the PARSECMD command is called must
be named sl-name.

nl-name
is the command name as a national language user sees it. The default is sl-name.

nl-n
is the minimum number of characters that must be entered for nl-name to be accepted. The default is
sl-n, which is the length of sl-name.

Note:

1. A new command syntax definition begins each time a :CMD statement is encountered.
2. All uniqueids used for IBM commands have a period as the fourth character. Do not use a period as the

fourth character in the uniqueid for your own commands.
3. A uniqueid of all blanks is reserved to let you define more than one translation for a command.

When this uniqueid is found, no syntax information is stored. You can only code the :CMD and :SYN
statements in this case.

4. The minimum length for abbreviations of command name translations cannot be more than eight or
HELP does not recognize them.

5. The nl-name is only used by the CMS search order if the application identifier of this DLCS file is DMS.
6. The SET TRANSLATE command enables or disables nl-name.
7. If SET ABBREV OFF is in effect, you must use the full nl-name.

Defining Synonyms Using the :SYN Statement
The :SYN statement defines translation synonyms for the command nl-name defined on the :CMD
statement.

The format of the :SYN statement is:

:SYN newname n : ;

newname
the synonym you are assigning to the national language (nl) command name.

n
the minimum number of characters you must enter for the synonym to be accepted by CMS.

Note:

1. The :SYN statement is valid only for the first word of a command name (not the command name
modifiers).

2. All of the :SYN statements for a command must immediately follow the :CMD statement.

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 387

3. Only :SYN statements defined in a DLCS file with an application identifier of DMS are used by the CMS
command search order.

4. The SET TRANSLATE command enables and disables translation synonyms defined by the :SYN
statement.

5. Using multiple names on a single :SYN statement has the same effect as specifying a single name on
many :SYN statements. Order is not important.

6. If SET ABBREV OFF is in effect, you must use the full newname.

Defining Modifiers Using the :KW.n Statement
The :KW.n statement defines command name modifier keywords. These keywords modify the syntax used
for parsing the remaining parameters. For example, a command to manipulate a simple database can
require different operands—a file name for an open request, an option for a close request, and other
operands for update requests. The :KW.n statement lets you define a different syntax for each.

The format of the :KW.n statement is:

:KW.n sl-name sl-abbrev
sl-name sl-abbrev

nl-name nl-abbrev

: ;

n
is the number of the level. It defines the nth modifier after the command name.

sl-name
is the name of the command modifier keyword as the command sees it.

sl-abbrev
is the minimum number of characters that must be entered for sl-name to be accepted by CMS.

nl-name
is the name of the command modifier keyword as the national language user enters it. Defaults to
sl-name.

nl-abbrev
is the minimum number of characters that must be entered for nl-name to be accepted by CMS.
Defaults to sl-abbrev.

Use the following form of the :KW.n statement to indicate that a string of characters not defined by
any :KW.n statement is accepted as an arbitrary modifier.

Note: This form may not be used as the first :KW.n statement on a level, and only applies to :KW.n
statements on the same level. No further syntax information may follow this statement, that is,
no :OPR, :OPT, or :KW.n statements with a larger value for n. When the parsing facility finds an arbitrary
modifier it will process that remainder of the argument string as one text string as follows:

:KW.n : ;

Defining Operands Using the :OPR Statement
The :OPR statement defines the syntax of each operand of the command.

The format of the :OPR statement is:

Developing Commands Using the Parsing Facility

388 z/VM: 7.2 CMS Application Development Guide

:OPR KWL (kwdef)

FCN (fcndef)

FCN (fcndef)

OPTIONAL

STOP

REPEAT

: ;

KWL
defines the operand as a keyword, kwdef. See “kwdef Expression” on page 390 for a description of the
kwdef expression.

FCN
defines the operand as a function, fcndef. The value of fcndef is provided by the user; it is not a
keyword. See “fcndef Expression” on page 390 for a description of the fcndef expression.

KWL FCN
defines the operand as a keyword-value pair using the kwdef and fcndef expressions. See “kwdef
Expression” on page 390 and “fcndef Expression” on page 390 for a description of the kwdef and
fcndef expressions.

OPTIONAL
indicates the operand can optionally be specified.

STOP
indicates that if the operand is not specified, then parsing of the operands stops at that point and no
more operands can be specified.

REPEAT
indicates the operand can be specified one or more times.

Note:

1. Specify :OPR statements in the order the operands are specified on the command.
2. Specify the :OPR statement after the :CMD statement and present :SYN statements or after

appropriate :KW.n statements.
3. If both OPTIONAL (or STOP) and REPEAT are specified, the operand can be specified zero or more

times.
4. If no options are specified, the operand is a required operand that can be specified only once.

Defining Options Using the :OPT Statement
The :OPT statement defines the syntax of the options for the command.

The format of the :OPT statement is:

:OPT KWL (kwdef)

FCN (fcndef)

: ;

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 389

KWL
defines the option as a keyword, kwdef. See “kwdef Expression” on page 390 for a description of the
kwdef expression.

KWL FCN
defines the option as a keyword-value pair using the kwdef and fcndef expressions. See “kwdef
Expression” on page 390 and “fcndef Expression” on page 390 for a definition of the kwdef and fcndef
expressions.

Note: :OPT statements must follow the last :OPR statement for the command. The order of the :OPT
statements is not important.

kwdef Expression
The format of kwdef is:

< sl-name sl-abbrev
sl-name sl-abbrev

nl-name nl-abbrev

>

sl-name
is the keyword known by your command.

sl-abbrev
is the minimum number of characters that must be entered for sl-name to be accepted.

nl-name
is the keyword known by a national language user. Defaults to sl-name.

nl-abbrev
is the minimum number of characters that must be entered for nl-name to be accepted. Defaults to
sl-abbrev.

fcndef Expression
The fcndef expression can be a system function or a user function.

System Functions
Keyword

Valid input
ALPHANUM

any alphanumeric string
APPLID

any three character alphanumeric string with a the first character alphabetic
CHAR

any single nonblank character
CUU

any hex number between 001 and FFF (assumes leading zeros)
DIGITS

any unsigned number made up of digits 0-9
FN

(file name) any string with the following characters: A-Z,a-z,0-9,$,#,@,+,-,:, and _
FT

(file type) any string with the following characters: A-Z,a-z,0-9,$,#,@,+,-,:, and _
FM

(file mode) first character: A-Z, a-z; optional second character: 0-6

Developing Commands Using the Parsing Facility

390 z/VM: 7.2 CMS Application Development Guide

EFN
same as FN with ‘*’ or ‘%’ also a valid character

EFT
same as FT with ‘*’ or ‘%’ also a valid character

EXECNAME
any string that does not contain the following characters: =,*,(,),‘ ’, and X'FF'

EXECTYPE
any string that does not contain the following characters: =,*,(,),‘ ’, and X'FF'

DIRID
(SFS directory ID) any string that follows the rules for naming SFS directories as defined in the
"General Concepts" chapter of the z/VM: CMS Commands and Utilities Reference. This function allows
the user ID portion of the SFS directory ID to be specified as a user ID.

DIRIDN
(SFS directory ID) any string that follows the rules for naming SFS directories as defined in the
"General Concepts" chapter of the z/VM: CMS Commands and Utilities Reference. This function allows
the user ID portion of the SFS directory ID to be specified as either a user ID or a nickname.

FPOOLID
(file pool ID) any string with alphabetic (A-Z, a-z) and numeric (0-9) characters without imbedded
blanks. The first character must be alphabetic. required.

NAMEDEF
any string with alphabetic (A-Z, a-z) and numeric (0-9) characters. The first character must be
alphabetic.

HEX
any hexadecimal number

INTEGER
any decimal whole number (can have + or - signs)

INVALID
no valid values

INVFMDIR
invalid file mode or directory ID.

INVFMFPD
invalid file mode, file pool ID, or directory ID.

NINTEGER
any decimal negative whole number

PINTEGER
any decimal positive whole number (can have + sign)

PN
any BFS path name

MODE
any alphabetic character

STRING
any nonnull character string that does not include only blanks and does not include any X'5D'
characters

TEXT
any character string

VDEV
any hex number between 0001 and FFFF

CSLPATH
the path number for a loaded CSL routine. It is a string consisting of two substrings separated by a
period. Each substring is either an unsigned integer or an asterisk.

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 391

Note:

1. When you use :FCN to define the function of an operand or option, fcndef can be a group of valid
values. Only items in the subset are valid. For example, if you specify STRING(MONDAY, TUESDAY,
WEDNESDAY), MONDAY, TUESDAY, and WEDNESDAY are the only valid values.

2. If a list of functions is specified for fcndef, the parsing facility validates an operand or option value with
the functions in the order they are specified. The first function the value is valid for determines the
validation code of the value in PVCENTRY. See the z/VM: CMS Macros and Functions Reference for more
information on the PVCENTRY macro.

3. Input to the parsing facility is uppercased according to current language before it is provided to system
or user functions for validation.

4. If a value is not valid according to any of the functions in the list, the first one determines which
message, if any, is issued. If an error message based on the first function is not appropriate, place the
INVALID function first in the list. For example:

:OPR FCN(INVALID, INTEGER(2,4,6), MODE) :;

The INVALID function never accepts a value as valid, but a general error message is issued when a
value is not valid according to the rest of the functions in the list.

5. Because some functions validate tokens that are also valid for other functions, you should be careful to
list the most restrictive functions first. For example, an operand defined as:

:OPR FCN(STRING, DIGITS, FN):;

will always be validated as a string, while the syntax:

:OPR FCN(FN) REPEAT:;
:OPR FCN(DIGITS):;

can never be satisfied because the required digits operand will be validated as part of the list of file
names.

6. The TEXT function cannot be specified in a list with any other function.

User Functions
In addition to the system functions listed previously, you can also make your own functions for the parser
to use to check if a token is valid. For instance, you could make a function VOWEL that considers only
alphabetic characters A,E,I,O and U valid.

After you make your program for your function, assemble it, load it with the RLDSAVE option, and use
the GENMOD command. Then install the MODULE file of this assembled program as a nucleus extension.
Next, include the name of your function in the DLCS for your command exactly as you would any other
function. The function is invoked by the parsing facility with a CMSCALL macro. The entry point name of
the module must be the same as the function name (fcndef) in your DLCS file. Your function is passed the
following parameters:

• An 8-byte area containing the function name.
• Token-addr: a fullword containing the address of the token to be validated. The token is already

uppercased according to the current language.
• Token-length: a fullword containing the number of characters in the token.
• Validation code: a byte containing the number interpreted by the parser as the validation code of the

user function. If the token is valid, this field should be set by the user function. Upon return from the
parsing facility, you can check this validation code to see if your token is valid.

On entry to the program, R1 contains the address of the control block containing the parameters
described previously. Use the assembler macro PARSERUF to generate a mapping of this control block.

Your program must pass back a return code in R15 that determines the outcome of the function. A return
code of zero specifies the token was valid; a nonzero return code specifies the token was not valid. You

Developing Commands Using the Parsing Facility

392 z/VM: 7.2 CMS Application Development Guide

can use any nonzero return code except -3; this return code would be interpreted to mean the function
did not exist.

Note:

1. User functions do not override system functions with the same name (system functions come first in
the search order).

2. When you use GENCMD to process your DLCS file, specify the ALL or USER options for user functions to
be accepted.

3. When coding user functions in your DLCS file, you can enclose specific values in parentheses as you
can with any system functions and only those values are accepted.

Writing Comments Using the :* Statement
The characters :* specify that a line or the remaining characters of a line are to be ignored. Use this to put
comments and explanations in your DLCS file.

The format of a comment is:

DLCS statements or parts of a statement

:* comment

comment
is any comment

For examples of creating a DLCS file, see “Creating the TEST DLCS File” on page 395 and “Creating the
TEST DLCS File with Language Translations” on page 396.

Defining Routines and Keywords Using the :RTN and :KWD Statements

Note: The :RTN and :KWD statements are reserved for IBM use. You may not use them in writing your own
commands in DLCS. They are only shown here so that if you need to make your own translation of CMS
commands you can do so without introducing errors into the syntax or its definition.

RTN Statements
The RTN statement defines the routine responsible for parsing the command.

The format of the RTN statement is:
:RTN routine-name : ;

routine-name
is a CMS defined name.

Note:

1. When the :RTN and :KWD statements are used, they replace (and are mutually exclusive with) the :OPR
and :OPT statements. There is one :RTN statement followed by any number of :KWD statements.

2. When you are translating a CMS command that uses routine parsing, you should only change the
nl-name and nl-abbrev fields on the :KWD statement. You must not add or delete :KWD statements or
change the routine and system language names.

KWD Statements
The KWD statement defines the keywords that the command contains for translation purposes.

The format of the KWD statement is:

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 393

:KWD sl-name sl-abbrev
sl-name sl-abbrev

nl-name nl-abbrev

: ;

sl-name
is the CMS defined keyword name.

sl-abbrev
is the minimum number of characters that must be entered for sl-name to be accepted by CMS.

nl-name
is the keyword as a national language user enters it. Defaults to sl-name.

nl-abbrev
is the minimum number of characters that must be entered for nl-name to be accepted by CMS.
Defaults to sl-abbrev.

Note:

1. When the :RTN and :KWD statements are used, they replace (and are mutually exclusive with) the :OPR
and :OPT statements. There is one :RTN statement followed by any number of :KWD statements.

2. When you are translating a CMS command that uses routine parsing, you should only change the
nl-name and nl-abbr fields on the :KWD statement. You must not add or delete :KWD statements or
change the routine and system language names.

What the Parser Does Not Flag

1. The parser does not flag the following situations:

• Dependent options and operands. The MAP operand of the MACLIB command gives an example. See
the z/VM: CMS Commands and Utilities Reference.

• Mutually exclusive options or operands. This is where you have a pair of operands or options. You
must specify one or the other; you cannot specify neither or both. The ACK and NOACK operands
of the NOTE command give an example. See the z/VM: CMS Commands and Utilities Reference. Most
commands that have mutually exclusive options or operands ignore the condition and use the last
operand or option you specify.

2. Some IBM supplied commands also use the RTN and KWD statements for special purposes. Do not
use these statements for your own commands.

DBCS and the Parsing Facility
This section lists rules to remember when the current language is a double-byte character set (DBCS)
language.

In DLCS and GENCMD
• You can use DBCS characters only in keywords, modifiers, and command names.
• You can mix single-byte and DBCS characters in a name in the DLCS, but GENCMD only recognizes

single byte characters as DLCS delimiters.
• Shift-out and shift-in characters are always recognized as DBCS delimiters in a DLCS definition

regardless of the current language.
• A double-byte character is treated as a single logical character. When you specify the minimum length

for abbreviations of synonyms or translations, count double-byte characters and EBCDIC characters
as single logical characters and ignore shift-out and shift-in characters. For example, if you have the
keyword ‘abcd k1k2k3 efg’, setting the minimum abbreviation of four allows ‘abcd’ as the shortest
abbreviation. Setting the minimum abbreviation of five, would allow ‘abcd k1 ’ as the shortest

Developing Commands Using the Parsing Facility

394 z/VM: 7.2 CMS Application Development Guide

abbreviation. Setting the minimum abbreviation of six allows ‘abcd k1k2 ’ as the shortest abbreviation,
and so on.

• If you use DBCS characters when adding translations and translation synonyms to a DLCS file, you can
enter GENCMD and SET LANGUAGE on these translations. However, you can only use these commands
if the language you are using is set up as a double-byte language.

From CMS
• DBCS or mixed DBCS command names and keywords are accepted. DBCS strings cannot be specified

for operand and option values such as file name, file type, file mode, cuu, and so on.
• Each token in the tokenized PLIST is resolved to be a complete DBCS string. In other words, one of

these tokens can contain no more than three double-byte characters.
• When you invoke CMS commands, you can use DBCS EBCDIC to specify CMS delimiters such as blanks

or parentheses.

Examples: Using the Parsing Facility
Suppose you have two commands, MYCMD1 and YOURCMD.

MYCMD1 has the following syntax:
MYCmd1 fn ft

(
1

DIsk

PRint

NUMrecs nnn)

Notes:
1 When options are entered between the left '(' and right ')' delimiters, they can be in any order.

YOURCMD has the following syntax:
YOURcmd string

(TYPE

)

Instead of coding syntax checking into your program, you plan to invoke the parsing facility for these
commands. Therefore, create a DLCS file, called TEST DLCS, to contain both syntax definitions.

Creating the TEST DLCS File
The TEST DLCS file contains the syntax definitions for MYCMD1 and YOURCMD commands. TEST DLCS
might look like Figure 62 on page 395.

 1 :DLCS DMS USER AMENG :;
 2 :* The first command
 3 :CMD MMYCMD1 MYCMD1 MYCMD1 3 :;
 4 :SYN MY1 3 :;
 5 :OPR FCN(FN) :;
 6 :OPR FCN(FT) :;
 7 :OPT KWL(<DISK 2> <PRINT 2>) :;
 8 :OPT KWL(<NUMRECS 3>) FCN(PINTEGER) :;
 9 :* The second command
10 :CMD YYOURCMD YOURCMD YOURCMD 4 :;
11 :OPR FCN(STRING) :;
12 :OPT KWL(<TYPE 4>) :;

Figure 62. TEST DLCS File

where:

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 395

Line
Number

Explanation

1 Defines this file for the DMS application, the commands as user commands, and the ID of
the language as AMENG.

2 A comment indicating the start of the first command syntax definition.

3 Defines MMYCMD1 as the unique ID for this syntax definition, and MYCMD1 as the
command name with a minimum abbreviation of MYC.

4 Defines a synonym, MY1, for the command name with no abbreviation.

5 Specifies the first required operand is a file name.

6 Specifies the second required operand is a file type.

7 Specifies two options: DISK as an option with a minimum abbreviation of DI, and PRINT as
an option with a minimum abbreviation of PR.

8 Specifies another option as a keyword-value pair: NUMRECS as an option with a minimum
abbreviation of NUM.

9 A comment indicating the start of the second command syntax definition.

10 Defines the unique ID and command name for this command definition.

11 Defines the only operand of this command as string.

12 Defines TYPE as the option with no abbreviation.

Creating the TEST DLCS File with Language Translations
You could also create TESTUCEN DLCS to contain national language translations for these two commands.
If you wanted to include uppercase English translations, your file might look like this:

 1 :DLCS DMS USER UCENG :;
 2 :* The first command
 3 :CMD MMYCMD1 MYCMD1 UCENGMD1 8 :;
 4 :SYN MY1 3 :;
 5 :OPR FCN(FN) :;
 6 :OPR FCN(FT) :;
 7 :OPT KWL(<DISK 2 DISQUE 4> <PRINT 2 IMPRIMER 4>) :;
 8 :OPT KWL(<NUMRECS 3 NOMENREG 6>) FCN(PINTEGER) :;
 9 :* The second command
10 :CMD YYOURCMD YOURCMD VOTRECOM 5 :;
11 :OPR FCN(STRING) :;
12 :OPT KWL(<TYPE 4 AFFICHER 3>) :;

Figure 63. TESTUCEN DLCS File

where:

Line
Number

Explanation

1 Defines this file for the DMS application, the commands as user commands, and the ID of
the language to be UCENG.

2 A comment indicating the start of the first command syntax definition.

3 Defines MMYCMD1 as the unique ID for this syntax definition, MYCMD1 as the command
name, and UCENGMD1 as the language name with no abbreviation.

4 Defines a synonym, MY1, for the command name with no abbreviation.

5 Specifies the first required operand is a file name.

6 Specifies the second required operand is a file type.

Developing Commands Using the Parsing Facility

396 z/VM: 7.2 CMS Application Development Guide

Line
Number

Explanation

7 Specifies two options: DISK as an option with a minimum abbreviation of DI, and DISQUE
as the national language name with a minimum abbreviation of DISQ. PRINT as an option
with a minimum abbreviation of PR, and IMPRIMER as the national language name with a
minimum abbreviation of IMPR.

8 Specifies another option as a keyword-value pair: NUMRECS as an option with a minimum
abbreviation of NUM, and NOMENREG as the national language name with a minimum
abbreviation of NOMENR.

9 A comment indicating the start of the second command syntax definition.

10 Defines the unique ID, command name, and national language name for this command
definition.

11 Defines the only operand of this command as string.

12 Defines TYPE as an option with no abbreviation, and AFFICHER as the national language
name with a minimum abbreviation of AFF.

Processing the TEST DLCS File
After you created the TEST DLCS file, you must use the GENCMD command with the CHECK option to
make sure your syntax definition are correct. For example,

GENCMD TEST DLCS (CHECK

Once all syntax definition are correct, enter the following GENCMD command to convert your file into a
format that can be read internally:

GENCMD TEST DLCS

Enter the following set language command to activate the language:

SET LANGUAGE (ADD DMS USER

Now, to invoke the parsing facility to process MYCMD1 see either “Processing MYCMD1 from a REXX
Program” on page 397 or “Processing MYCMD1 from an Assembler Program” on page 399.

Processing MYCMD1 from a REXX Program
The following two sample REXX programs process MYCMD1. The first program, Figure 64 on page 398,
illustrates a call to the parsing facility. The second program, Figure 65 on page 399, does not call the
parsing facility; the exec performs all the syntax checking.

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 397

/* MYCMD1 EXEC */
/* processes the MYCMD1 command with this format: */
/* MYCmd1 fn ft (DIsk|PRint NUMrecs nnn) */
/* The options may be omitted; the file name and type */
/* are required. */
address command

/* First, call the parser to check syntax of the command */
/* string. */
'PARSECMD MMYCMD1'

If rc ¬= 0 then signal error
 /* Go to ERROR if bad string. */
/* The command string is valid, so we can search through */
/* the tokens to find out what options were specified. */
/* It does not matter what language is active, because */
/* the parser has translated the command name and any */
/* options that were given. */
/* */
/* We know that: */
/* token.1= the command name MYCMD1; */
/* token.2= the passed file name; */
/* token.3= the passed file type; */
/* if it exists,token.4=OPTSTART; */
/* and if they exist, remaining tokens -.5, .6, .7 - */
/* could be TYPE, DISK, NUMRECS, or nnn. */

how_to_output = 'DISK' /* Set default output to */
 /* disk. */
number = '*' /* Set number to the */
 /* whole file. */
do i = 4 to token.0 /* Loop thru tokens, set */
 /* flags. */
 select
 when token.i = 'DISK' then how_to_output = 'DISK'
 when token.i = 'PRINT' then how_to_output = 'PRINT'
 otherwise /* Must be NUMRECS */
 i = i + 1 /* parameter. */
 number = token.i
 end
end

/* At this point, all of our flags and values have been */
/* set, and we are ready to process the file.

. . . */

Figure 64. MYCMD1: A REXX Exec Calling the Parsing Facility

Developing Commands Using the Parsing Facility

398 z/VM: 7.2 CMS Application Development Guide

/* This EXEC processes the MYCMD1 command with a format */
/* as follows: MYCmd1 fn ft (DIsk|PRint NUMrecs nnn) */
/* The options may be omitted; the file name and type */
/* address command */
/* First lets see what was passed to us */
arg fn ft '(' options
if fn='' | ft = '' then signal NAME_MISS /*parms missing? */
'ESTATE' fn ft '*' /* check validity of fn/ft */
if rc = 20 then signal NAME_ERROR /* incorrect fn or ft */

how_to_output = 'DISK' /* Set default output to */
 /* disk. */
number = '*' /* Set number to the */
 /* whole file. */
do while options ¬= '' /* loop thru all options */
 parse var options opt options
 select;
 when (opt='DI'|opt='DIS'|opt='DISK')
 then how_to_output = 'DISK'
 when (opt='PR'|opt='PRI'|opt='PRIN'|opt='PRINT')
 then how_to_output = 'PRINT'
 when (opt='NUM'|opt='NUMR'|,
 opt='NUMRE'|opt='NUMREC'|opt='NUMRECS')
 then do /* verify validity of number */
 parse var options num options
 if num = '' then signal NO_NUM_ERROR
 if ¬datatype(num,w) then signal INV_NUM_ERROR
 if num <= 0 then signal INV_NUM_ERROR
 number = num
 end
 otherwise /* unknown option */
 signal INVALID_OPTION
 end
 end

signal OK
 /* Error Routines */

 NAME_MISS:
 say 'File name and file type must be specified'
 signal EXIT

 NAME_ERROR:
 say '"'fn ft'" is an incorrect file ID'
 signal EXIT

 NO_NUM_ERROR:
 say 'The value for NUMRECS has been omitted'
 signal EXIT

 INV_NUM_ERROR:
 say '"'num'" is an invalid positive number for NUMRECS'
 signal EXIT

 INVALID_OPTION:
 say '"'opt'" is an invalid option'
 signal EXIT

 OK:
 /* At this point, all of our flags and values have been */
 /* set, and we are finally ready to process the file.

 . . . */

Figure 65. REXX Program Performing Its Own Syntax Checking

Processing MYCMD1 from an Assembler Program
The following two sample programs process MYCMD1. The first program, “Assembler Program Calling the
Parsing Facility” on page 400, invokes the parsing facility using the PARSECMD macro. In this way, you
do not need extra code to handle parsing. This program assumes it was invoked by CMSCALL. The second
program, “Assembler Program Performing Its Own Syntax Checking” on page 401, includes code for
parsing abbreviations, missing operands, and extra operands as well as code that issues error messages.

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 399

Assembler Program Calling the Parsing Facility
**
*
* ROUTINE: SSORT
* FUNCTION: TAKE 2 STRINGS AND DISPLAY THEM IN EITHER ASCENDING
* OR DESCENDING ORDER
* SYNTAX: SSORT {ASCENDING|DESCENDING} STRING1 STRING2
* DLCS: :CMD FFSSORT SSORT SSORT 5 :;
* :OPR KWL(<ASCENDING 3><DESCENDING 4>) :;
* :OPR FCN(STRING) :;
* :OPR FCN(STRING) :;
*
**
SSORT START
 USING *,12
 LR 12,15 ESTABLISH ADDRESSABILITY
 ST 14,R14SAVE SAVE RETURN ADDRESS
**
* PARSE SSORT COMMAND
**
 LA 3,PARSLBL GET ADDRESS OF PARSERCB STORAGE
 USING USERSAVE,13
 USING PARSERCB,3
 PARSECMD MF=(E,PARSLBL),UNIQID=UID,PLIST=(1), *
 EPLIST=(0),ERROR=EXIT,CALLTYP=USECTYP
 DROP 13
 USING PVCENTRY,10
 L 10,PARPVCAD GET PARSER VALIDATION CODE TABLE
 L 10,PVCNEXTA POINT TO ENTRY OF ASCEND/DESCEND OPR
 L 9,PVCETOKA GET ADDRESS OF ASCEND/DESCEND OPR
 L 10,PVCNEXTA POINT TO ENTRY OF 1ST STRING
 L 5,PVCETOKA GET ADDRESS OF 1ST STRING
 L 6,PVCETOKL GET LENGTH OF 1ST STRING
 L 10,PVCNEXTA POINT TO ENTRY OF 2ND STRING
 L 7,PVCETOKA GET ADDRESS OF 2ND STRING
 L 8,PVCETOKL GET LENGTH OF 2ND STRING
**
* DISPLAY STRING1 AND STRING2 IN EITHER ASCENDING OR DESCENDING ORDER
**
 CR 6,8 WHICH STRING HAS FEWER CHARS ?
 BH COMP2 2ND STRING, TAKE BRANCH
 BCTR 6,0 DECREMENT FOR EXECUTE
 EX 6,COMPARGS COMPARE STRINGS
 LA 6,1(,6) INCREMENT BACK
 BNH SMALL1 IF 1ST STRING GOES 1ST, BRANCH
 B SMALL2 IF 2ND STRING GOES 1ST, BRANCH
COMP2 DS 0H
 BCTR 8,0 DECREMENT FOR EXECUTE
 EX 8,COMPARGS COMPARE STRINGS
 LA 8,1(,8) INCREMENT BACK
 BNL SMALL2 IF 2ND STRING GOES 1ST, BRANCH
SMALL1 DS 0H
 CLI 0(9),C'D' WANT TO SORT IN DESCENDING ORDER ?
 BE TYPE21 YES, TYPE 2ND FOLLOWED BY 1ST
TYPE12 DS 0H
 WRTERM (5),(6) WRITE OUT THE 1ST STRING
 WRTERM (7),(8) WRITE OUT THE 2ND STRING
 B GOODEXIT EXIT WITH RC = 0
SMALL2 DS 0H
 CLI 0(9),C'D' WANT TO SORT IN DESCENDING ORDER ?
 BE TYPE12 YES, TYPE 1ST FOLLOWED BY 2ND
TYPE21 DS 0H
 WRTERM (7),(8) WRITE OUT THE 2ND STRING
 WRTERM (5),(6) WRITE OUT THE 1ST STRING
GOODEXIT DS 0H
 SR 15,15 ZERO OUT RC
EXIT DS 0H
 L 14,R14SAVE GET RETURN ADDRESS
 BR 14 RETURN
PARSLBL PARSECMD MF=L GET INITIALIZED PARSERCB
UID DC CL16'FFSSORT' UNIQUE ID FOR PARSECMD
R14SAVE DS A RETURN ADDRESS
COMPARGS CLC 0(*-*,5),0(7) COMPARE STRINGS
 PARSERCB
 PVCENTRY
 USERSAVE
 END

Developing Commands Using the Parsing Facility

400 z/VM: 7.2 CMS Application Development Guide

Assembler Program Performing Its Own Syntax Checking
**
*
* ROUTINE: LSORT
* FUNCTION: TAKE 2 STRINGS AND DISPLAY THEM IN EITHER ASCENDING
* OR DESCENDING ORDER
* SYNTAX: LSORT {ASCENDING|DESCENDING} STRING1 STRING2
* REQUIREMENTS: MUST GENMOD WITH SYSTEM OPTION
*
**
LSORT START
 USING *,12
 LR 12,15 ESTABLISH ADDRESSABILITY
 ST 14,R14SAVE SAVE RETURN ADDRESS
**
* PARSE LSORT COMMAND
**
 LR 11,0 GET EPLIST ADDRESS
 USING EPLIST,11
 L 9,EPLARGBG GET ADDRESS OF 1ST ARG
 L 10,EPLARGND GET END OF ARGS ADDRESS
 DROP 11
 SR 10,9 GET LENGTH OF ARGS FIELD
 LTR 10,10 DOES ARG1 EXIST ?
 BZ MISSARG1 NO, ISSUE MESSAGE
 LA 1,0(10,9) POINT PAST END OF ARGS FIELD
 LR 3,9 GET ADDRESS FOR EXECUTE
 BCTR 10,0 DECREMENT FOR EXECUTE
 EX 10,FINDEND FIND END OF ARG 1
 LA 10,1(,10) INCREMENT BACK
 SR 1,9 GET LENGTH OF ARG 1
 BZ MISSARG1 IF LENGTH 0, MISSING ARG 1
 LR 11,1 SAVE LENGTH OF ARG 1
 BCTR 11,0 DECREMENT FOR EXECUTE
 EX 11,UPCASE UPPERCASE ARG 1
 LA 11,1(,11) INCREMENT BACK
TRYASC DS 0H
 C 11,ASCMINL ARG LENGTH LESS THAN MIN FOR ASCEND ?
 BL TRYDESC YES, TRY DESCENDING
 C 11,ASCMAXL ARG LENGTH TOO BIG FOR ASCENDING ?
 BH TRYDESC YES, TRY DESCENDING
 BCTR 11,0 DECREMENT FOR EXECUTE
 EX 11,COMPASC SEE IF ASCENDING WAS SPECIFIED
 LA 11,1(11) INCREMENT BACK
 BE GETSTRG1 IF ASCENDING, GET STRINGS
TRYDESC DS 0H
 C 11,DESCMINL ARG LENGTH LESS THAN MIN FOR DESCEND?
 BL BADARG1 YES, ARG1 IS BAD
 C 11,DESCMAXL ARG LENGTH TOO BIG FOR DESCENDING ?
 BH BADARG1 YES, ARG1 IS BAD
 BCTR 11,0 DECREMENT FOR EXECUTE
 EX 11,COMPDESC SEE IF ASCENDING WAS SPECIFIED
 LA 11,1(11) INCREMENT BACK
 BNE BADARG1 IF NOT DESCENDING, ARG IS BAD
GETSTRG1 DS 0H
 SR 10,11 ADJUST LENGTH OF ARGS FIELD
 BZ MISSARG2 IF 0, MISSING ARG 2
 LA 4,0(11,9) POINT PAST END OF ARG 1
 LR 1,4 GET FOR EXECUTE
 BCTR 10,0 DECREMENT FOR EXECUTE
 EX 10,FINDSTRT FIND START OF STRING 1
 LA 10,1(,10) INCREMENT BACK
 BZ MISSARG2 ARG 2 MISSING, ISSUE MESSAGE
 LR 5,1 REMEMBER ADDRESS OF STRING1
 LR 2,5 GET ADDRESS OF STRING 1
 SR 2,4 - ADDRESS OF 1ST DEL AFTER ARG 1
 SR 10,2 ADJUST LENGTH OF ARGS FIELD
 LA 1,0(10,5) POINT PAST END OF ARGS FIELD
 LR 3,5 GET ADDRESS OF STRING 1
 BCTR 10,0 DECREMENT FOR EXECUTE
 EX 10,FINDEND FIND END OF STRING 1
 LA 10,1(,10) INCREMENT BACK
 BZ MISSARG3 NO DELIMS, MISSING STRING 2
 SR 1,5 GET LENGTH OF STRING 1
 BZ MISSARG2 IF LENGTH 0, MISSING ARG 2
 LR 6,1 SAVE LENGTH OF STRING 1
GETSTRG2 DS 0H
 SR 10,6 ADJUST LENGTH OF ARGS FIELD
 BZ MISSARG3 IF 0, MISSING ARG 3
 LA 4,0(6,5) POINT PAST END OF STRING 1

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 401

 LR 1,4 GET FOR EXECUTE
 BCTR 10,0 DECREMENT FOR EXECUTE
 EX 10,FINDSTRT FIND START OF STRING 2
 LA 10,1(,10) INCREMENT BACK
 BZ MISSARG3 ARG 3 MISSING, ISSUE MESSAGE
 LR 7,1 REMEMBER ADDRESS OF STRING 2
 LR 2,7 GET ADDRESS OF STRING 2
 SR 2,4 - ADDRESS OF 1ST DEL AFTER ARG 2
 SR 10,2 ADJUST LENGTH OF ARGS FIELD
 LA 1,0(10,5) POINT PAST END OF ARGS FIELD
 LR 3,7 GET ADDRESS OF STRING 2
 BCTR 10,0 DECREMENT FOR EXECUTE
 EX 10,FINDEND FIND END OF STRING 2
 LA 10,1(,10) INCREMENT BACK
 BZ GETLEN NO DELIMS, USE LENGTH OF ARGS FIELD
 SR 1,7 GET LENGTH OF STRING 2
 BZ MISSARG3 IF LENGTH 0, MISSING ARG 3
 LR 8,1 SAVE LENGTH OF STRING 2
 B CHKEXTRA SEE IF EXTRA OPERANDS SPECIFIED
GETLEN DS 0H
 LR 8,10 USE LENGTH LEFT OF ARGS FIELD
CHKEXTRA DS 0H
 SR 10,8 ADJUST LENGTH OF ARGS FIELD
 BZ SORTSTRG IF 0, ALL OK
 LA 4,0(8,7) POINT PAST END OF STRING 2
 LR 1,4 GET FOR EXECUTE
 BCTR 10,0 DECREMENT FOR EXECUTE
 EX 10,FINDSTRT FIND EXTRA OPERANDS
 LA 10,1(,10) INCREMENT BACK
 BZ SORTSTRG NO EXTRA OPERANDS, ALL OK
 LR 2,1 GET ADDRESS OF EXTRA OPERANDS
 SR 2,4 - ADDRESS OF 1ST DEL AFTER ARG 3
 SR 10,2 GET LENGTH OF EXTRA OPERANDS
 LR 2,1 GET ADDRESS OF EXTRA OPERANDS
 B EXTRAOP EXTRA OPERANDS, ISSUE MESSAGE
**
* DISPLAY STRING1 AND STRING2 IN EITHER ASCENDING OR DESCENDING ORDER
**
SORTSTRG DS 0H
 CR 6,8 WHICH STRING HAS FEWER CHARS ?
 BH COMP2 2ND STRING, TAKE BRANCH
 BCTR 6,0 DECREMENT FOR EXECUTE
 EX 6,COMPARGS COMPARE STRINGS
 LA 6,1(,6) INCREMENT BACK
 BNH SMALL1 IF 1ST STRING GOES 1ST, BRANCH
 B SMALL2 IF 2ND STRING GOES 1ST, BRANCH
COMP2 DS 0H
 BCTR 8,0 DECREMENT FOR EXECUTE
 EX 8,COMPARGS COMPARE STRINGS
 LA 8,1(,8) INCREMENT BACK
 BNL SMALL2 IF 2ND STRING GOES 1ST, BRANCH
SMALL1 DS 0H
 CLI 0(9),C'D' WANT TO SORT IN DESCENDING ORDER ?
 BE TYPE21 YES, TYPE 2ND FOLLOWED BY 1ST
TYPE12 DS 0H
 WRTERM (5),(6) WRITE OUT THE 1ST STRING
 WRTERM (7),(8) WRITE OUT THE 2ND STRING
 B GOODEXIT EXIT WITH RC = 0
SMALL2 DS 0H
 CLI 0(9),C'D' WANT TO SORT IN DESCENDING ORDER ?
 BE TYPE12 YES, TYPE 1ST FOLLOWED BY 2ND
TYPE21 DS 0H
 WRTERM (7),(8) WRITE OUT THE 2ND STRING
 WRTERM (5),(6) WRITE OUT THE 1ST STRING
GOODEXIT DS 0H
 SR 15,15 ZERO OUT RC
 B EXIT EXIT
EXTRAOP DS 0H
 APPLMSG NUM=070,CSECT=SSO,SUB=(CHARA,((2),(10)))
 B BADRC EXIT WITH RC = 24
BADARG1 DS 0H
 APPLMSG NUM=388,CSECT=SSO,SUB=(CHARA,((9),(11)))
 B BADRC EXIT WITH RC = 24
MISSARG1 DS 0H
MISSARG2 DS 0H
MISSARG3 DS 0H
 APPLMSG NUM=386,CSECT=SSO
BADRC DS 0H
 LA 15,24 GET BAD RC
EXIT DS 0H
 L 14,R14SAVE GET RETURN ADDRESS
 BR 14 RETURN

Developing Commands Using the Parsing Facility

402 z/VM: 7.2 CMS Application Development Guide

FINDEND TRT 0(*-*,3),DELIMS FIND NEXT DELIMITER
FINDSTRT TRT 0(*-*,4),NONDELIM FIND NEXT NONDELIMITER
UPCASE OC 0(*-*,9),BLANKS UPPERCASE ARGUMENT
COMPASC CLC 0(*-*,9),ASCEND CHECK FOR ASCENDING OPERAND
COMPDESC CLC 0(*-*,9),DESCEND CHECK FOR DESCENDING OPERAND
COMPARGS CLC 0(*-*,5),0(7) COMPARE STRINGS
 DS 0F
BLANKS DC 10C' ' BLANKS FOR UPPERCASING OPERAND
DELIMS DC 64X'00',C' ',12X'00',C'(',178X'00'
NONDELIM DC 64X'FF',X'00',12X'FF',X'FF',178X'FF'
ASCEND DC C'ASCENDING'
ASCMINL DC F'3'
ASCMAXL DC F'9'
DESCEND DC C'DESCENDING'
DESCMINL DC F'4'
DESCMAXL DC F'10'
R14SAVE DS A RETURN ADDRESS
 DSECT
EPLIST DS 0H
EPLCMD DS A
EPLARGBG DS A
EPLARGND DS A
 END

Creating and Distributing Your Own CMS Commands

Using DLCS
If you give users commands that call the parsing facility, put the syntax in a DLCS file that has a unique
application identifier. In this way, users who receive your commands and syntax do not have to merge the
syntax definition with their DMS tables.

See the example in Figure 62 on page 395. In this example, you could change the application identifier on
the DLCS statement to your initials. For example, if your initials are AGW, the DLCS statement looks like:

:DLCS AGW USER AMENG :;

Then, enter the following PARSECMD command from a REXX program:

'PARSECMD MMYCMD1 (APPLID AGW'

To make it even easier for other users, you can automatically load and drop the table from storage by
issuing the following SET LANGUAGE command, just before the PARSECMD command, from your REXX
program:

'SET LANGUAGE (ADD AGW USER'

Then enter the following SET LANGUAGE command before exiting:

'SET LANGUAGE (DELETE AGW USER'

By doing this, all parsing is hidden, and users do not have to enter the SET LANGUAGE command.

Defining Translations, Synonyms, and Abbreviations
If users want to translate the command or the keywords of the command into their own national
language, they have to edit the DLCS table you send them to translate the parameters. However, to
translate commands or keywords into a language other than the default language, the other language
must exist on your system.

If users want to define a translation for the command name, they can just add an entry in their DMS table.
For example, if the user's translation for your command name is ‘FRIENDCMD’, the DMS table entry is:

:CMD ' ' MYCMD1 FRIENDCMD 5 :;

Developing Commands Using the Parsing Facility

Chapter 25. Developing Commands Using the Parsing Facility 403

If users just want to abbreviate your command name, they can add an entry in their own DMS user tables
that defines your command with the blank unique id:

:CMD ' ' MYCMD1 MYCMD1 3:;

To abbreviate the command name and define a synonym, such as ‘MC’, they can add:

:CMD ' ' MYCMD1 MYCMD1 3:;
 :SYN MC 2:;

After users define translations, synonyms and abbreviations, they must do a run GENCMD against the
files they have changed. To enable user additions to the DMS table they must issue SET LANG (ADD DMS
USER.

Note: This application does not support DBCS tokens unless there is already a system table available for
the application.

Defining HELP Files
You can also create HELP text files for your own commands. By specifying the appropriate HELP
command, you can display information about the commands you created. See the z/VM: CMS User's
Guide for details on creating your own HELP files.

Developing Commands Using the Parsing Facility

404 z/VM: 7.2 CMS Application Development Guide

Chapter 26. Using Message Repository Files

This chapter describes how to:

• Create and use message repositories
• Use substitution in your message repositories
• Use dictionary substitution in your message repositories
• Create your own CMS messages
• Create your own HELP files
• Make your messages available to others.

When you write a program and you want to display error messages, you can put message text directly in
your application. However, if you have many messages, your programs can become cluttered. Instead
of coding message text directly in an application, you can store all your message texts in one file
called a repository. Then, to display a message, your application can retrieve the message text from
this repository.

Having all message text in one central file has the following advantages:

• Message text does not clutter your application.
• You can access the same message from many applications without having to specify the message text

each time.
• You can have your messages translated into other languages. You can then have your messages in the

language you want.
• You can create your own message file for whatever application you want to run, including CMS.

For CMS system messages, a source repository file is already built for you. It has a file ID of DMSMES
REPOS. You can edit this file to view messages. You can also print a copy of the CMS message file so you
can refer to it when you want to call a CMS message from your application.

Note:

1. For languages other than English available on your system, the file name of the CMS message
repository is different. For more information, see the z/VM: Installation Guide.

2. If an application supplies a system message repository (xxxMEScc TEXT, generated from a system
DLCS file), application users can override and customize the application messages by creating user
message repository files. However, if an application supplies a user message repository (xxxUMEcc
TEXT, generated from a user DLCS file), application users can change the application messages only by
modifying the DLCS source file and generating a new TEXT file.

3. Application and user message repositories can be created only for the languages supported by
z/VM. (See z/VM: General Information for the list of supported languages.) User message repositories
are made available by using the CMS SET LANGUAGE command, and there must be a supported
corresponding system language repository to which to add the user repositories.

Creating and Using Message Repositories
To create and use your own message repository file, follow these steps:

1. Create a message repository file using XEDIT.
2. Check the accuracy of the message repository notation and convert the repository into machine

readable form.
3. Make the repository file available for the language you are working with.
4. Access the messages from your application.

Using Message Repository Files

© Copyright IBM Corp. 1990, 2022 405

Step 1. Creating a Message File
To create your own message repository, use XEDIT. The file name of your repository must be xxxUMEcc,
where:

• xxx is an application identifier. It must be three alphanumeric characters, and the first character must
be alphabetic (for example, DMS, HCP, OFS, AGW, DKK, and so on).

• UME refers to User MEssage repository.
• cc is a 1- or 2-character country code that identifies the language in which you are working. The country

code is the first field of each record in the VMFNLS LANGLIST file on the S-disk. A country code is not
used for American English. For more information about the VMFNLS LANGLIST file, see z/VM: VMSES/E
Introduction and Reference.

The message repository can have any valid CMS file type not reserved for some other function. For a list of
reserved CMS file types, see z/VM: CMS User's Guide. The convention is to use a file type of REPOS.

Your message repository should contain the following items:

• Comment records
• A control line
• Message records.

Note: The file must be in fixed-record format, and have a maximum LRECL of 80.

Commenting Your Message Repository
Your message repository file should contain comment records. These must start with an asterisk in
column 1.

* This is an example of a comment line

Comment lines can go anywhere in a message repository file and should describe what is in the file.

Creating a Control Line
The first noncomment record in your external repository must be a control line. This control line contains
two things:

1. A character that specifies substitutions. This must be the first nonblank character on the control line.
2. A number that specifies how many message number digits (3 or 4) you want to display in the message

header. This must be the second nonconsecutive, nonblank character on the control line. If the number
is 4 digits you will get 4 digits even if you specify only 3.

For example, the following control line specifies & as the substitution character and uses three digits to
display the message number:

& 3

Creating Message Records
Each message record in a repository file contains five fields. When you create your file using XEDIT, every
message record must be in the following format:

Using Message Repository Files

406 z/VM: 7.2 CMS Application Development Guide

===== .
===== .
===== .
===== NNNNFFLLS ------------------------- text -------------------------------
 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
===== .
===== .
===== .

Figure 66. Message Record Format

NNNN
is the message number, in columns 1-4. You must use a 4 digit message number in a message
repository. The CMS system repository uses message numbers 0001 through 7999.

You do not have to place messages in sequence by message number in a CMS (or CMS application)
user repository. However, message numbers do have to be in sequential order in a CP repository.

FF
is the message format, in columns 5-6. This field is for a message that can be in several versions. If a
message has just one format, you do not need to type anything—the format field defaults to “01”. You
cannot use “00” as a format number.

LL
is the line number of the message, in columns 7-8. Use this field to define text for a single message
format that may span more than one line. Messages that spread across more than one line must have
sequential, consecutive line numbers.

If a single format of a message has just one line, you do not need to type a line number, the line
number defaults to “01”. You cannot use “00” as a line number.

S
is the severity code, in column 9. Your severity codes could be one of the following:
Code

Message Type
E

Error
I

Information
R

Response
S

Severe
T

Terminal
W

Warning

You can define other severity codes.

text
is the message text, starting in column 11. You can specify up to 62 characters of message text on one
line. If the text for a single message is longer than 62 characters, you must put the message text on
more than one line and specify the same message number for each.

If you want multiline message text displayed on the screen in one continuous line (wrapped around),
the message number (NNNN), the message format (FF), and the line number (LL) must be identical for
each line.

If you want multiline message text displayed on the screen in more than one line, you must make the
first line number 01 and line numbers after that 02, 03, etc.

Using Message Repository Files

Chapter 26. Using Message Repository Files 407

When a single line message is created from a multiline definition, all trailing blanks but one are
stripped from the input lines and the lines are concatenated together. If you want to build a line with
many blanks, you can do this two ways:

• If you want more than one blank between two items, split the items onto two lines. Insert as
many blanks as you need before the item on the second line. However, you must also specify
NOCOMPRESS on the XMITMSG command or COMP=NO on the APPLMSG macro.

• If you want more than one blank between words or if you want to maintain alignment of fields, you
can use a substitution variable that will have a null or omitted value. See the sample repository in
Figure 70 on page 412 and sample program in Figure 71 on page 412.

Example of a Message Repository
The following example shows an external repository file, DIAUME REPOS. You can view, edit, and update
this message repository.

 DIAUME REPOS A1 F 80 Trunc=80 Size=14 Line=1 Col=1 Alt=0

00000 * * * Top of File * * *
 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
00001 *
00002 * This is an example of a message repository file for a small
00003 * programming application.
00004 * This was created via XEDIT.
00005 * You can code a file similar to this for your own application.
00006 *
00007 & 3 Specifies the substitution character and the number of digits
00008 00050101E Invalid syntax; please reissue command.
00009 00150101R Enter the number of copies you want:
00010 00250101I Function has completed
00011 00250201I Subroutine has completed
00012 01000101R Your program has just halted at label ABCD.
00013 01000102R You can quit the program by entering 'Q', or
00014 01000103R press the ENTER key to continue.
00015 * * * End of File * * *

Figure 67. Sample Repository - DIAUME REPOS

Here is a line-by-line description of what this repository contains:
Line(s)

Explanation
1 - 6

Comment lines.
7

The control line.

The first nonblank character on this line (&) specifies the substitution character for messages. (See
“Using Substitution in a Message Repository” on page 410.) The second nonblank character specifies
that you want to display three message number digits (the default).

Note: If a message number is greater than 999, then 4 digits are displayed regardless of the control
line number.

8
The first message in the repository is number 0005. The message results from a user error, so the
severity (column 9) is “E”.

9
The second message is number 0015. The message is requesting input from a user, so the severity
(column 9) is “R”.

Using Message Repository Files

408 z/VM: 7.2 CMS Application Development Guide

10 - 11
The third message is number 0025. This message has two formats: depending on the error, either
Function has completed (format 01) or Subroutine has completed (format 02) is displayed.
These messages give the user information, so the severity (column 9) is “I”.

12 - 14
The fourth message is number 0100. This message has only one format, but it spreads across three
lines of the repository. Columns (7-8) show the line numbers of this message. The message requests
input from a user, so the severity (column 9) is “R”.

Step 2. Checking and Compiling Message Repository File
After you create a message repository, you should check for incorrect entries in the message repository
file, correct these errors, and then compile the message repository file. Use the GENMSG command to do
the checking and compiling.

You can use the GENMSG command with the NOOBJECT option to check for errors in the message
repository file. When you specify the NOOBJECT option, CMS only checks for errors. The message
repository file is not compiled. When the message repository does not contain any errors, use the
GENMSG command without the NOOBJECT option to compile the message repository file.

You can also use the GENMSG command without the NOOBJECT option to check for errors and compile
the message repository file. However, it is recommended that you use the GENMSG command with the
NOOBJECT option the first time you check for syntax errors. This eliminates the process of compiling the
message repository file that may have errors.

The GENMSG command with the NOOBJECT option does not create a TEXT file, it only creates a LISTING
file. The LISTING file contains the messages returned from the GENMSG command. The GENMSG
command without the NOOBJECT option creates two files. One file has a file type of LISTING. The other
file has a file type of TEXT. The TEXT file contains the internal version of your message repository. The file
name of the LISTING file and TEXT file is the same as the message repository file name.

When you look at the LISTING file for information about an error in the message repository file, search for
DMSMGC. The line containing DMSMGC describes the error.

See the z/VM: CMS Commands and Utilities Reference for details on the GENMSG command.

Example 1: Enter the following GENMSG command to check for errors in your message repository file
called DIAUME REPOS:

GENMSG DIAUME REPOS A DIA (NOOBJECT

DIAUME REPOS A is the file ID of your message repository you created. DIA is the applid, which is the
operand used to identify your application. This application identifier must be three characters long and
must correspond to the first three letters of the repository file name. Be sure to record the application
identifier you choose. You will need to reference it when you access your messages by the XMITMSG
command or APPLMSG macro.

Once the errors are corrected in the message repository file, enter the following GENMSG command to
compile DIAUME REPOS:

GENMSG DIAUME REPOS A DIA

Example 2: Enter the following GENMSG command to check for errors in your message repository file
called DIAUME REPOS and to compile DIAUME REPOS:

GENMSG DIAUME REPOS A DIA

If there are incorrect syntax statements in the message repository file, correct the errors and issue the
command again.

Using Message Repository Files

Chapter 26. Using Message Repository Files 409

Step 3. Making Message File Available
Once you compile the message file, you must make the message file active for the language you are
working in. You accomplish this with the SET LANGUAGE command. For example, DIAUME REPOS can be
made available by entering:

SET LANGUAGE (ADD DIA USER

You may also want to create your own CMS message repository and make it available to an application.
See “Creating Your Own CMS Messages” on page 414 for an explanation of how to do this.

Note: Each time you make a change to the message repository, you must issue the GENMSG and SET
LANGUAGE commands.

See the z/VM: CMS Commands and Utilities Reference for details on the SET LANGUAGE command.

Step 4. Accessing Messages
To access messages from a repository, use the XMITMSG command. For example, to display this CMS
message, found in DIAUME REPOS, from your application:

Subroutine has completed

you could use the following XMITMSG command from the CMS command line:

XMITMSG 25 (APPLID DIA FOR 2

See the z/VM: CMS Commands and Utilities Reference for a complete description of the XMITMSG
command.

Note: You can also access message repositories from assembler applications using the APPLMSG macro.
See the z/VM: CMS Application Development Guide for Assembler and z/VM: CMS Macros and Functions
Reference for information on how to use the APPLMSG macro.

Using Substitution in a Message Repository
In the previous example, the text for each message is the same every time the message is displayed.
However, you will probably want to have some message texts that are similar, but say different things
depending on the situation. For example, you might have a message that says:

Invalid option 'GO'

But you also want to have these messages in your repository:

Invalid option 'FILE'
Invalid option 'RUN'
Invalid option 'STOP'

You do not need four separate messages in your repository. Instead, you can create a single message
text that contains a substitution variable and then substitute different information using this substitution
variable. For example, your repository could look like Figure 68 on page 411.

Using Message Repository Files

410 z/VM: 7.2 CMS Application Development Guide

 SAPUME REPOS A1 F 80 Trunc=80 Size=6 Line=1 Col=1 Alt=0

===== * * * Top of File * * *
 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
===== *
===== * This is an example of a message repository file that
===== * uses simple substitution.
===== *
===== & 3 Line specifies the substitution character + no. of digits
===== 02000101 Invalid option &1
===== * * * End of File * * *

Figure 68. Sample Repository - SAPUME REPOS

Messages that require substitutions have parameters in a form defined by the user (for example, &1,
&2 ...). These parameters show the placement of the substitutions and their order. The first character
in the first noncommentary record of the external repository defines the substitution character. This
character cannot be a DBCS character.

Here are some rules about substitutions:

• A substitution can be a single word, a phrase, or an entire sentence.
• A substitution can go anywhere within a message.
• You can have more than one substitution per message.

The data that replaces the &1, &2, and so on, can come from the program itself (for example, an operand
on the XMITMSG call) or from a dictionary. The following is an example of an XMITMSG call to the
repository in Figure 68 on page 411.

/* */
sub = "'FILE'"
'XMITMSG 200 SUB (APPLID SAP NOHEADER'
exit

Figure 69. Sample Code Accessing SAPUME EXEC

The result of the previous XMITMSG call is:

Invalid option ‘FILE’

For information about how to specify substitutions on the XMITMSG command (literal substitutions and
dictionary substitutions are specified differently), see z/VM: CMS Commands and Utilities Reference.

Example of Using Substitution in a Message Repository
Substitution can also be used to build messages with many blanks or to maintain alignment. The
repository in Figure 70 on page 412 illustrates the use of a substitution character in this manner.

Using Message Repository Files

Chapter 26. Using Message Repository Files 411

 RUBUME REPOS A1 F 80 Trunc=80 Size=14 Line=1 Col=1 Alt=0

00000 * * * Top of File * * *
 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
00001 *
00002 * This is an example of a message repository file made via XEDIT
00003 * and maintain alignment of heading.
00004 * You can code a file similar to this for your application.
00005 *
00006 & 3 Line specifies the substitution character + no. of digits.
00007 00990101 |...+....1....+....2....+....3....+....4....+....5...
00008 00990101 .+....6....+....7....+....8
00009 01000101 * &2
00010 01000101 *
00011 02000101 Header One &2
00012 02000101 Header Two &2
00013 02000101 Header Three &2
00014 02000101 Header Four &2
00015 * * * End of File * * *

Figure 70. Sample Repository - RUBUME REPOS

Here is a line-by-line description of what this repository contains:
Line(s)

Explanation
1 - 5

Comment lines.
6

The control line.

An ampersand (&) is the substitution character, and you want to display 3 message number digits.

7 - 8
The first message is number 0099. This message has only one format and will be displayed as one
line.

9 - 10
The second message is number 0100. This message has only one format and will be displayed as one
line. The substitution character, &2, has a value of null and maintains alignment.

11 - 14
The third message is number 0200. This message has only one format and will be displayed as one
line. The substitution character, &2, has a value of null and maintains alignment.

Before accessing the messages in RUBUME REPOS, you must compile and activate the message file. In
this example, when you issue the GENMSG command to compile the message file, you should specify
the MARGIN 63 option. This indicates that the message should be taken from columns 1-63 in the input
deck (RUBUME REPOS). Then, issue the SET LANGUAGE command to activate the message file. Finally, to
access messages in RUBUME REPOS, use the following exec:

/* */
dummy = ''
'XMITMSG 99 (APPLID RUB NOHEADER'
'XMITMSG 100 DUMMY (APPLID RUB NOHEADER NOCOMPRESS'
'XMITMSG 200 DUMMY (APPLID RUB NOHEADER NOCOMPRESS'
exit

Figure 71. Sample Program - RUBUME EXEC

In the second call to XMITMSG:
200

specifies that message number 200 will be displayed.

Using Message Repository Files

412 z/VM: 7.2 CMS Application Development Guide

DUMMY
is a substitution variable. In this case, a null character is substituted, which is necessary when
NOCOMPRESS is specified. Otherwise, the substitution indicators, &1, &2, ..., specified in the message
repository, appear in the displayed message.

APPLID RUB
specifies RUBUME REPOS as the message repository that issues the message.

NOHEADER
specifies that the message header will not be displayed on the terminal.

NOCOMPRESS
specifies that the blanks will not be removed.

The output from this exec will look like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
* *
Header One Header Two Header Three Header Four

Using Dictionary Substitution in a Message Repository
Each dictionary record contains a 4 digit message identifier and dictionary text. These records are stored
in the repository file along with the messages. You can make the first digit of the message identifier a
certain number (8, for example) that shows the item is a dictionary item.

Example of Using Dictionary Substitution in a Message Repository
The following is a sample message repository that contains a two-item dictionary:

 OPLUME REPOS A1 F 80 Trunc=80 Size=9 Line=1 Col=1 Alt=0

00000 * * * Top of File * * *
 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
00001 *
00002 * This is an example of a message repository file made with XEDIT
00003 * You can code a file similar to this for your application.
00004 *
00005 & 4 Line specifies the substitution character + no. of digits
00006 00070101E Invalid option '&1'
00007 00170101I You have invoked the &1
00008 80010101 compiler
00009 80020101 assembler
00010 * * * End of File * * *

Figure 72. Sample Repository - OPLUME REPOS

Here is a line-by-line description of what this repository contains:
Line(s)

Explanation
1 - 4

Comment lines.
5

The control line.

An ampersand (&) is the substitution character, and you want to display 4 message number digits.

6
The first message in the repository, number 0007. When the message is to be displayed, you have to
specify what information is to be substituted in place of the &1.

7
The second message, number 0017. When the message is to be displayed, you have to specify what
information is to be substituted in place of the &1.

Using Message Repository Files

Chapter 26. Using Message Repository Files 413

8
A dictionary item, number 8001. If you want to call message 0017 substituting “compiler” into &1,
use the following XMITMSG command from the command line:

XMITMSG 17 8001 (APPLID OPL

The following message is displayed:

OPL???0017I You have invoked the compiler

(The message header also includes the application ID OPL and ??? is the default for the caller. See
z/VM: CMS Commands and Utilities Reference for more information on XMITMSG.)

9
A second dictionary item, numbered 8002. If you want to call message 0017 substituting “assembler”
into &2, use the following XMITMSG command:

XMITMSG 17 8002 (APPLID OPL

The following message is displayed:

OPL???0017I You have invoked the assembler

Creating Your Own CMS Messages
As noted earlier, the CMS system repository uses numbers 001-7999 for CMS messages. It also uses
8000-9999 for dictionary items and unnumbered responses. You can view this file using XEDIT, and you
could print off a copy for you to use as reference.

You can create your own CMS messages and put them in a separate user CMS repository. A user CMS
repository can contain message numbers that are additions to existing CMS messages or duplicate
message numbers. If your CMS repository contains message numbers that duplicate existing CMS
messages, your version overrides the system version.

To build your own CMS message repository, follow these steps:

1. To create a CMS message file of your own messages, use the XEDIT command. The file name must be
DMSUME.

2. To compile your message file, use the GENMSG command:

genmsg dmsume ft fm dms

Your compiled message will have a file name of DMSUME, a file type of TEXT, and an application
identifier of DMS.

See the z/VM: CMS Commands and Utilities Reference for a description of the GENMSG command.
3. To activate your user CMS repository along with the CMS system repository, DMSMES REPOS, use the

SET LANGUAGE command:

set language (add dms user

See the z/VM: CMS Commands and Utilities Reference for a description of the SET LANGUAGE
command.

For example, suppose you wanted to add your own informational message that says:

The command you issued takes five minutes to complete.

You can enter this message in your CMS repository in two different ways:

1. Using your own unique message number.

You can look in the CMS system repository, DMSMES REPOS, for the message numbers that are not
used. Then, you can put these available message numbers in your own message repository, DMSUME

Using Message Repository Files

414 z/VM: 7.2 CMS Application Development Guide

REPOS. For example, suppose number 1000 is available. You can add the following line to DMSUME
REPOS:

⋮
10000101I The command you issued takes five minutes to complete.
⋮

Then, compile DMSUME REPOS using the following GENMSG command:

genmsg dmsume repos a dms

Make the file active using the following SET LANGUAGE command:

set language (add dms user

And, access the message using the following XMITMSG command from the CMS command line:

xmitmsg 1000 (disp for 1 applid dms comp noheader

Note: Be aware that the CMS system repository may be updated in the future to include a message
number you used in your message repository. If this occurs and you access this message number, you
do not see the CMS system message, you see your own version of the message.

2. Using an existing CMS message number.

The CMS system repository contains a message:

00460101E No library name specified

Suppose you enter the message:

00460101E The command you issued takes five minutes to complete.

compile the repository file, and then make it active. When you access message 00460101E, you do not
see the CMS system message, you see your own version of the message.

If any of your own messages require dictionary substitutions, you should note this restriction: You
must include dictionary items for your messages in your own message repository—you cannot access
a message from one repository, using dictionary items from another.

Creating Your Own HELP Files
You can also create HELP text files for your own messages. The HELP files contain explanatory
information about these messages. By specifying the appropriate HELP command, you can display
information about the messages you created. See the z/VM: CMS User's Guide for details on creating
your own HELP files.

Making Your Messages Available to Others
When you make your own repository and issue a SET LANGUAGE command, that repository is available
only to your virtual machine. However, you may want to allow other users on your system to access your
messages. You can accomplish this by either of the following two methods:

1. Have other users link to your disk. They must then issue a SET LANGUAGE command for their virtual
machine.

2. Have your message file placed in shared storage (a saved segment) so all users can access it.

Loading a User Message Repository into a CMS Logical Saved Segment
The following steps outline the procedure for loading a user message repository into a CMS logical saved
segment. For additional information about defining and building a logical saved segment, see z/VM: CP
Planning and Administration.

Using Message Repository Files

Chapter 26. Using Message Repository Files 415

In this example, the repository contains American English messages for an application whose application
ID is LCL. The name of the compiled message repository (the output of the GENMSG command) is LCLUME
TEXT.

1. Create a LANGMERG control file for the application (or update the existing control file for the
application) to identify the compiled message repository and any other language-related files for the
application that are to be combined into a single text file. The message repository is identified on a
LANGUAGE record in the control file. In this example, a new control file named LCLAMENG LANGMCTL
is created. It contains the following records:

DISK 19D
ETMODE OFF
MESSAGE LCLUME (VMCTL DMSVM

For information about the content and format of the LANGMERG control file, see the description of the
LANGMERG command in the z/VM: CMS Commands and Utilities Reference.

2. Use the LANGMERG command to combine the language information into a single text file:

langmerg ameng lcl

LANGMERG generates a file named LCLNLS TXTAMENG.
3. Define a CP saved segment to use as the physical saved segment that holds the logical saved segment

where you intend to load the user message repository. (If you plan to define the logical saved
segment in an existing physical saved segment, you can skip this step.) Use the DEFSEG command
to define either a member saved segment within a segment space or a stand-alone discontiguous
saved segment (DCSS). In this example, a DCSS named LCL is created, of type SR (shared read-only
access), located in pages 600-6FF:

defseg lcl 600-6ff sr

Note:

a. For more information about the DEFSEG command, see the z/VM: CP Commands and Utilities
Reference.

b. To define a CP saved segment you need CP class E command privileges. You may have to contact
your system support personnel.

c. If you prefer, you can use VMSES/E (the VMFSGMAP and VMFBLD commands) to define and build
your saved segments. In that case, omit this step and steps “5” on page 416 and “7” on page
417. For more information about using VMSES/E to define and build saved segments, see z/VM: CP
Planning and Administration.

4. If you want to add the message repository to an existing logical saved segment, edit the logical
segment definition file and add a LANGUAGE record that identifies the language file; otherwise, create
a new logical segment definition file. When the segments are built, the file name of the logical segment
definition file becomes the name of the logical saved segment. In this example, a logical segment
definition file named LCLAMENG LSEG is created for a new logical saved segment named LCLAMENG.
It contains the following record:

LANGUAGE LCL AMENG

5. If you want to add the logical saved segment to an existing physical saved segment, edit the physical
segment definition file and add a logical segment (LSEGMENT) record that identifies the logical
segment definition file; otherwise, create a new physical segment definition file. The file name of
the physical segment definition file must be the name of the DCSS or member saved segment you are
using as the physical saved segment. In this example, a physical segment definition file named LCL
PSEG is created for a new physical saved segment named LCL. It contains the following record:

LSEGMENT LCLAMENG LSEG

6. The system segment identification file, usually named SYSTEM SEGID, associates each logical saved
segment with its physical saved segment. It must reside on the CMS system disk. This file is updated

Using Message Repository Files

416 z/VM: 7.2 CMS Application Development Guide

or created by the SEGGEN command. Because the file cannot be updated or created on the CMS
system disk, you must make sure that a copy of the version you want to update is located on a read/
write disk.

7. Use the SEGGEN command to build (or rebuild) the physical and logical saved segments:

seggen lcl pseg a system segid a (map gen

For information about using the SEGGEN command, see the z/VM: CMS Commands and Utilities
Reference.

8. Copy the SYSTEM SEGID file to the system disk and resave CMS. There are special instructions for
doing this, and some of the steps can be done only by authorized user IDs. You may have to contact
your system support personnel. For more information, see the description of the SEGGEN command in
the z/VM: CMS Commands and Utilities Reference or the chapter on planning and defining logical saved
segments in z/VM: CP Planning and Administration.

9. Users can then use the SEGMENT LOAD command to load the logical saved segment into their virtual
machines:

segment load lclameng

For more information about the SEGMENT LOAD command, see the z/VM: CMS Commands and Utilities
Reference.

Using Message Repository Files

Chapter 26. Using Message Repository Files 417

Using Message Repository Files

418 z/VM: 7.2 CMS Application Development Guide

Chapter 27. Using Saved Segments

This chapter describes:

• What physical and logical saved segments are.
• How to reserve, load, purge, release, and assign a saved segment using the SEGMENT command.
• How to display information about saved segments and segment storage spaces using the QUERY

SEGMENT command.

Physical and Logical Saved Segments
A saved segment is an area of virtual storage that is assigned a name, loaded with data or programs, then
saved in a system data file in spool space. Using saved segments is a way of using storage that is not
yours.

Segment spaces, member saved segments, and discontiguous saved segments (DCSSs) reside on CP-
owned volumes and must be defined to CP before being used. A segment space, which begins and ends
on a megabyte boundary, contains one or more member saved segments, which begin and end on page
boundaries. A DCSS also begins and ends on a megabyte boundary, but does not contain members.

Defining frequently used data or programs as saved segments provides several advantages:

• Several users can access the same saved segment, which helps you use real storage more efficiently.
• Saved segments need not be in the address range of a virtual machine (this can also help you use

storage more efficiently).
• Space for saved segments can be reserved within a virtual machine's address space, which helps you

make sure that the saved segment is always available.

A physical saved segment is a member saved segment or DCSS that may contain one or more logical
saved segments that CMS recognizes. Defining logical saved segments provides further advantages:

• Each logical saved segment can contain different types of program objects, such as modules, text files,
execs, callable services libraries, language information, and user-defined objects, or a single minidisk
file directory. You can use logical saved segments to package your entire application. For example,
you may want to create a logical segment definition file that defines the parts of your application. You
could then send it to the system administrator, who will create the logical saved segment and make it
available for other to use.

• You can use physical saved segments more efficiently by defining many different logical saved
segments in a single physical saved segment.

• Users can access specific logical saved segments rather than all the contents of a physical saved
segment.

For information about defining saved segments, see z/VM: CP Planning and Administration.

Using the SEGMENT Command
You can use the SEGMENT command to:

• Reserve storage space for a saved segment
• Load the saved segment into storage
• Purge the saved segment
• Release the storage that was reserved
• Assign a logical saved segment to a physical saved segment.

Using Saved Segments

© Copyright IBM Corp. 1990, 2022 419

Reserving Storage Space for Saved Segments
In CMS, saved segments can be located within your virtual machine's address space. For saved segments
that are not loaded immediately after IPL, you should consider reserving storage space for the saved
segment. If you do not reserve space for the saved segment, other programs can use the storage. If the
required storage is occupied when you try to load a saved segment, the load fails.

You can use the SEGMENT RESERVE command to reserve space for saved segments. Reserving space
for saved segments (a) allows you to ensure that your applications can load the saved segments in the
storage they specify and (b) eliminates the possibility of saved segments overlaying or being overlaid by
portions of CMS. For example, to reserve space for a saved segment named MYSEG, enter:

segment reserve myseg (system

The SYSTEM option specifies that the space reserved will not be released if abend processing occurs.

Loading Saved Segments
The SEGMENT LOAD command loads a saved segment into storage. SEGMENT LOAD reserves virtual
storage for the saved segment (if a storage space is not already reserved), then loads the saved segment
into storage.

Example 1: To load a saved segment named MYSEG that (a) survives abend processing and (b) can be
shared by any user, enter:

segment load myseg (system share

Note that SHARE is the default value and can be omitted.

Example 2: To load a saved segment named MYSEG that does not survive abend processing and cannot
be shared by other users, enter:

segment load myseg (noshare user

The SHARE attribute of a physical saved segment that contains logical saved segments is determined by
the first logical saved segment that you load. When you load subsequent logical saved segments within
the same physical saved segment, you must specify (or default to) the same attribute.

For example, suppose a physical saved segment USERSEG contains logical saved segment MYSEG. If you
specify the NOSHARE option when you load MYSEG, you must specify NOSHARE when you load any other
logical saved segments in USERSEG. If the SHARE or NOSHARE option on the SEGMENT LOAD command
does not match the SHARE attribute of the physical saved segment, the saved segment is not loaded and
you receive a return code of 36.

How CMS Locates Saved Segments
CMS uses the following process to locate a saved segment to be loaded:

1. CMS searches the list of logical saved segments for one with the name specified on the SEGMENT
LOAD command. If a logical saved segment is found, a storage space for the associated physical saved
segment is reserved (if not already reserved). If the physical saved segment is a DCSS, the storage
space is reserved for the DCSS. If the physical saved segment is a member of a CP segment space,
the storage space is reserved for the entire segment space. Then the storage space is loaded (if not
already loaded), and the contents of the logical saved segment are processed.

2. If a logical saved segment with the specified name is not found, CMS searches the list of storage
spaces previously reserved with the SEGMENT RESERVE command to determine if a space has been
reserved for a saved segment with the requested name. If one is found, the storage space is loaded (if
not already loaded).

3. If no reserved storage space exists, CMS determines whether the requested saved segment has been
defined in CP. If so, CMS issues a SEGMENT RESERVE command to create a reserved storage space,

Using Saved Segments

420 z/VM: 7.2 CMS Application Development Guide

then loads the saved segment. If the saved segment is a member of a CP segment space, CMS
reserves storage space for and loads the entire segment space.

4. If the requested saved segment is none of the above, the command returns a return code of 44.

CMS uses this same search order to purge a saved segment.

How CMS Handles Objects in Logical Saved Segments
When a logical saved segment is loaded, the MODULE or TEXT files contained within it are established
as nucleus extensions or subcommand processors, execs are established as execs-in-storage, CSLs are
available for the GLOBAL CSLLIB and RTNLOAD commands, application language information is activated,
and user object load routines are called.

All application language information whose languages match the current system language is added to the
active set of applications. Thus, the application does not need to issue a SET LANGUAGE command with
the ADD option. When a SET LANGUAGE command is issued that changes the current system language,
all application language information for the old language is dropped, and any language information that
matches the new system language and is in a currently loaded logical saved segment is automatically
added.

Logical saved segments and the objects in them are loaded last-in-first-out (LIFO). Nucleus extensions,
subcommand processors, and execs (all of which are in a saved segment that has been loaded) override
previous definitions with the same name. To reactivate previous definitions, you can drop saved segment-
resident nucleus extensions (using NUCXDROP) or execs (using EXECDROP), or purge the saved segment.
Once an object in a saved segment has been dropped, the saved segment must be purged and reloaded to
reactivate the object.

Objects in other logical saved segments within the physical saved segment are not processed.

Purging Saved Segments from Your Virtual Machine
The SEGMENT PURGE command purges a saved segment from a segment storage space.

For example, to purge MYSEG, enter:

segment purge myseg

Purging a logical saved segment removes the objects that it contains from use by CMS. If this logical
saved segment is the only loaded or reserved saved segment within the physical saved segment, the
physical saved segment is detached from the virtual machine. If the physical saved segment is a member
of a CP segment space and is the only loaded or reserved member in that segment space, then the
segment space is detached from the virtual machine. The reserved storage area is also released unless it
was explicitly reserved using the SEGMENT RESERVE command.

When you use the SEGMENT PURGE command to purge a saved segment, the saved segment must have
been loaded using the SEGMENT LOAD command. If the saved segment was loaded using the DIAGNOSE
code X'64' LOADSYS function, you must use the DIAGNOSE code X'64' PURGESYS function to purge
the saved segment. You cannot use the SEGMENT PURGE command and the DIAGNOSE code X'64'
PURGESYS function interchangeably.

To locate the saved segment you want to purge, SEGMENT PURGE uses the search order described under
“How CMS Locates Saved Segments” on page 420.

Releasing Segment Storage Spaces
The SEGMENT RELEASE command releases the storage that has been reserved for a saved segment, or
reclaims storage where saved segments have been loaded.

For example, to release storage for MYSEG, enter:

segment release myseg

Using Saved Segments

Chapter 27. Using Saved Segments 421

SEGMENT RELEASE uses the following process to release storage:

1. If the specified saved segment is a logical saved segment, it is removed from the list of reserved
logical saved segments. If the physical saved segment that contains the logical saved segment no
longer has any logical saved segments loaded or reserved, the physical saved segment is detached
from your virtual machine and the reserved storage is returned to CMS (that is, the physical saved
segment is released). If the physical saved segment is a member of a CP segment space, and the
segment space no longer has any members loaded or reserved, the segment space is released and the
storage is returned to CMS.

2. If the specified saved segment is a physical saved segment, all the loaded or reserved logical saved
segments within the physical saved segment are released first, then the physical saved segment is
released, then (if applicable) the CP segment space is released and the storage is returned to CMS.

3. If the specified saved segment is a CP segment space, and if any members of the segment space are
physical saved segments that contain logical saved segments, all the loaded or reserved logical saved
segments are released first, then the members of the segment space are released, then the segment
space is released and the storage is returned to CMS.

Assigning Logical Saved Segments to Physical Saved Segments
Use the SEGMENT ASSIGN command to assign or associate a logical saved segment with a physical saved
segment. When the name of a logical saved segment is associated with two physical saved segments, the
default logical saved segment is the last one in the system segment identification file (SYSTEM SEGID S2).
You can change the default association by using the SEGMENT ASSIGN command. Do not use any other
method to modify this file.

To associate a logical saved segment named APPLSEG to the physical saved segment named MYSEG,
enter:

segment assign applseg myseg

Displaying Information about Saved Segments
The QUERY SEGMENT command displays information about the saved segments attached to a virtual
machine and the storage spaces that contain or are reserved for saved segments. For example,

query segment myseg

might return a response similar to the following:

Space Name Location Length Loaded Attribute
PSEG2 MYSEG 02240000 00380000 NO SYSTEM

If MYSEG is a logical saved segment, then PSEG2 is the name of the physical saved segment.

To display information on all the currently loaded or reserved saved segments or storage spaces, enter:

query segment *

In response, CMS returns something similar to the following:

Space Name Location Length Loaded Attribute
NLSUCENG NLSUCENG 00DA0000 00060000 YES USER
PSEG2 EXECSEG 02000000 0003F000 NO SYSTEM
PSEG2 MYSEG 02240000 00380000 NO SYSTEM

For a logical saved segment, the Space column displays the name of the physical saved segment in which
it resides, and the Name column displays the name of the logical saved segment. For an explicitly-loaded
or reserved physical saved segment, the Space column displays the name of the storage space in which
it resides, and the Name column displays the name of the physical saved segment. If the physical saved
segment is a DCSS, the storage space is the DCSS. If the physical saved segment is a member of a CP

Using Saved Segments

422 z/VM: 7.2 CMS Application Development Guide

segment space, the storage space is the CP segment space. The Loaded column indicates whether the
saved segment has been loaded or just reserved.

The CONTENTS option displays the contents of a logical saved segment. For example, to display the
contents of the APPLSEG logical saved segment, enter:

query segment applseg contents

The response is in the following form:

Type Location Length Name
NUCEXT 006E0630 00000038 TESTMOD1
SUBCOM 006E0F18 00000038 TESTMOD2
EXEC 006E32D0 00000848 PROF1 EXEC
EXEC 006E0698 00000848 TEST XEDIT
LANGUAGE 006E3030 AMENG OFS
CSL 006E0000 00000610 LIB2
USER 006E3B50 000000FF TESTUSER

To display the contents of the USERDISK logical saved segment that contains a saved minidisk directory,
enter:

query segment userdisk contents

The response is in the following form:

Type Location Length Name
DISK 00DA5000 00010000 LABEL1

The ASSIGN option lists the logical saved segment name and the physical segment to which it is currently
assigned, as follows:

query segment lseg1 assign

The response is in the following form:

Lsegname Assignment
LSEG1 PSEG1

The SPACE option displays information about segment storage spaces. To display information about all
storage spaces, enter:

query segment * space

The response is in the following form:

Space Name Location Length Loaded Attribute
NLSUCENG - 00DA0000 00060000 YES -
PSEG2 - 02000000 01000000 NO -

The Space column contains the name of the segment storage space, the Name column always contains a
dash (-), the Location column contains the starting address, and the Length column contains the length of
the storage space.

Note the difference between QUERY SEGMENT * and QUERY SEGMENT * SPACE. QUERY SEGMENT *
lists all the currently loaded or reserved segments, which can include logical saved segments, explicitly-
loaded physical saved segments, or CP segment spaces. On the other hand, QUERY SEGMENT * SPACE
lists all the segment storage spaces that contain or are reserved for saved segments. In the previous
response to QUERY SEGMENT *, NLSUCENG is a segment space that has been explicitly loaded, and
PSEG2 is a physical saved segment that contains the logical saved segments EXECSEG and MYSEG, each
of which has been reserved but not loaded.

For more information on the SEGMENT and QUERY SEGMENT commands, see the z/VM: CMS Commands
and Utilities Reference.

Using Saved Segments

Chapter 27. Using Saved Segments 423

Using Saved Segments

424 z/VM: 7.2 CMS Application Development Guide

Chapter 28. Using DB2 Server for VM

This chapter will cover the following topics:

• How DB2 Server for VM organizes the data.
• Description of the commands and how you use them
• How to create, query, and manipulate tables
• How to create views of a table
• How to preprocess your SQL application
• Description of Interactive SQL (ISQL) and Query Management Facility (QMF*).

A database is a centrally controlled, integrated collection of data. A database system controls the storing
and retrieval of data. Database systems are useful because they can be used to:

• Reduce redundancy
• Avoid inconsistencies
• Share data among many users
• Enforce data processing standards
• Apply and maintain data integrity and security
• Resolve conflicting application requirements.

DB2 Server for VM is a relational database management system available for CMS users. DB2 Server for
VM simplifies data handling by offering facilities for querying and manipulating data and writing reports. It
also contains data recovery and data security measures.

This chapter provides a general introduction on how to use the Structured Query Language (SQL) in
high-level language applications to access data stored in DB2 Server for VM tables. It is not intended
to be a complete description of the use of DB2 Server for VM. You can use SQL in a program written in
assembler, C, COBOL, FORTRAN, PL/I, or REXX.

Note: Refer to the appropriate SQL publications for additional information.

How SQL Handles Data
In DB2 Server for VM, the data is addressed by content, rather than by its location or organization in
storage. It takes the form of tables in row and column format. DB2 Server for VM also keeps catalogs that
serve as an integrated data dictionary and directory. These catalogs always reflect the current status of
the database and are automatically updated.

Data is defined and accessed in terms of tables and operations on tables. A table is defined to DB2 Server
for VM by identifying the columns in the table and their characteristics. All values in a column have the
same characteristics. A table row is the smallest unit of insertion and deletion in DB2 Server for VM. An
insert operation adds one or more rows to a table. A delete operation removes one or more rows from
a table. The smallest unit of data update in DB2 Server for VM is the field, which is the point where a
specific row and column meet. A field contains a single data item.

You can do the following table operations:

• Create or delete tables.
• Retrieve data by table, row, or field.
• Update, insert, or delete data.
• Add new columns to a table.
• Copy data from one table into another.
• Perform utility operations, such as bulk data loading, data reorganization, and printing.

Using DB2 Server for VM

© Copyright IBM Corp. 1990, 2022 425

DB2 Server for VM can also store indexes to particular columns in a table. You do not need indexes to
access stored data, but they help DB2 Server for VM optimize its performance. When you request an
index, DB2 Server for VM creates and maintains it. When you write a program to access data, you do not
refer to the index explicitly, but DB2 Server for VM decides which index to use.

DB2 Server for VM can also store view definitions. A view is a logical or virtual table derived from one or
more tables. It is like a stored table with rows and columns. You can use views as if they were tables.
However, some operations are not valid on views. Others are restricted, depending on how the view was
defined. You can use views mainly to simplify data retrieval commands and to limit access to data or its
manipulation.

Using SQL, you specify only the results you want. When you reference the data, you do not specify data
paths, access methods, or the organization of the physical file.

SQL Commands
An SQL command contains a verb with one or more optional clauses, language keywords, and parameter
operands. The structured use of verbs and keywords in the SQL syntax lets you request data in readable
form.

The SQL commands commonly used are:
SELECT

retrieves data from one or more tables. When used in a program, place the query command inside a
DECLARE CURSOR command so that you can fetch rows of the query result individually.

INSERT
places a new row in a table.

UPDATE
changes field level data.

DELETE
removes one or more rows from a table.

CREATE TABLE
defines a new table and its columns.

DROP TABLE
erases a table.

ALTER TABLE
adds new columns to a table.

CREATE INDEX
defines an index that lets you access rows of a table in a specific sequence.

DROP INDEX
erases an index.

CREATE VIEW
defines a logical table from one or more tables or views.

DROP VIEW
erases a view definition.

GRANT
grants privileges on a table or view to other users. You can only grant a privilege to other users if you
hold the privilege.

DB2 Server for VM operates in two modes:

• Single User Mode lets a single application or utility perform in the same virtual machine as DB2 Server
for VM. It is used primarily for development and testing. This mode is also intended for dedicated
functions like bulk loading and unloading databases, and other situations that may require a dedicated
DB2 Server for VM database.

Using DB2 Server for VM

426 z/VM: 7.2 CMS Application Development Guide

• Multiple User Mode lets you and other users or operations access the same database at the same time.
It is the most common operational mode. The advantages are shared access and DB2 Server for VM
isolation from individual applications through isolation of virtual machines.

Coding SQL Commands
You must place SQL statements in your DB2 Server for VM program that:

• Declare special variables that SQL uses to interact with the host program.
• Declare an SQL Communications Area (SQLCA) to provide for error handling.
• Establish a connection to an DB2 Server for VM database.
• Manipulate the data you need.
• End your logical unit of work (by committing or rolling back the data).
• Release your connection.

Declaring Host Variables to SQL
A host variable is a variable referenced by SQL in your program. DB2 Server for VM recognizes two types
of host variables: main variables and indicator variables.

Main Variables
Main variables are normal program variables used in SQL statements. To get SQL to recognize these
variables, you must place them in a SQL declare section. This is a special area in your program that is
delimited by two SQL statements:

• BEGIN DECLARE SECTION
• END DECLARE SECTION.

The length of the main variable names can differ depending on the programming language you are using.
The characters of main variable names can consist of A-Z, 0-9, the three national characters (@, #, $),
and the underscore. However, you cannot use a number or the underscore as the first character of a
variable name. In COBOL, do not give any variable a name beginning with SQL or RDI. In FORTRAN, do not
give any variable a name beginning with SQ. These are reserved for DB2 Server for VM use. Other naming
restrictions apply to specific languages.

When you reference program variables in SQL statements, preface them with a colon (:). When you
reference the same variable in a host language statement, omit the colon. For example, a variable named
DBDESC is referenced as :DBDESC in a SELECT command.

Variables used in SQL statements cannot be any of the following:

• Vector or array declarations
• A constant defined by a PARAMETER statement
• Any declarations that use expression to define the length of the variables
• Character variables declared with an undefined length such as CHARACTER*(*).

Indicator Variables
By using optional indicator variables, you can indicate null values on input to DB2 Server for VM (the
UPDATE and INSERT statements) or output from DB2 Server for VM (the INTO clause of a FETCH
statement). You must declare indicator variables in the SQL declare section. They must be of a host
language data type equivalent to the SQL data type SMALLINT. When used in an SQL statement, the
indicator variable names must follow the corresponding main variable name and must be preceded with
a colon. For example, if the main variable name is DBDESC and the corresponding indicator name is
DESCIND, in a SQL statement you would refer to it with the expression :DBDESC:DESCIND.

Using DB2 Server for VM

Chapter 28. Using DB2 Server for VM 427

After an SQL request involving an output variable is satisfied, a value is returned to your program in the
indicator variable.

• When the indicator variable value is zero, the value returned into the main variable is not null.
• When the indicator variable value is negative, the main variable is null and should not be used for

processing by the host program.
• When the indicator variable value is positive, DB2 Server for VM has truncated the value of the main

variable. The returned value was larger than the declared value.

Declaring an SQL Communication Area
Every DB2 Server for VM program must provide a means for handling errors. The SQL Communications
Area (SQLCA) provides this. DB2 Server for VM sends messages to SQLCA after executing almost every
SQL statement (except declarative statements—BEGIN and END DECLARE SECTION, INCLUDE SQLCA,
INCLUDE SQLDA, DECLARE CURSOR, and WHENEVER). Then, using the WHENEVER statement, you can
test certain fields of this area for specific conditions during the program's execution. Error handling is
important in DB2 Server for VM because it helps protect the integrity of the database when a program
fails.

As mentioned previously, when system errors occur, DB2 Server for VM automatically restores all changes
made from the start of the logical unit of work up to the point of system failure. When SQL errors occur,
your application must tell DB2 Server for VM what action to take. This involves two steps:

• Declaring an SQL Communications Area
• Coding an SQL WHENEVER statement.

To declare an SQL Communications Area, use the following SQL command:

INCLUDE SQLCA

The WHENEVER statement tests conditions set in the SQLCA by DB2 Server for VM. The WHENEVER
statement lets you take specific actions depending on the conditions. The scope of the WHENEVER
command is determined by its position in the program rather than its placement in the logical flow. Use
the appropriate WHENEVER statements at critical points in your program.

The SQLCA has two especially important fields: the SQLCODE and SQLWARN.

SQLCODE contains a code that indicates the result of each SQL statement. The value in SQLCODE
summarizes the execution of your SQL statements:

• When the value is zero, the command has executed successfully.
• When the value is negative, an error condition has occurred (either an error in your program or a system

failure).
• When the value is positive, a normal condition (for example, End-Of-File) or a warning condition is

indicated.

You can test SQLCODE with the WHENEVER statement. The syntax of this statement is:

WHENEVER SQLERROR action

Possible actions are CONTINUE or GOTO statement-label.

When SQLCODE is 100, it indicates a NOT FOUND condition. You can test this condition using the
following statement:

WHENEVER NOT FOUND action

The SQLCA SQLWARNING condition occurs when SQLCODE is greater than 0 but not equal to 100, or the
SQL warning indicator, SQLWARN0, contains the value W. You can test this condition using the following
WHENEVER statement:

WHENEVER SQLWARNING action

Using DB2 Server for VM

428 z/VM: 7.2 CMS Application Development Guide

The normal actions are CONTINUE or GOTO statement-label.

For example, in this FORTRAN program, the WHENEVER command causes a branch to statement 90 when
an error condition occurs (SQLERROR becomes negative) throughout the program. At statement 90, the
WHENEVER is reset to CONTINUE during execution of the ROLLBACK WORK to prevent a failure during
ROLLBACK from causing a program loop. After the branch back to statement 10, the WHENEVER branch
to 90 is in effect again.

 .
 .
 EXEC SQL WHENEVER SQLERROR GO TO 90
 .
 .
 .
10 LASTRC = ISPLNK ('DISPLAY','MENUPAN ')
 .
 .
 .
90 CONTINUE
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL ROLLBACK WORK
 GO TO 10

Connecting to DB2 Server for VM
In the z/VM environment, the DB2 Server for VM CONNECT statement is not required to establish a
connection between DB2 Server for VM and your program. User ID and password check by z/VM may be
sufficient. DB2 Server for VM does implicit connecting for those environments when an explicit connect is
not found.

For an explicit connection to DB2 Server for VM, you can use the following statement:

EXEC SQL CONNECT :USERID IDENTIFIED BY :PASS

:USERID and :PASS are the host variables containing the valid user ID and password needed to execute
your application.

Manipulating Data
The body of an DB2 Server for VM application can contain the following DB2 Server for VM commands:
SELECT, INSERT, DELETE, UPDATE, CREATE TABLE, DROP TABLE, ALTER TABLE, CREATE INDEX, DROP
INDEX, CREATE VIEW, and DROP VIEW. See page “SQL Commands” on page 426 for a description of
these commands.

In addition to the DB2 Server for VM commands, the body of your DB2 Server for VM application can also
contain host language statements.

Ending Your Logical Unit of Work
The term logical unit of work means a sequence of SQL commands that DB2 Server for VM views as a unit
of consistency and recovery. (These commands can be mixed with non-SQL statements.) This concept is
useful because DB2 Server for VM can ensure the integrity of the database. It does this by making sure
that either all or none of the updates in a logical unit of work are done.

A logical unit of work begins with any SQL command and ends with a COMMIT WORK or ROLLBACK WORK
command. If a system failure occurs before the explicit end of a logical unit of work, SQL automatically
restores all changes made from the start of the logical unit up to the point of system failure. This is called
a rollback. However, you must tell DB2 Server for VM what to do for SQL errors.

Releasing the Connection to DB2 Server for VM
To explicitly release the connection to DB2 Server for VM, you can use either of the following statements:

EXEC SQL COMMIT WORK RELEASE

Using DB2 Server for VM

Chapter 28. Using DB2 Server for VM 429

or

EXEC SQL ROLLBACK WORK RELEASE

SQL Command Layout
The following is a FORTRAN example showing the structure you need to imbed SQL commands in your
application.

EXEC SQL BEGIN DECLARE SECTION
 .
 .
 .
 (Variable definitions used by SQL go here.)
 .
 .
 .
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER
EXEC SQL CONNECT :USERID IDENTIFIED BY :PASS
 .
 .
 .
EXEC SQL command-name...
 .
 .
 .
EXEC SQL COMMIT WORK RELEASE

Creating DB2 Server for VM Tables
You must have RESOURCE authority to create a table, unless you have a private DBSPACE. If you are not
sure that you have RESOURCE authority, speak to your database administrator.

A DBSPACE is a portion of the database that can contain one or more tables and any associated indexes.
Each table stored in DB2 Server for VM is placed in some particular DBSPACE chosen by the creator of the
table. The database administrator defines DBSPACEs when the database is generated. Additional spaces
can be added later using the ADD DBSPACE function. Each DBSPACE remains as an unnamed "available"
DBSPACE until it is "acquired" by means of an ACQUIRE DBSPACE statement. The acquiring user gives a
name to the DBSPACE and defines certain characteristics for it (or allows default characteristics).

With DB2 Server for VM, you can define new tables in the database without stopping the system or calling
special utilities. You can accomplish this by using the CREATE TABLE SQL data definition statement. The
table-id operand of the CREATE TABLE statement specifies the table name. As a default, your table name
is prefixed with your user ID. The specifications for the table are pairs of column-names and data types
with or without the qualifier NOT NULL. This qualifier tells DB2 Server for VM not to allow null values in a
particular column. Any statement that later tries to put a null value in that column is rejected with an error
code. The optional DBSPACE parameter lets you choose a specific database space in which to create the
table.

For example, in a FORTRAN application, the following statement creates a table called NAMELIST in the
DBSPACE called TEST.DBSP:

 EXEC SQL CREATE TABLE NAMELIST
 1 (FRSTNAME CHAR(16) NOT NULL,
 2 LASTNAME CHAR(16) NOT NULL,
 3 SERIALNO CHAR(6) NOT NULL,
 4 AREACODE CHAR(3),
 5 ZIPCODE CHAR(5),
 6 PHNUMBER CHAR(7))
 7 IN TEST.DBSP

Once you create a table, you cannot change the data types of its columns or drop a column from the table.
However, you can add new rows to the table using the INSERT command. You can also add new columns
to a table using the ALTER TABLE command or drop or delete a table using the DROP TABLE command.
You must be the creator of the table or have database administrator authority to delete a table.

Using DB2 Server for VM

430 z/VM: 7.2 CMS Application Development Guide

Retrieving Data from a Table
To retrieve one row of data from a table, use the SELECT INTO FROM statement. This statement finds one
row of the table specified in the FROM clause, selects the columns that were supplied in the select-list,
and delivers the results in the host-variables listed in the INTO clause.

To retrieve one or more rows of data from DB2 Server for VM tables, your application should use an SQL
cursor. In general terms, a cursor is a pointer to the database. The SQL DECLARE statements define a
cursor by associating a name with a query. The query may cause many rows to be returned from the
database. These rows are called the active set (result) of the cursor.

You can manipulate the cursor using the following statements: OPEN, FETCH, PUT, DELETE, UPDATE, and
CLOSE.

For example:

DECLARE CRSR CURSOR FOR <---cursor-clause
SELECT FRSTNAME, LASTNAME <---SELECT-clause
FROM NAMELIST <---FROM-clause
WHERE SERIALNO = :EMPSER <---WHERE-clause
ORDER BY ZIPCODE <---ORDER-BY-clause

To retrieve SQL data, you declare a cursor (CRSR in this example) and associate with it a SELECT
statement that describes the information to be retrieved. The SELECT statement must include a SELECT-
list that specifies the columns (FRSTNAME, LASTNAME) required and a FROM-list that specifies the
table(s) (NAMELIST) that contains those columns. Optionally, a WHERE-clause may filter the results. If it
is not provided, all rows qualify for the retrieval. See “Defining Search Conditions” on page 431 for more
detail. The optional ORDER BY-clause permits ordering the results of the query. Without it, the ordering is
unpredictable.

After you issue the DECLARE CURSOR statement, you must open the cursor with an OPEN statement,
using the same cursor-name you specified in the DECLARE CURSOR statement. For example, to open the
CRSR cursor, use the following statement in a FORTRAN application:

 EXEC SQL OPEN CRSR

The OPEN statement determines the active set of the cursor and positions the cursor before the first row
of the active set.

Next, to retrieve the data, use the FETCH statement. This tells DB2 Server for VM to advance the cursor
to the next row of the active set and to deliver the data into the main variables you specify on the FETCH
statement. For example, in a FORTRAN application, the statement:

 EXEC SQL FETCH CRSR INTO :FNAME, :LNAME

retrieves FRSTNAME and LASTNAME from the NAMELIST table, that matches the conditions set in the
query, and puts this information in the variables FNAME and LNAME.

When using the FETCH statement, you must follow certain punctuation rules: Separate the main variables
from each other with commas and precede each one with a colon.

When you are finished retrieving data, close the cursor using the CLOSE statement. For example, to close
the CRSR cursor, use the following statement in a FORTRAN application:

 EXEC SQL CLOSE CRSR

Also, the active set becomes undefined when you issue the CLOSE statement.

Defining Search Conditions
To find particular items of data in SQL databases effectively, you need to define search conditions in the
WHERE-clause. These let you control row selection. A search condition is a collection of predicates. A
predicate is a comparison of two values or expressions. Along with column names, the expression can

Using DB2 Server for VM

Chapter 28. Using DB2 Server for VM 431

be constants, variables, and any combination of these connected by arithmetic operator. Each predicate
specifies a test that DB2 Server for VM applies to the rows of the table.

For example:

WHERE SERIALNO = :EMPSER

causes DB2 Server for VM to test the values in the SERIALNO column of each row of the NAMELIST table.
DB2 Server for VM returns rows to the active set only when the SERIALNO value equals the value in the
main variable EMPSER.

SERIALNO = :EMPSER is the predicate. SERIALNO and EMPSER are expressions of the predicate. = is the
comparison operator of the predicate.

Comparison Operators
The comparison operators are:
=

Equal to
¬=

Not equal to
>

Greater than
>=

Greater than or equal to
<

Less than
<=

Less than or equal to

For example:

PARTNO > 105

If you use variables in an expression, you must precede the variable name with a colon. This distinguishes
it from a column name. Thus, the predicate:

SERIALNO > :EMPSER

means the value in column SERIALNO is greater than the value in variable EMPSER.

Conversely, the predicate:

:EMPSER > SERIALNO

means the value in variable EMPSER is greater than the value in column SERIALNO.

You can use constants within expressions, using any data types the language supports, but with some
exceptions.

Arithmetic Operators
The four arithmetic operators are:
+

Addition
-

Subtraction
*

Multiplication

Using DB2 Server for VM

432 z/VM: 7.2 CMS Application Development Guide

/
Division.

You can use parentheses in an expression if you want to establish precedence among the operators. The
default order of precedence is from right to left:

1. negations
2. multiplication or division
3. addition or subtraction.

Logical Operators
The logical operators are: NOT, AND, and OR.

You can use the logical operator NOT to negate a predicate. For example:

NOT ZIPCODE = 90023

You can connect predicates with the logical operators AND and OR:

AREACODE = 213 AND ZIPCODE = 90021 OR ZIPCODE = 90022

The order of precedence for the logical operators is:

1. NOT
2. AND
3. OR.

In the preceding example, the statement is true when AREACODE = 213 and ZIPCODE = 90021 or when
ZIPCODE = 90022, regardless of the value of AREACODE.

By using parentheses, you can override this order. If you want to select data only when AREACODE equals
213 and ZIPCODE equals either 90021 or 90022, you can code:

AREACODE = 213 AND (ZIPCODE = 90021 OR ZIPCODE = 90022)

Because the AND is evaluated before the OR, this is equivalent to:

AREACODE = 213 AND ZIPCODE = 90021 OR ZIPCODE = 90022 AND AREACODE = 213

Defining Additional Predicates
SQL provides four additional types of predicates you can use in search conditions. You can use them in
addition to the standard ones that compare two expressions. These predicates are:
BETWEEN

determines if the value of an expression lies between the values of two other expressions. For
example:

ZIPCODE BETWEEN :LIM1 AND :LIM2

This is equivalent to:

:LIM1 <= ZIPCODE <= :LIM2

IN
compares the value of an expression with a list of items. The predicate is satisfied if the expression
equals any item listed. For example:

ZIPCODE IN (90021, :P2, :P3, :P4)

Using DB2 Server for VM

Chapter 28. Using DB2 Server for VM 433

IS NULL
explicitly looks for null values in tables (empty fields) or exclude null values from consideration. For
example:

ZIPCODE IS NULL

LIKE
searches for character string data that partially matches a given string. For example:

FRSTNAME LIKE "%ANNE%"

This example is met by values such as "ROXANNE", "ANNETTE", and "JANNER" as well as by
"ANNE". The percent sign (%) represents a wild-card character and means any string of zero or more
characters.

You can prefix any of these predicates with the logical operator NOT.

Using Built-In SQL Functions
SQL has two types of built-in functions: column functions and scalar functions. Column functions apply
the function to a group of values in a column and produce one result. Scalar functions apply the function
to one or more values in each row and produce a result for each row.

The following is an example of an SQL column function, AVG, used in a FORTRAN application. To obtain
the average of the values found in the QUANTITY column from the NAMELIST table, use the following
statements:

 EXEC SQL DECLARE CRSR CURSOR FOR
 1 SELECT AVG(QUANTITY)
 2 FROM NAMELIST

Excluding Duplicates
The keyword ALL causes every value that satisfies the expression to be selected. This is the default. The
keyword DISTINCT limits the selection to a single match.

For example, to get a list of different surnames, in a FORTRAN application, you would use an expression
such as:

 EXEC SQL DECLARE CRSR CURSOR FOR
 1 SELECT DISTINCT LASTNAME
 2 FROM NAMELIST

Manipulating Data in a DB2 Server for VM Table
There are SQL data manipulation statements that let you insert new rows into tables or delete or update
existing rows. Here are the three data manipulation statements:

• INSERT lets you insert one new row into a given table. Also, by using the SELECT clause, you can insert
several new rows selected or computed from other tables. You can insert data into any table you create.
You can also insert data into another user's table, if you have INSERT privilege on that table.

For example, in a FORTRAN application, the statements:

 EXEC SQL INSERT INTO NLIST
 1 SELECT LNAME,FNAME,SERIALNO
 2 FROM NAMELIST
 3 WHERE SERIALNO = :EMPSER

inserts into table NLIST columns LNAME, FNAME, and SERIALNO of all the rows of table NAMELIST
having the SERIALNO column equal to the value in the host variable EMPSER.

Using DB2 Server for VM

434 z/VM: 7.2 CMS Application Development Guide

• DELETE deletes one or more rows from a given table. However, first you must specify a selection
criterion (WHERE clause). See “Defining Search Conditions” on page 431 for details on defining search
conditions. Otherwise, the DELETE statement deletes all table rows and sets a warning indicator
(SQLWARN4). You can test the value of SQLWARN4 and, in case of error, issue the ROLLBACK WORK
command. You can delete rows from any table you create. You can also delete data from another user's
table, if you have DELETE privilege on that table.

For example, in a FORTRAN application, the statement:

 EXEC SQL DELETE FROM NAMELIST WHERE SERIALNO = :EMPSER

deletes the row or rows having the SERIALNO column equal to the value in the host variable EMPSER.

You can also delete the row that the current cursor points to by specifying WHERE CURRENT OF
cursor-name.

• UPDATE changes the value of one or more fields in a table. You can update rows in any table you create.
You can also update data in another user's tables, if you have the UPDATE privilege on the columns of
that table.

You can also change the value of one or more fields in a table by specifying WHERE CURRENT OF
cursor-name.

Creating Views in DB2 Server for VM
DB2 Server for VM can create views of a table. This is one of its most useful facilities. Views let you and
other users see different presentations of the same data.

For example, if your NAMELIST table contains employee salaries, you may want to restrict access to that
data. Other users may need to see salaries but not addresses, and so on. Each user can have a different
view of the data in the NAMELIST table. Each view appears to be a table and has its own name.

Views are based on tables, but views are not stored as physical tables. However, there are some
restrictions on views that real tables do not have.

The CREATE VIEW statement creates views. (You must have SELECT privilege for the underlying table.)

For example, in a FORTRAN application, the following statement:

 EXEC SQL CREATE VIEW AREA213 (FNAME, LNAME, EMPSER, PHONE) AS
 1 SELECT FRSTNAME, LASTNAME, SERIALNO, PHNUMBER
 2 FROM NAMELIST
 3 WHERE AREACODE = 213

creates a view called AREA213 containing the names, serial number, and phone number of the employees
living in area code 213. Its four columns have names distinct from the corresponding names in the
NAMELIST table. If these names are not specified, DB2 Server for VM takes them from the original table.

Your application can now insert data into view AREA213, update data to view AREA213, and delete data
from view AREA213. These changes will be applied to the actual NAMELIST table.

Remember, there are certain restrictions on views. See the appropriate DB2 Server for VM publication for
details.

When you finish with a view, you can drop it using the DROP VIEW statement. For example, to drop view
AREA213, use the following statement in a FORTRAN application:

 EXEC SQL DROP VIEW AREA213

Preprocessing Your DB2 Server for VM Application
After you write your SQL application, but before you compile and run your application, SQL must
preprocess the application.

Using DB2 Server for VM

Chapter 28. Using DB2 Server for VM 435

Preprocessing does two things: First, it modifies the source program by converting SQL statements into
valid programming language statements. (SQL statements are kept as comments.) There is a separate
DB2 Server for VM preprocessor for each language. The source program is then ready for normal
processing. Second, it optimizes and compiles the SQL statements by defining them to DB2 Server for
VM and creating an access module that efficiently executes the SQL requests that the program makes.
The access module is created and stored in a DB2 Server for VM database.

During DB2 Server for VM preprocessing, DB2 Server for VM analyzes and converts the embedded SQL
commands to DB2 Server for VM calls before compilation. That is, DB2 Server for VM chooses the best
access path for each SQL command in the program, based on indexes and data statistics, for example,
and stores the access information in the access module. When DB2 Server for VM loads the access
module, it checks that the module is still valid. An access module may be invalid, for example, if a path is
based on an index that is no longer available.

When you run a program, the access module created by the DB2 Server for VM preprocessor is called to
handle each SQL command.

DB2 Server for VM provides some special programs that your application needs to link to at time of
execution. These DB2 Server for VM provided programs, along with the DB2 Server for VM EXECs that
are needed to identify the DB2 Server for VM database and start the DB2 Server for VM preprocessors,
are stored on the DB2 Server for VM production minidisk. You must access this disk in order to use DB2
Server for VM.

Figure 73 on page 436, followed by a step-by-step procedure, describes how to create an executable SQL
application written in COBOL.

Figure 73. Creating an Executable SQL Program

1. Access the DB2 Server for VM production minidisk:

LINK SQLDBA 195 195 RR
ACCESS 195 Q

The production minidisk is established during the DB2 Server for VM installation process. It contains
the DB2 Server for VM EXECs and programs required at execution time. These programs must be
linked with your program in a later step.

Using DB2 Server for VM

436 z/VM: 7.2 CMS Application Development Guide

2. Identify the DB2 Server for VM database. To do this, you will use the DB2 Server for VM EXEC,
SQLINIT. It names the database and stores bootstrap information for that database on your A-disk.
Because this information is on your A-disk, you need only do this step once (even if you log off),
unless you subsequently need to change to another DB2 Server for VM database. An example of this
EXEC is:

SQLINIT DBNAME(DBASE01)

DBASE01, in this example, is the name of the DB2 Server for VM database selected.
3. (Step 8 requires that you have established a CMS TXTLIB that contains the execution time DB2 Server

for VM programs for linking with your program.) Use the TXTLIB command to create the TXTLIB
that contains the DB2 Server for VM programs ARIRVSTC and ARIPADR. ARIPADR and ARIRVSTC are
required for COBOL. This step need only be done once (even if you log off), because the TXTLIB is
stored on your A-disk. Enter:

TXTLIB
GEN PREPLIB ARIRVSTC ARIPADR

4. Use XEDIT to build your program. The file type must be COBSQL if it is written in COBOL. These are
the file types required for the SQL preprocessors in the next step.

5. The DB2 Server for VM preprocessors are invoked by the DB2 Server for VM EXEC, SQLPREP. The
following are examples of invoking SQLPREP:

SQLPREP COBOL PREPPARM(PREPNAME=TESTPROG,QUOTE)
 SYSIN(TESTPROG) SYSPUNCH(TESTPROG) SYSPRINT(PRINTER)

• The first parameter identifies the programming language. This selects the particular preprocessor
and is followed by the parameters to that preprocessor.

• PREPPARM has several subparameters. The main subparameter is PREPNAME. This is generally
the same as the name that you have assigned to your program. For COBOL, you may want to use
the keyword subparameter, QUOTE, to indicate that you are going to use the QUOTE option for the
COBOL compiler. The QUOTE parameter (or APOST, the default) has no affect on the coding of SQL
statements in the COBOL program, but informs the SQL preprocessor what to expect as delimiters
for COBOL strings.

• The SYSIN parameter specifies the file name of the input source program.
• The SYSPUNCH parameter specifies the file name of the output of the preprocess step, which is

normally the same as specified for SYSIN. The default file type assigned by DB2 Server for VM is the
file type required for the associated compiler.

• The SYSPRINT parameter specifies the file name (default file type is LISTPREP) for receiving the
printed output of the preprocessor. In this example, it is directed to the virtual printer, rather than a
CMS file.

6. The CMS GLOBAL command and FILEDEF command identify the MACLIBs and workfiles required by
the particular compiler. Enter:

GLOBAL MACLIB COBOLVS DMSGPI FILEDEF ... (work files)
7. Start the appropriate compiler. The input files to the compiler must have the appropriate file type

(COBOL, in this example). The compiler produces a TEXT file. Enter:

COBOL2 TESTPROG
8. The CMS GLOBAL command identifies the text library needed to execute the application. Step 3

created the text library, PREPLIB, that is used here.

GLOBAL TXTLIB PREPLIB

Using DB2 Server for VM

Chapter 28. Using DB2 Server for VM 437

9. The CMS LOAD command loads the new application text file into storage and to link it with the
required DB2 Server for VM programs from PREPLIB. The CMS GENMOD command generates a
module on the A-disk for the application program and assigns it the name TEST01.

LOAD TESTPROG
GENMOD TEST01

10. After issuing all the FILEDEFs that may be required for the application program, invoke the new
module for execution.

TEST01

Using SQL Interactively
DB2 Server for VM also includes the Interactive Structured Query Language (ISQL) facility that lets you
enter SQL commands directly from your terminal. It is also useful for prototyping commands that you
plan to use in your programs. ISQL also simplifies data handling by offering facilities for querying data,
manipulating data, and writing reports.

For more information on ISQL, see the DB2 Server for VM ISQL Guide and Reference for IBM VM Systems.

You can also use the Query Management Facility (QMF) to enter SQL queries from your terminal. In
addition to entering and processing your SQL queries, QMF allows you to format your report, display your
report as a chart, timestamp your report, and manipulate data.

For details on how to use QMF, see Using QMF.

Using DB2 Server for VM

438 z/VM: 7.2 CMS Application Development Guide

Chapter 29. Using Data Compression Services

This chapter covers the following topics:

• Compression Processing
• Expansion Processing
• Using Compression and Expansion Dictionaries
• Compressing and Expanding CMS Data.

Compression and Expansion Services
You can save data in a compressed format to conserve storage media and network transmission line
costs. The CSRCMPSC macro provides a pair of services that compress and expand data. These services
are available when the CVTCMPSC bit is on in the communication vector table (CMSCVT).

Compression takes an input string of data and, using a data area called a dictionary, produces an output
string of compression symbols. Each symbol represents a string of one of more characters from the input.

Expansion takes an input string of compression symbols and, using a dictionary, produces an output string
of the characters represented by those compression symbols.

Parameters for the CSRCMPSC macro are in an area mapped by DSECT CMPSC of the CSRYCMPS macro
and specified by the CBLOCK parameter of the CSRCMPSC macro. This area contains the following
information:

• The address, ALET, and length of a source area. The source area contains the data to be compressed for
a compression operation, or to be expanded for an expansion operation.

• The address, ALET, and length of a target area. After the macro runs, the target area contains the
compressed data for a compression operation, or the expanded data for an expansion operation.

• An indication of whether to perform compression or expansion.
• The address and format of a dictionary to be used to perform the compression or expansion. The

dictionary must be in the same address space as the source area.

Compressing and expanding data is described in the following topics:

• “Compression and Expansion Dictionaries” on page 439
• “Compression Processing” on page 440
• “Expansion Processing” on page 441
• “Dictionary Entries” on page 441
• “Building the CSRYCMPS Area” on page 450
• “Determining if the CSRCMPSC Macro Can Be Issued on a System” on page 453

Compression and Expansion Dictionaries
To use the Data Compression Services for compression and expansion, the CSRCMPSC macro uses two
dictionaries: the compression dictionary and the expansion dictionary. These dictionaries are logically
and physically related. When you expand the data that has been compressed, you want the result to
match the original data. Thus the dictionaries are complementary. When compression is being done,
the expansion dictionary must immediately follow the compression dictionary, because the compression
algorithm examines entries in the expansion dictionary.

Each dictionary consists of 512, 1024, 2048, 4096, or 8192 8-byte entries and begins on a page
boundary. When the system determines or uses a compression symbol, the symbol is 9, 10, 11, 12,
or 13 bits long, with the length corresponding to the number of entries in the dictionary. You will have

Using Data Compression Services

© Copyright IBM Corp. 1990, 2022 439

to specify the size of the dictionary in the CMPSC_SYMSIZE field of the CSRYCMPS mapping macro as
follows:
SYMSIZE

Meaning
1

Symbol size 9 bits, dictionary has 512 entries
2

Symbol size 10 bits, dictionary has 1024 entries
3

Symbol size 11 bits, dictionary has 2048 entries
4

Symbol size 12 bits, dictionary has 4096 entries
5

Symbol size 12 bits, dictionary has 8192 entries

Using Compression and Expansion Services
To help you use the compression services, the S-disk contains the following compiled REXX execs:

• CSRBDICV for building compression and expansion dictionaries
• CSRCMPEV to run a test, compress, and re-expand files using the abstract dictionary created by the

CSRBDICV EXEC. Reports are generated giving statistics on the efficiency of the compress and expand
functions with the current dictionary set.

For information on how to use these execs, see the z/VM: CMS Commands and Utilities Reference. For
additional information about compression and using the execs, see Enterprise Systems Architecture/390
Data Compression.

Compression Processing
The compression dictionary consists of a specified number of 8-byte entries. The first 256 dictionary
entries correspond to the 256 possible values of a byte and are referred to as alphabet entries. The
remaining entries are arranged in a downward tree, with the alphabet entries being the topmost entries in
the tree. That is, an alphabet entry may be a parent entry and contain the index of the first of one or more
contiguous child entries. A child entry may, in turn, be a parent and point to its own children. Each entry
may be identified by its index, meaning the positional number of the entry in the dictionary; the first entry
has an index of 0.

An alphabet entry represents one character. A nonalphabet entry represents all of the characters
represented by its ancestors and also one or more additional characters called extension characters. For
compression, the system uses the first character of an input string as an index to locate the corresponding
alphabet entry. Then the system compares the next character or characters of the string against the
extension character or characters represented by each child of the alphabet entry until a match is found.
The system repeats this process using the children of the last matched entry, until the last possible match
is found, which might be a match on only the alphabet entry. The system uses the index of the last
matched entry as the compression symbol.

The first extension character represented by a child entry exists as either a child character in the parent
or as a sibling character. A parent can contain up to four or five child characters. If the parent has more
children than the number of child characters that can be in the parent, a dictionary entry named a sibling
descriptor follows the entry for the last child character in the parent. The sibling descriptor can contain
up to six additional child characters, and a dictionary entry named a sibling descriptor extension can
contain eight more child characters for a total of fourteen. These characters are called sibling characters.
The corresponding additional child entries follow the sibling descriptor. If necessary, another sibling
descriptor follows the additional child entries, and so forth. The dictionary entries that are not sibling
descriptors or sibling descriptor extensions are called character entries.

Using Data Compression Services

440 z/VM: 7.2 CMS Application Development Guide

If a nonalphabet character entry represents more than one extension character, the extension characters
after the first are in the entry; they are called additional extension characters. The first extension
character exists as a child character in the parent or as a sibling character in a sibling descriptor or
sibling descriptor extension. The nonalphabet character entries represent either:

• If the entry has no children or one child, from one to five extension characters.
• If the entry has more than one child, one or two extension characters. If the entry represents one

extension character, it can contain five child characters. If it represents two extension characters, it can
contain four child characters.

Expansion Processing
The dictionary used for expansion also consists of a specified number of 8-byte entries. The two types of
entries used for expansion are:

• Unpreceded entries
• Preceded entries

The compression symbol, which is an index into the dictionary, locates that index's dictionary entry. The
symbol represents a character string of up to 260 characters. If the entry is an unpreceded entry, the
expansion process places at offset 0 from the current processing point the characters designated by
that entry. Note that the first 256 correspond to the 256 possible values of a byte and are assumed to
designate only the single character with that byte value.

If the entry is a preceded entry, the expansion process places the designated characters at the specified
offset from the current processing point. It then uses the information in that entry to locate the preceding
entry, which may be either an unpreceded or a preceded entry, and continues as described previously.

The sibling descriptor extension entries described earlier are also physically located within the expansion
dictionary.

Dictionary Entries
The following notation is used in the diagrams of dictionary entries:
{cc}

Character may be present
...

The preceding field may be repeated

Compression Dictionary Entries
Compression entries are mapped by DSECTs in macro CSRYCMPD.

The first four entries that follow give the possible values for bits 0-2, which are designated CCT.

Character Entry Generic Form (DSECT CMPSCDICT_CE)

CCT
A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of children. The total number of
children plus additional extension characters is limited to 5. If this field plus the number of additional
characters is 6, it indicates that, in addition to the maximum number of children for this entry, there
is a sibling descriptor entry that describes additional children. The sibling descriptor entry is located
at dictionary entry CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of CMPSCDICT_CE_CHILDCT.
The value of CMPSCDICT_CE_CHILDCT plus the number of additional extension characters must not
exceed 6.

Using Data Compression Services

Chapter 29. Using Data Compression Services 441

Character Entry CCT=0 (DSECT CMPSCDICT_CE)

ACT
A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional extension characters in the
entry. Its value must not exceed 4. This field must be 0 in an alphabet entry.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to
hold the additional extension characters followed by the child characters.

Character Entry CCT=1 (DSECT CMPSCDICT_CE)

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with the first bit indicating whether it is necessary to examine
the character entry for the child character (looking either for additional extension characters or more
children). The other bits are ignored when CCT=1.

ACT
A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional extension characters. Its
value must not exceed 4. This field must be 0 in an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index of the first child. The index for
child n is then CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to
hold the additional extension characters followed by the child characters.

CC
Child character, at bit n = 24 + (ACT * 8). The 5-character field CMPSCDICT_CE_CHILDCHAR is
provided to hold the additional extension characters followed by the child characters.

Character Entry CCT>1 (DSECT CMPSCDICT_CE)

CCT
A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of children. For this case, because
CCT>1, the range for CCT is 2 to 6 if D=0 or 2 to 5 if D=1. If this field plus the value of D is 6, it
indicates that, in addition to the maximum number of children for this entry (4 if D=1, 5 if D=0), there
is a sibling descriptor entry that describes additional children. The sibling descriptor entry is located
at dictionary entry CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of CMPSCDICT_CE_CHILDCT.

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with a bit for each child in the entry. The field indicates
whether it is necessary to examine the character entry for the child character (looking either for
additional extension characters or more children). The bit is ignored if the child does not exist.

YY
A 2-bit field (CMPSCDICT_CE_EXSIB) providing examine-child bits for the 13th and 14th siblings
designated by the first sibling descriptor for children of this entry. The bit is ignored if the child does

Using Data Compression Services

442 z/VM: 7.2 CMS Application Development Guide

not exist. Note that this is a subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry.

D
A 1-bit field (CMPSCDICT_CE_ADDEXTCHAR) indicating whether there is an additional extension
character. Note that this is a subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry. This bit must be 0 in an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index of the first child. The index for
child n is CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided
to hold the additional extension character followed by the child characters. There is no additional
extension character if D=0.

CC
Child character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to hold the additional
extension characters followed by the child characters. The first child character is at bit n = 24 + (D *
8).

Alphabet Entries (DSECT CMPSCDICT_CE)
The alphabet entries have the same mappings as character entries but without the additional extension
characters. The character entries are “Character Entry Generic Form (DSECT CMPSCDICT_CE)” on page
441, “Character Entry CCT=0 (DSECT CMPSCDICT_CE)” on page 442, “Character Entry CCT=1 (DSECT
CMPSCDICT_CE)” on page 442, and “Character Entry CCT>1 (DSECT CMPSCDICT_CE)” on page 442.

Format 1 Sibling Descriptor (DSECT CMPSCDICT_SD)

SCT
A 4-bit field (CMPSCDICT_SD_SIBCT) specifying the number of sibling characters. The number of
sibling characters is limited to 14. If this field is 15, it indicates that there are 14 sibling characters
associated with this entry and that there is another sibling descriptor entry, which describes
additional children. That sibling descriptor entry is located at dictionary entry this-sibling-descriptor-
index + 15. If there are 1 to 6 sibling characters, they are contained in this entry, and the dictionary
entries for those characters are located at this-sibling-descriptor-index + n, where n is 1 to 6. If
there are 7 to 14 sibling characters, the first 6 are as described above, and characters 7 through
14 are located in the expansion dictionary entry. (See “Sibling Descriptor Extension Entry (DSECT
CMPSCDICT_SDE)” on page 444.) The index of the character entry is this-sibling-descriptor-index.
The number of sibling characters should not be 0.

YYYYYYYYYYYY
A 12-bit field (CMPSCDICT_SD_EXSIB), one for each sibling character, indicating whether to examine
the character entries for sibling characters 1 through 12. Recall that the examine-sibling indicator
for sibling characters 13 and 14 for the first sibling descriptor is in the character entry field
CMPSCDICT_CE_EXSIB. If this is not the first sibling descriptor for the child entry, then the character
entries for sibling characters 13 and 14 are examined irregardless. The bit is ignored if the sibling
does not exist.

SC
Sibling character. Sibling characters 8 through 14 are in the expansion dictionary. (See “Sibling
Descriptor Extension Entry (DSECT CMPSCDICT_SDE)” on page 444.) The 6-character field
(CMPSCDICT_SD_CHILDCHAR) is provided to contain the sibling characters. The index of the
character entry for sibling character n is this-sibling-descriptor-index + n-1.

Note: Data Compression Services (CSRCMPSC) only supports the use of format 1 sibling descriptors.
However, when using the CMPSC hardware instruction directly (for example, not through the macro

Using Data Compression Services

Chapter 29. Using Data Compression Services 443

call), dictionaries may contain format 0 sibling descriptors. For more information on format 0 sibling
descriptors, see Enterprise Systems Architecture/390 Data Compression.

Expansion Dictionary Entries
Expansion entries are mapped by DSECTs in macro CSRYCMPD.

Unpreceded Entry (DSECT CMPSCDICT_UE)

CSL
A 3-bit field (CMPSCDICT_UE_COMPSYMLEN) indicating the number of characters contained in
CMPSCDICT_UE_CHARS. These characters will be placed at offset 0 in the expanded output. This
field should not have a value of 0.

EC
Expansion character. The 7-character field (CMPSCDICT_UE_CHARS) is provided to contain the
expansion characters.

Preceded Entry (DSECT CMPSCDICT_PE)

PSL
A 3-bit field (CMPSCDICT_PE_PARTSYMLEN) indicating the number of characters contained
in CMPSCDICT_PE_CHARS. These characters will be placed at the offset indicated by
CMPSCDICT_PE_OFFSET in the expanded output. This field must not be 0, because 0 indicates an
unpreceded entry.

PrecIndex
A 13-bit field (CMPSCDICT_UE_PRECENTINDEX) indicating the index of the dictionary entry with
which processing is to continue.

EC
Expansion character. The 5-character field (CMPSCDICT_PE_CHARS) is provided to contain the
expansion characters.

Offset
A 1-byte field (CMPSCDICT_PE_OFFSET) indicating the offset in the expanded output for characters in
CMPSCDICT_PE_CHARS.

Sibling Descriptor Extension Entry (DSECT CMPSCDICT_SDE)

SC
Sibling character. The 8-character field (CMPSCDICT_SDE_CHARS) is provided to contain the sibling
characters. The nth sibling character in this entry is actually overall sibling character number 6 + n,
because the first 6 characters were contained in the corresponding sibling descriptor entry. The index
of the character entry for the nth character is this-sibling-descriptor-index + 6 + n-1.

Dictionary Restrictions
Set up the compression dictionary so that:

Using Data Compression Services

444 z/VM: 7.2 CMS Application Development Guide

• The algorithm does not create a compression symbol that represents a string of more than 260
characters.

• No character entry has more than 260 total children, including all sibling descriptors for that character
entry.

• No character entry has a child count greater than 6.
• No character entry has more than 4 additional extension characters when there are 0 or 1 child

characters.
• No sibling descriptor indicates 0 sibling characters.

Set up the expansion dictionary so that:

• Expansion of a compression symbol does not use more than 127 dictionary entries.

Other Considerations
If the first child character matches, but its additional extension characters do not match and the next
child character is the same as the first, the system continues compression match processing to try to find
a compression symbol that contains that child character. If, however, the next child character is not the
same, compression processing uses the current compression symbol as the result. You can set up the
child characters for an entry to take advantage of this processing.

If a parent entry does not have the examine child bit (CMPSCDICT_CE_EXCHILD) on for a particular child
character, then the child character entry should not have any additional extension characters or children.
The system will not check the entry itself for additional extension characters or children.

If a parent or sibling descriptor entry does not have the examine sibling bit (CMPSCDICT_CE_EXSIB) on
for a particular sibling character, then the character entry for that sibling character should not to have
any additional extension characters or children. The system will not check the entry itself for additional
extension characters or children.

Compression Dictionary Examples
In the following examples, most fields contain their hexadecimal values. However, for clarity, the
examine-child bit fields are displayed with their bit values.

Example 1
The dictionary looks as follows:
Hex Entry

Description
C1

Alphabet entry for character A; 2 child characters B and C. The first child index is X'100'.
100

Entry for character B; no additional extension characters; no children.
101

Entry for character C; additional extension character 1; 2 child characters D and E. The first child index
is X'200'.

200
Entry for character D; 2 additional extension characters 1 and 2; no children.

201
Entry for character E; 4 additional extension characters 1, 2, 3, and 4; no children.

Using Data Compression Services

Chapter 29. Using Data Compression Services 445

If the input string is AD, the output string will consist of 2 compression symbols: one for A and one
for D. When examining the dictionary entry for character A, the system determines that none of A's
children match the next input character, D, and so returns the compression symbol for A. When examining
the dictionary entry for character D, the system determines that it has no children, and so returns the
compression symbol for D.

If the input string is AB, the output string will consist of 1 compression symbol for both input characters.
When examining the dictionary input for character A, the system determines that A's first child character
matches the next input character, B, and so looks at entry X'100'. Because that entry has no additional
extension characters, a match is determined. Because there are no further input characters, the scan
concludes.

If the input string is AC, the output string will consist of 2 compression symbols: one for A and one for
C. When examining the dictionary input for character A, the system determines that A's second child
character matches the next input character, C, and so looks at entry X'101'. Because that entry has an
additional extension character, but the input string does not contain this character, no match is made, and
the output is the compression symbol for A. Processing character C results in the compression symbol for
C.

If the input string is AC1, the output string will consist of 1 compression symbol. When examining the
dictionary input for character A, the system determines that A's second child character matches the next
input character, C, and so looks at entry X'101'. Because that entry has an additional extension character,
and the input string does contain this character, 1, a match is made, and the output is the compression
symbol for AC1.

Similarly, the set of input strings longer than one character compressed by this dictionary are:
Hex Symbol

String
100

AB
101

AC1
200

AC1D12
201

AC1E1234

The compression symbol is the index of the dictionary entry. Based on this, you can see that the
expansion dictionary must result in the reverse processing; for example, if a compression symbol of

Using Data Compression Services

446 z/VM: 7.2 CMS Application Development Guide

X'201' is found, the output must be the string AC1E1234. See “Expansion Dictionary Example” on page
449 for expansion dictionary processing.

Example 2
In this example, there are more than 5 children and the dictionary looks like the following:
Hex Entry

Description
C2

Alphabet entry for character B; child count of 6 (indicating 5 children plus a sibling descriptor); first
child index is X'400', children are 1, 2, 3, 4, and 5.

400
Entry for character 1; no additional extension characters; no children.

401-404
Entries for characters 2 through 5; no additional extension characters; no children.

405
Sibling descriptor; child count of 15, which indicates 14 children plus another sibling descriptor;
sibling characters A, B, C, D, E, and F.

405
Sibling descriptor extension. In the expansion dictionary entry X'405', the sibling characters are G,
H, I, J, K, L, M, and N.

406
Entry for character A; no additional extension characters; no children.

407-413
Entries for characters B through N; no additional extension characters; no children.

414
Next sibling descriptor; child count of 2; child characters O and P.

415
Entry for character O; no additional extension characters; no children.

416
Entry for character P; no additional extension characters; no children.

Using Data Compression Services

Chapter 29. Using Data Compression Services 447

The set of input strings longer than one character compressed by this dictionary are:
Hex Symbol

String
400-404

B1, B2, B3, B4, B5
406-40B

BA, BB, BC, BD, BE, BF
40C-413

BG, BH, BI, BJ, BK, BL, BM, BN
415-416

BO, BP

There are no compression symbols for 405 and 414. These are the sibling descriptor entries. Because
their sibling descriptor extensions are located at those indices in the expansion dictionary (not the
preceded or unpreceded entries required for expansion), it is important that no compression symbol have
that value.

Example 3
In this example, the children have the same value and the dictionary looks like the following:

Using Data Compression Services

448 z/VM: 7.2 CMS Application Development Guide

Hex Entry
Description

C3
Alphabet entry for character C; child count of 4. The first child index is X'600' and the child characters
are 1, 1, 1, and 2.

600
Entry for character 1; 4 additional extension characters A, B, C, and D; no children.

601
Entry for character 1; 3 additional extension characters A, B, and C; no children.

602
Entry for character 1; 2 additional extension characters A and B; no children.

603
Entry for character 2; no additional extension characters; no children.

The set of input strings longer than one character compressed by this dictionary are:
Hex Symbol

String
600

C1ABCD
601

C1ABC
602

C1AB
603

C2

By taking advantage of the special processing when the second and subsequent child characters match
the first, you can reduce the number of dictionary entries searched to determine the compression
symbols. For example, to find that X'601' is the compression symbol for the characters C1ABC, the
processing examines entry X'C3', then entry X'600' then entry X'601' Entry X'600' does not match
because the input string does not have all 4 extension characters. There are alternate ways of setting up
the dictionary to compress the same set of input strings handled by this dictionary.

Expansion Dictionary Example

Example
Suppose the expansion dictionary looks like the following:
Hex Entry

Description
C1

Alphabet entry for character A. This by definition is an unpreceded entry.
101

A preceded entry, with characters C and 1; with preceding entry index of X'C1'; offset of 1.

Using Data Compression Services

Chapter 29. Using Data Compression Services 449

201
A preceded entry, with characters E, 1, 2, 3, and 4; with preceding entry index of X'101'; offset of 3.

When processing an input compression symbol of X'201':

• Characters E1234 are placed at offset 3, and processing continues with entry X'101'.
• Characters C1 are placed at offset 1, and processing continues with entry X'C1'.
• Character A is placed at offset 0.

The expansion results in the 8 characters A, C, 1, E, 1, 2, 3, and 4 placed in the output string.

Building the CSRYCMPS Area
The CSRYCMPS area is mapped by the CSRYCMPS mapping macro and is specified in the CBLOCK
parameter of the CSRCMPSC macro. The area consists of 9 words that should begin on a word boundary.
Unused bits in the first word must be set to 0.

• Set 4-bit field CMPSC_SYMSIZE in byte CMPSC_FLAGS_BYTE2 to a number from 1 to 5 to indicate both
the number of entries in the dictionary and the size of a compressed symbol.

• If expanding, turn on bit CMPSC_EXPAND in byte CMPSC_FLAGS_BYTE2. Otherwise, make sure that the
bit is off.

• Set field CMPSC_DICTADDR to the address of the necessary dictionary. If compressing, this should
be the compression dictionary, which must be immediately followed by the expansion dictionary. If
expanding, this should be the expansion dictionary. In either case, the dictionary must begin on a page
boundary, as the low order 12 bits of the address are assumed to be 0 when determining the address of
the dictionary.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the necessary dictionary. Note that
the input area is also accessed using this ALET. If not in AR mode, make sure that the field contains 0.

• In most cases, make sure that 3-bit field CMPSC_BITNUM in byte CMPSC_DICTADDR_BYTE3 is zero.
This field has the following meaning:

– If compressing, place the first compression symbol at this bit in the leftmost byte of the target
operand. Normally this field should be set to 0 for the start of compression.

– If expanding, expand beginning with the compression symbol that begins with this bit in the leftmost
byte of the source operand. Normally this field should be set to the value used for the start of
compression.

• Set word CMPSC_TARGETADDR to the address of the output area. For compression, the output area
contains the compressed data; for expansion, it contains the expanded data.

If running in AR mode, set field CMPSC_TARGETALET to the ALET of the output area. If not in AR mode,
make sure that the field contains 0.

• Set word CMPSC_TARGETLEN to the length of the output area.

Using Data Compression Services

450 z/VM: 7.2 CMS Application Development Guide

• Set word CMPSC_SOURCEADDR to the address of the input area. For compression, the input area
contains the data to be compressed; for expansion, it contains the compressed data.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the input area. Note that the
dictionary will also be accessed using this ALET. If not in AR mode, make sure that the field contains 0.

• Set word CMPSC_SOURCELEN to the length of the input area. For expansion, the length should be
the difference between CMPSC_TARGETLEN at the completion of compression and CMPSC_TARGETLEN
at the start of compression, increased by 1 if field CMPSC_BITNUM was nonzero upon completion of
compression.

• Set word CMPSC_WORKAREAADDR to the address of a 192-byte work area for use by the CSRCMPSC
macro. The work area should begin on a doubleword boundary. This area does not need to be provided
and the field does not have to be set if your code has verified that the hardware CMPSC instruction is
present. The program can do the verification by checking that bit CVTCMPSH in mapping macro CMSCVT
is on.

When the CSRCMPSC service returns, it has updated the input CSRYCMPS area as follows:

• CMPSC_FLAGS is unchanged.
• CMPSC_DICTADDR is unchanged, but bits CMPSC_BITNUM in field CMPSC_DICTADDR_BYTE3 are set

according to the last-processed compression symbol.
• CMPSC_TARGETADDR is increased by the number of output bytes processed.
• CMPSC_TARGETLEN is decreased by the number of output bytes processed.
• CMPSC_SOURCEADDR is increased by the number of input bytes processed.
• CMPSC_SOURCELEN is decreased by the number of input bytes processed.
• CMPSC_WORKAREA is unchanged.

The target/source address and length fields are updated analogously to the corresponding operands
of the MVCL instruction, so that you can tell upon completion of the operation how much data was
processed and where you might want to resume if you wanted to continue the operation.

Compression and Expansion Examples
The following is an example of compression.

 LA 13,SAVEAREA Get address of save area
 LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
 * Symbol size is 5+8. Dictionary has
 * 2**(5+8) entries
 L 3,DICTADDR
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,COMPADDR
 ST 3,CMPSC_TARGETADDR Set compression area
 L 3,COMPLEN
 ST 3,CMPSC_TARGETLEN Set compression length
 L 3,EXPADDR
 ST 3,CMPSC_SOURCEADDR Set expansion area
 L 3,EXPLEN
 ST 3,CMPSC_SOURCELEN Set expansion length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set workarea address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
 MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK parameter
 COMPADDR DS A Output "To" (compression) area
 COMPLEN DS F Length of "To" area
 EXPADDR DS A Input "From" (expansion) area
 EXPLEN DS F Length of "From" area
 DICTADDR DS A Address of compression dictionary
 DS 0D Doubleword align workarea
 WORKAREA DS CL192 Work area

Using Data Compression Services

Chapter 29. Using Data Compression Services 451

 SAVEAREA DS CL144 Register save area
 CSRYCMPS ,

Note: The expansion dictionary must immediately follow the compression dictionary and both must be
aligned on page boundaries.

The following is an example of expansion.

 LA 13,SAVEAREA Get address of save area
 LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
 * Symbol size is 5+8. Dictionary has
 * 2**(5+8) entries
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND Do expansion
 L 3,EDICTADDR
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR
 ST 3,CMPSC_TARGETADDR Set expansion area
 L 3,EXPLEN
 ST 3,CMPSC_TARGETLEN Set expansion length
 L 3,COMPADDR
 ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,COMPLEN
 ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set workarea address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
 MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
 EXPADDR DS A Output "To" (expansion) area
 EXPLEN DS F Length of "To" area
 COMPADDR DS A Input "From" (compression) area
 COMPLEN DS F Length of "From" area
 EDICTADDR DS A Address of expansion dictionary
 DS 0D Doubleword align workarea
 WORKAREA DS CL192 Work area
 SAVEAREA DS CL144 Register save area
 CSRYCMPS ,

Note: The expansion dictionary must be aligned on a page boundary.

Suppose that you had compressed a large area but wanted to expand it back into a small area of 80-byte
records. You might do the expansion as follows:

 LA 13,SAVEAREA Get address of save area
 LA 2,MYCBLOCK
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_1
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND
 L 3,EDICTADDR Address of expansion dictionary
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR
 ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,EXPLEN
 ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set work area address
MORE DS 0H Label to continue
*
* Your code to allocate an 80-byte output area would go here
*
 ST x,CMPSC_TARGETADDR Save target expansion area
 LA 3,80 Set its length
 ST 3,CMPSC_TARGETLEN Set expansion length
 CSRCMPSC CBLOCK=CMPSC Expand
 C 15,=AL4(CMPSC_RETCODE_TARGET) Not done, target used up
 BE MORE Continue with operation
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter

Using Data Compression Services

452 z/VM: 7.2 CMS Application Development Guide

EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area
EDICTADDR DS A Address of expansion dictionary
 DS 0D Doubleword align work area
WORKAREA DS CL192 Work area
SAVEAREA DS CL144 Register save area
 CSRYCMPS , Get mapping and equates

Note that this code loops while the operation is not complete, allocating a new 80-byte output record.
It does not have to update the CMPSC_BITNUM, CMPSC_SOURCEADDR, or CMPSC_SOURCELEN fields,
because the service sets them up for continuation of the original operation.

If running in AR mode, the example would also have set the CMPSC_TARGETALET and
CMPSC_SOURCEALET fields. The XC instruction zeroed those fields as needed when running in primary
addressing mode.

Determining if the CSRCMPSC Macro Can Be Issued on a System
The following should be run to determine if your system contains the software or hardware necessary to
run a CSRCMPSC macro:

 * Check the CMS Level before testing bits in CVTFLAG2.
 * Back level CMS releases fill the CVTFLAGS word with X'FFFF',
 * since it was not a supported field before CMS Level 12.
 *
 XR R15,R15 Clear a register
 ST R15,RETCODE Initialize return code
 *
 LA R1,QUERYCMD Point to Query CMSLEVEL command
 CMSCALL PLIST=(1),ERROR=* CMSCALL to execute command
 LTR R15,R15 Check the return code
 BZ CHKLVL OK, continue
 ST R15,RETCODE Else, save bad RC
 LR R3,R15 Display error message
 APPLMSG TEXT='Q CMSLEVEL return code= &&1', X
 SUB=(HEX,((R3),8))
 B EXIT Go exit
 *
 CHKLVL DS 0H
 ST R1,QRESULT Save result of query
 CLI QRESULT+1,CMS12 Is this CMS Level 12?
 BNL CHKCVT Equal or Higher? continue
 APPLMSG TEXT='CMS release is not CMS Level 12 or higher.'
 APPLMSG TEXT='Data Compression Services are NOT Supported.'
 LA R15,111 No, set bad RC
 ST R15,RETCODE Save bad RC
 B EXIT Go exit
 *
 CHKCVT DS 0H
 USING NUCON,0
 L R8,ACMSCVT Get address of CVT
 USING CMSCVT,R8
 TM CVTFLAG2,CVTCMPSC Is compression supported?
 BO COMP_OK Yes, continue
 *
 APPLMSG TEXT='Data Compression Services are NOT Supported.'
 LA R15,111 No, set bad RC
 ST R15,RETCODE Save bad RC
 B CHK_HDWR Continue checks
 *
 COMP_OK DS 0H
 APPLMSG TEXT='Compression Services Supported.'
 CHK_HDWR DS 0H
 TM CVTFLAG2,CVTCMPSH Is HW compression installed?
 BO HDWR_OK Yes, continue
 APPLMSG TEXT='Machine does NOT have CMPSC HW compression.'
 B EXIT Go exit
 HDWR_OK DS 0H
 APPLMSG TEXT='Machine has CMPSC hardware compression.'
 *
 * Return to caller
 *
 EXIT DS 0H
 L R15,RETCODE Set return code

 BR R14

Using Data Compression Services

Chapter 29. Using Data Compression Services 453

 *
 * DATA AREAS
 *
 DS 0D
 RETCODE DC F'0' Save area for return code
 QRESULT DC F'0' Result of query returned in R1
 *
 DS 0D
 QUERYCMD DC CL8'QUERY' Query CMSLEVEL command
 DC CL8'CMSLEVEL'
 DC 8X'FF'
 LTORG
 *
 * Mapping macros
 NUCON
 CMSCVT
 CMSLEVEL
 REGEQU

High-Level Language Call
High-level languages like PL/I, Fortran, Cobol, and so forth can use the DMSCPR CSL call interface

Call DMSCSL,("DMSCPR ",RETCODE,CBLOCK),VL

to compress or expand their data. For more information on Data Compression Services with CSL, see the
DMSCPR CSL routine in the z/VM: CMS Callable Services Reference.

Compressing CMS Data
The following is a sample scenario you can follow to compress data using Data Compression Services.
For more information on compressing and expanding your data, see Appendix L, “Data Compression
Services,” on page 609.

• Create a spec file to use as input to the CSRBDICV exec. The following is an example using TEXT
SPECFILE.

**The following is with a 4K-entry dictionary.
**Provides 30.88% compression (output/input) for the source of
**Chapter 5 of the ESA/390 Principles of Operation (30.32% if all output
**bits are concatenated together).
**Optimization (change x under opt to opt) improves compression by 0.7%.
**results maxnodes maxlevels msglevel stepping prperiod dicts
 r 40000 60 3 f 7 2 7 1000 af asm
**colaps opt treedisp treehex treenode dupccs
 aam x x h n x
**FLD col type dcenmen INT intspec
 FLD 1 sa dce 4 INT aeis 1 (40)
 INT a12b3s (40)
 FLD end

See the z/VM: CMS Commands and Utilities Reference for more information on the CSRBDICV EXEC and
CSRCMPEV EXEC formats.

• To compress data, you will build both a compression and expansion dictionary. You must have a read/
write disk set up as your A-disk, since your output files will appear on your A-disk. The source file that
you want to compress using the created dictionaries can reside on any readable CMS disk.

The following command will invoke the CSRBDICV EXEC to build dictionaries for the file CMSNUC MAP
B:

csrbdicv 4 1 EB cmsnuc map b (text specfile a (build dictionary

The compression and expansion dictionaries have now been built:

sourcefilename ACDICTsf A (compression dictionary)
sourcefilename AEDICTsf A (expansion dictionary)
sourcefilename CEDICTsf A (abstract dictionary for CSRCMPEV)

Using Data Compression Services

454 z/VM: 7.2 CMS Application Development Guide

For this example, the filetypes created would be: ACDICT41, AEDICT41, and CEDICT41, respectively.
The sourcefilename would be CMSNUC.

• You can use the CSRCMPEV EXEC to compress and expand the data and report statistics. In this
example, CSRCMPEV will use the abstract dictionary CMSNUC CEDICT41 A for compression and
expansion.

The following command invokes the CSRCMPEV EXEC to compress and expand the file CMSNUC MAP B
using the sourcefilename dictionary built by the CSRBDICV EXEC from the previous example.

csrcmpev 4 1 nhd cmsnuc map b cmsnuc (18550 18550 (1

After you have created the dictionaries, rename them to newfilename ASSEMBLE A and assemble both
files. Assemble the files by entering:

hasm newfilename

After being assembled, these dictionaries are in TEXT deck format. These TEXT deck files will be used
by the application as the dictionaries.

Now that the dictionaries have been created, you can code a program which will call the Data
Compression Services interface: CSRCMPSC for Assembler language or the DMSCPR CSL interface for
a high-level language. Load the program and dictionaries into memory and then execute the program.
Remember when you are compressing data the compression dictionary is loaded first, with the expansion
dictionary immediately following. The program will pass the address of the compression dictionary to
Data Compression Services. The service routine can then find both dictionaries by size offset. If the
program wants to expand already compressed data, it will pass the address of the expansion dictionary
and a flag bit indicating the expand option.

For compression, both dictionaries are required and they both must begin on a page boundary with
the expansion dictionary immediately following the compression dictionary. For expansion, only the
expansion dictionary is required and it must begin on a page boundary.

The following is a simplistic example of how this can be done using CMS LOAD and INCLUDE commands.
The example assumes that the program and dictionaries are each 4096 bytes (1 memory page) long.
These same actions can be executed wholly by the application program itself using storage obtained
in either the primary address space or in a data space area for the dictionaries and Data Compression
Services parameter list.

 LOAD PGMNAME (ORIGIN 20000
 INCLUDE CMPDICT (ORIGIN 21000
 INCLUDE EXPDICT (ORIGIN 22000
 START PGMNAME

Note: In the previous example, the dictionaries contain 512 (8 byte) dictionary entries. Each dictionary is
4096 bytes in total length (8 bytes * 512 = 4096). Programs using larger dictionaries with more entries
will need to adjust the origins used accordingly.

Attention: Do not delete your TEXT and ASSEMBLE filetype dictionaries. You will not be able to expand
your data if the TEXT deck files are deleted. It is recommended that the compression and expansion
dictionaries be backed up along with any compressed vital data to ensure that the data can be completely
restored.

Using Data Compression Services

Chapter 29. Using Data Compression Services 455

Using Data Compression Services

456 z/VM: 7.2 CMS Application Development Guide

Part 4. Connectivity Programming in CMS

In its simplest form, connectivity is the ability of one program to communicate with another program.The
key questions to ask are:

• What kind of programs are they?
• Where are the programs located?
• How do the programs communicate with each other?

This part answers the preceding questions by describing:

• The environments in which the programs reside
• The different types of communications programs
• The communications programming terminology—SNA terms versus z/VM terms
• How your applications can use CPI Communications (also known as SAA communications interface) to

communicate with each other.

© Copyright IBM Corp. 1990, 2022 457

458 z/VM: 7.2 CMS Application Development Guide

Chapter 30. Introduction to Connectivity
Programming in CMS

Application programs are typically written to communicate with one another because a user needs
access to some kind of data. How these programs communicate depends on where they are located. The
application programs can be located in any one of the following environments:

• Both programs are on the same z/VM system.
• The two programs are on different z/VM systems, but in the same collection. A collection is a group of

z/VM systems logically connected together. We will discuss more about collections later in this chapter.
• One program is located in a z/VM system, and the other is located in a workstation on a local area

network (LAN).
• The two programs are located in two different collections.
• One program is located in a z/VM system, and the other is located in a network defined by IBM's System

Network Architecture (SNA).

A network is a group of two or more interconnected computing units that lets information be
electronically transmitted from one computing unit to another. The information transmitted can range in
size from a one-line transaction to a book-size online document. SNA defines various sets of rules for data
to be transmitted in a network. Application programs communicate with each other using a layer of SNA
called Advanced Program-to-Program Communications (APPC). APPC is also known as SNA LU 6.2. z/VM
implements the base set of APPC and several APPC option sets using Advanced Program-to-Program
Communication/VM (APPC/VM).

z/VM provides two programming interfaces to APPC/VM:

• A low-level interface intended for programs written in assembler language.
• Common Programming Interface (CPI) Communications, which is intended for programs written in

REXX and high-level languages. CPI Communications (also known as SAA communications interface)
is part of IBM's Systems Application Architecture (SAA), and it provides a standard set of routines and
parameters for calling these routines. Programs using this interface can be more easily transported
across other IBM environments. Refer to the CPI Communications Reference for details about CPI
Communications routines.

The following communications programming interface is also available in z/VM:

• The Inter-User Communication Vehicle (IUCV), which is part of z/VM. IUCV is for communications
between two programs on the same z/VM system, and it also allows a program to communicate with a
CP system service. For complete information on IUCV, see z/VM: CP Programming Services.

Types of Communications Programs
Typically, one application program requests a resource from another application program. This resource
might be data, a file, or access to a device. The application program that requests resources is known as a
user program. User programs run in requester virtual machines.

A virtual machine that provides access to a resource is known as the server virtual machine. Some
examples of server virtual machines are virtual machines that:

• Contain a database manager
• Contain a file server
• Manage a high-function printer.

The program that actually controls a resource is called a resource manager program in z/VM. Resource
manager programs run in server virtual machines.

Introduction to Connectivity Programming

© Copyright IBM Corp. 1990, 2022 459

We will talk about resources and resource managers in more detail in Chapter 32, “Program-to-Program
Communications,” on page 479.

Figure 74 on page 460 shows a CMS user program, running in a requester virtual machine, communicating
with a CMS resource manager program that is running in a server virtual machine, both in a single z/VM
system.

Figure 74. Communications between a User Program and a Resource Manager

How the Programming Interfaces Work Together
Figure 75 on page 461 shows how a user program can use either the CPI Communications interface or the
APPC/VM assembler language programming interface to use the APPC/VM services that support program-
to-program communication. Using these services, the APPC/VM (user) program can communicate with
other programs on:

• The same z/VM system
• Different z/VM systems
• Non-z/VM systems.

Introduction to Connectivity Programming

460 z/VM: 7.2 CMS Application Development Guide

Figure 75. APPC/VM Programming Interfaces

Understanding the Scope of APPC/VM Communications
User programs and resource manager programs communicate in z/VM through APPC/VM. The two
partners start communicating when the user program requests a service that the resource manager
program controls. The figures in this section show how these communications work. In these figures,
application program refers to any program that uses APPC/VM, regardless of its programming interface.

Communication within a Single z/VM System
A program running in your virtual machine can communicate with and request services from a program
running in another virtual machine in the same system. The Conversational Monitor System (CMS) and
Control Program (CP) components of z/VM handle communications between the virtual machines. Figure
76 on page 462 shows how data, being exchanged between programs running in two virtual machines in
the same system, passes through CMS and CP.

Introduction to Connectivity Programming

Chapter 30. Introduction to Connectivity Programming in CMS 461

Figure 76. Communication within One z/VM System

For example, suppose you have a program running in your virtual machine that needs to access data in
a database. In the other virtual machine, a database manager program (resource manager program) is
running. When your program asks for information from the database, APPC/VM passes this request to the
database manager program; the database manager program then gets the requested data and sends the
data back to your program using APPC/VM.

Communication within a TSAF Collection of z/VM Systems
Organizations with more than one z/VM system might need to share resources (such as a database)
among users on these z/VM systems. The Transparent Services Access Facility (TSAF) virtual machine
provides interprocessor communications services for a TSAF collection of up to eight z/VM systems. (A
TSAF collection can also consist of one z/VM system which does not require the TSAF virtual machine.)
Programs, through APPC/VM, communicate with programs in other virtual machines located throughout
the TSAF collection of z/VM systems. To support this type of communication, z/VM's TSAF component is
required along with its CMS and CP components. In Figure 77 on page 462, the TSAF virtual machine
(running on CMS) connects the two z/VM systems so that programs running in virtual machines on
different systems can communicate with APPC/VM.

Figure 77. Communication within a TSAF Collection

As with the previous example, suppose your program requests access to data in a database. In this case,
however, your program and the database manager program run in virtual machines in different systems.
Because the TSAF virtual machine provides a transparent path to the other system, your program can
communicate with the database manager program without knowing that the database is located on
another system. As in the single z/VM system case, your program's data request passes to the database
manager program; the database manager program then gets the requested data and sends it back to your
program.

Communication Outside Your z/VM System, TSAF, or CS Collection
Your organization may need to share resources with another system or with systems that are not part of
the same TSAF or CS collection. These systems may or may not be z/VM systems—and they could even
be non-IBM systems. The Advanced Communications Function for the Virtual Telecommunications Access

Introduction to Connectivity Programming

462 z/VM: 7.2 CMS Application Development Guide

Method (ACF/VTAM*, or VTAM for short), Group Control System (GCS), and APPC/VM VTAM Support (AVS)
provide these types of communications services.

• ACF/VTAM controls telecommunications activity and interprocessor communications in an SNA
network.

• GCS manages subsystems that support an SNA network and provides an interface between these
subsystems and CP. ACF/VTAM runs in a GCS virtual machine on z/VM. GCS is a z/VM component.

• AVS provides the interface between ACF/VTAM and APPC/VM. AVS is also a z/VM component.

With AVS and ACF/VTAM, a program in a TSAF collection, through APPC/VM, can communicate with:

• Other programs residing in z/VM systems on different TSAF or CS collections or within an SNA network.
• Programs on non-z/VM systems in the SNA network.

AVS and VTAM support communications between a TSAF or CS collection and systems in the SNA network
because they provide the SNA network with a view of the TSAF or CS collection. To support this type of
communication, VTAM and AVS (as well as GCS) are required in a TSAF or CS collection along with CMS
and CP.

Communication between a z/VM and Non-z/VM System
In Figure 78 on page 463, AVS and VTAM connect the TSAF collection (made up of two z/VM systems) to a
non-z/VM system in the SNA network. AVS translates information between APPC/VM and APPC/VTAM (the
VTAM implementation of APPC). VTAM provides the path between the TSAF collection and the system in
the SNA network.

Figure 78. Communication between a TSAF Collection and an SNA Network

Suppose you have a program, running in a non-z/VM system located in the SNA network, that requests
data from a database. Your request is made using APPC. The database manager program is located in
a system in the TSAF collection. Your request is routed to the TSAF collection over a path through the
SNA network between your workstation and VTAM in the TSAF collection. VTAM routes your request to
AVS which translates the request from APPC/VTAM to APPC/VM. TSAF then routes the connection to the
database manager program through the path established between TSAF virtual machines because AVS
and the database manager are on different systems in the collection. The database manager program gets
the data and then sends it back to your program.

CPI Communications programs on workstations and APPC/VM programs on VM/ESA systems in a CS
collection can communicate with APPC programs located in an SNA network. The AVS component and
VTAM provide a path between VM/ESA systems in the CS collections and the SNA network. ISFC, AVS, and
VTAM provide a transparent connection between the CPI Communications or APPC/VM program in the CS
collection and the APPC program in the SNA network. Using ISFC, AVS, and VTAM, programs in the CS
collection can access wide area network resources and programs in this network can communicate with
resources in the CS collection.

Introduction to Connectivity Programming

Chapter 30. Introduction to Connectivity Programming in CMS 463

Communication between Two TSAF Collections
Figure 79 on page 464 illustrates an example that is similar to Figure 78 on page 463, except this time
AVS and VTAM connect two TSAF collections (each made up of one z/VM system) in the SNA network.

Figure 79. Communication between Two TSAF Collections

For example, suppose you have a program running in a TSAF collection, and that TSAF collection is part
of an SNA network. Your program requests data, using APPC/VM, from a database. The database manager
program is located in a different TSAF collection in the SNA network. When your program requests data
from the database, the request goes to AVS, where it is transformed from APPC/VM to APPC/VTAM.
The request then passes over the path established by VTAM to the second TSAF collection. AVS in the
second collection translates the request from APPC/VTAM to APPC/VM. TSAF then passes the request
to the database manager program. (The request is not routed through TSAF virtual machines, because
AVS is located in the same system as the database manager.) The database manager program gets the
requested data and then, through APPC/VM, sends it back to your program.

Summarizing z/VM Program-to-Program Communication
As described in this chapter and summarized in Figure 80 on page 465, the APPC/VM programming
interface lets your APPC/VM programs in a VM system communicate with APPC programs located in:

• Same z/VM system
• Different z/VM system in the same TSAF collection
• z/VM system in an SNA network that has AVS and VTAM running
• z/VM system in a different TSAF collection that has AVS and VTAM running
• Non-z/VM system in an SNA network that supports the APPC protocol
• Workstation in an SNA network that supports the APPC protocol
• Non-IBM system in an SNA network that supports the APPC protocol.

Introduction to Connectivity Programming

464 z/VM: 7.2 CMS Application Development Guide

Figure 80. Summary of z/VM Connectivity

Introduction to Connectivity Programming

Chapter 30. Introduction to Connectivity Programming in CMS 465

Introduction to Connectivity Programming

466 z/VM: 7.2 CMS Application Development Guide

Chapter 31. Understanding Communications
Programming Terminology

This chapter describes the terminology used with the APPC communications supported by TSAF, AVS, and
ISFC. This terminology includes SNA communication terms and VM communication terms. See “Systems
Network Architecture Terminology” on page 467 for the definitions of SNA terms. VM terms are defined
under “VM Terminology” on page 470.

Systems Network Architecture Terminology
The following SNA terms are briefly described in this section. See the Systems Network Architecture
Transaction Programmer's Reference Manual for LU Type 6.2 for detailed descriptions of SNA terms and
concepts.

• SNA network
• Logical unit
• Session
• Transaction program
• Conversation
• Mode name
• Session limit
• Contention
• Session security
• Conversation security
• Negotiation.

What Is an SNA Network?
A network is a group of two or more interconnected computing units that lets information be
electronically sent from one computing unit to another. The information sent can range in size from a
one-line transaction to a book-size online document. An SNA network:

• Enables the transfer of data between end users (typically, terminal operators and application programs),
and

• Provides protocols for controlling the resources of any specific network configuration.

What Is a Logical Unit?
The SNA network consists of physical processors, called nodes, which are connected by physical data
links. The SNA network also consists of logical processors, called logical units (LUs). An LU lets a user
gain access to network resources (such as programs) and communicate with other users. LUs provide
protocols that let users communicate with each other.

LU 6.2 is a particular type of SNA logical unit. LU 6.2 provides a connection between its users and network
resources (often called transaction programs). The protocol that LU 6.2 provides is called Advanced
Program-to-Program Communications (APPC).

What Is a Session?
In SNA, a session is a logical connection between LUs. Sessions can be compared to phone lines through
which data flows between the LUs. An LU 6.2 can support more than one session concurrently with the

Understanding Communications Programming Terminology

© Copyright IBM Corp. 1990, 2022 467

same partner LU. Such sessions are called parallel sessions. An LU 6.2 can support sessions with multiple
LUs.

What Is a Transaction Program?
A transaction program is an application program that helps users access resources in a network.
A transaction program uses the services provided by the LU to communicate with other transaction
programs by issuing transaction program verbs (APPC functions). A transaction program depends on
program-to-program communications with another transaction program for some or all of its processing.

What Is a Conversation?
While LUs are connected by sessions, transaction programs are connected by conversations. Just as a
session is a logical connection between the LUs, so is the conversation a logical connection between two
transaction programs. LU 6.2 treats a session as a reusable connection between two LUs. One session can
support only one conversation at a time, but one session can support many conversations in sequence.
Because sessions are reused by multiple conversations, a session is a long-lived connection compared to
a conversation.

To establish a conversation, a transaction program specifies the name of the remote LU, the name of the
transaction program, the session mode name (that identifies certain session characteristics), and security
parameters. The LU name specified by the transaction program is a network addressable unit that routes
the connection within the SNA network.

If a session with the characteristics of the specified mode name exists between the two LUs and the
session is not being used for another conversation, the LUs assign that session to the new conversation
for its use. If a session is not available, the LU starts a new session using the specified mode name. This
new session is then used for the conversation.

After the conversation is initiated, the two transaction programs use LU 6.2 verb functions to send
and receive data as necessary to accomplish the transaction. When the transaction is finished, one
transaction program ends the conversation. That session is now available for another conversation
between transaction programs using the session's LUs as entry points into the SNA network.

What Is a Mode Name?
LU 6.2 associates each session with a set of characteristics called a mode name. Mode names define
characteristics such as pacing levels and class of service. Examples of pacing levels and classes of service
are secure, ASCII data, satellite communication, high speed, batch, and interactive. When transaction
programs request a conversation, they cannot specify which session to use for the conversation,
but they can specify what the characteristics of the session are. Transaction programs specify these
characteristics by the mode name. Mode names are assigned by the system administrator.

All sessions between a pair of LUs that have the same mode name are called session groups. These
sessions form a group that can be treated as a pool of sessions sharing the mode name characteristics.
Programs can control the size of the pool, but the LU is responsible for actually handling the individual
sessions that make it up.

LUs can define several different session groups for sessions with another LU. Thus, an LU could have a
FILESERV mode name defined for sessions with a partner LU used by file-server programs, and other
mode names such as INTERACT defined for sessions with the same LU used for database queries. In this
example, FILESERV could denote sessions with a large request size, which would aid bulk transmission of
data.

What Is a Session Limit?
LU 6.2 does not allow an unlimited number of sessions between a pair of parallel-session capable LUs.
Limits are imposed on the number of total sessions LUs may have between them. These limits are called
session limits. Because each mode name has its own session limits, LU pairs have multiple session limits.

Understanding Communications Programming Terminology

468 z/VM: 7.2 CMS Application Development Guide

LUs may be limited, for example, to five sessions with another LU using a mode name of HISPEED, while
being able to have 10 sessions with the same LU using a mode name of SECURE.

Session limits can be dynamically defined while the programs are executing. LU 6.2 defines Change
Number of Session (CNOS) verbs that can change session limits. The session limit defined by the CNOS
verbs limits the number of conversations that can be active. If there are 10 sessions, then there can only
be 10 concurrent conversations active.

What Is Contention?
It is possible for two LUs to attempt to allocate a conversation over the same session at the same time.
This situation is called contention. It is resolved by designating one of the LUs the contention winner for
the use of the session. The other LU is the contention loser.

A contention winner can allocate the session without informing the contention loser. A contention loser
can request use of the session from the contention winner. For LU 6.2 programs, the LU is responsible
for requesting use of sessions on the contention loser side and granting or denying it on the contention
winner side. Programs need not be concerned with this process.

Generally, parallel session-capable LUs can divide the contention winner role between them for their
sessions. The number of winners is divided based on which LU will typically start a conversation. For
example, if two LUs have 10 parallel sessions and if the conversations will be equally started by both
LUs, one LU may be designated the contention winner for five sessions and the other LU the contention
winner for five sessions. The number of contention winners can be defined at system definition time
or dynamically. A CNOS verb sets the contention winner and contention loser values. When you enter
a CNOS verb, you may not want to set the contention loser and winner values equal. For example, if a
workstation is attached to a host, the workstation would define a large number of contention winners and
a small number of contention losers because it will initiate more conversations to connect to the host than
the host will initiate to connect to the workstation.

What Is Session Security?
Session security or session level LU-LU verification verifies the identity of each LU to its session partner
LU during session activation. The same LU password specification must be defined at both LUs. There are
two types of password specification:

• NONE that indicates no LU-LU password is to be defined.
• NAME that specifies the LU-LU password.

What Is Conversation Security?
For each conversation, conversation security information is sent to the target LU and the target
transaction program. The target LU receives an access security field that indicates the type of security
being used, an access security user ID that uniquely identifies the source (requesting) program, and an
access security password. The target LU verifies the user ID and password. The LU then uses the verified
user ID to determine if the source transaction program can connect to the target transaction program. The
target transaction program receives the access security type and the access security user ID.

The extent to which a target transaction program uses the access user ID to determine if the requester
can connect can vary. Some transaction programs, like a public bulletin board, choose not to use the
access user ID. They let any transaction program access the information. Other transaction programs, like
a database manager, can use the access user ID to determine which data can be accessed by the source
transaction program.

The source transaction program specifies in its allocation request what type of access security
information will be sent to the target LU and target program. The three types of access security defined by
APPC are:

• SECURITY(PGM)
• SECURITY(SAME)

Understanding Communications Programming Terminology

Chapter 31. Understanding Communications Programming Terminology 469

• SECURITY(NONE).

Specifying SECURITY(PGM) indicates that the source transaction program is sending an access security
user ID and password in its allocation request. The target LU verifies the access security user ID and
password and determines if the source program is authorized to connect to the target transaction
program. The target transaction program receives the access security user ID and can use it to determine
if the source program can access its resources.

Specifying SECURITY(SAME) indicates that the source transaction program is not sending an access
security user ID or password in its allocation request. The access security user ID that was used to invoke
the source transaction program is sent to the target LU and transaction program. The target LU and target
transaction program determine if the source program should be allowed to connect.

In APPC/VM, the requesting program that specifies SECURITY(SAME) does not specify the access user
ID in the allocation request. The logon user ID that was used to invoke the requesting program when the
user logged on is sent by CP to the target transaction program in the connection request information.
The target transaction program can then determine who is attempting to communicate and can decide
if the requester should be allowed to communicate. VM's Shared File System (SFS) is an example of a
transaction program that uses the access user ID (logon user ID) to determine which users are authorized
to use certain files.

SECURITY(SAME) should be used when a program requests services for another program. For example,
the source program (B) was invoked by a transaction program (A) which specified SECURITY(PGM). B in
turn requests the services of another transaction program (C) to satisfy the request of A. When B requests
access to C, it specifies SECURITY(SAME) indicating that C will receive the access security user ID that
was used to invoke B (A's user ID) not B's access security user ID. The source program (B) is called an
intermediate server, because it requests services from the target (C) for A.

Specifying SECURITY(NONE) indicates that the source transaction program is not sending any access
security information in its allocation request. The target LU and transaction program will not receive an
access security user ID. The remote LU cannot determine if the source transaction program is authorized
to connect to the target transaction program. The target transaction program cannot determine which
transaction program is requesting a connection and is written to allow any transaction program to
connect. A public bulletin board is an example of a program that does not need to know which users
access it and that would allow any user access. If a conversation is allocated with SECURITY(NONE), a
workstation not part of the LU where the bulletin board resides could access the bulletin board.

What Is Negotiation?
To coordinate activities in an SNA network, the LU 6.2 protocol lets LUs negotiate values. For example,
one LU has issued a CNOS verb that indicates it wants a session limit of 10,000 sessions between itself
and its partner LU. The partner LU may only want to have 5,000 sessions between itself and the other LU.
The partner LU can negotiate with the other LU to decrease the number of sessions down to 5,000. The
contention winner and contention loser values defined on the CNOS verb and the access security levels
can also be negotiated.

VM Terminology
The following VM connectivity terms are briefly described here. These terms are described in more detail
in other sections of this book.

• TSAF collection
• CS collection
• Domain and domain controller
• VM resource

– Local
– Global
– System

Understanding Communications Programming Terminology

470 z/VM: 7.2 CMS Application Development Guide

– Private
• Communications partners

– Resource manager
– User program

• AVS Gateways

– Global gateway
– Private gateway

• System gateway.

What Is a TSAF Collection?
A TSAF collection is a group of up to eight interconnected z/VM systems each of which has a TSAF virtual
machine installed and running.

A TSAF collection has the following properties:

• Automatic formation

Systems can dynamically join and leave the collection.
• Automatic resource identification

VM resources (transaction programs) can dynamically identify themselves within the TSAF collection
without manual intervention.

• Transparent access to VM resources

VM resources can be accessed by APPC/VM programs within the collection without regard to the
resource's location.

• Single name space for global resources and user IDs

Global resources are known throughout the collection and their names are unique within a collection.
User IDs uniquely identify a particular user.

For programs in a TSAF collection to communicate, a logical connection must be established between the
programs. Within a single VM system, CP provides an APPC/VM path that logically connects two programs.
Within a TSAF collection, CP provides an APPC/VM path that connects each program with the TSAF virtual
machine on its system. The TSAF virtual machines provide a logical APPC/VM path (a communications
link) between the two systems, thus letting the two programs communicate.

What Is a CS Collection?
A Communication Services (CS) collection is a group of interconnected domains consisting of VM systems
using ISFC to communicate. A CS collection has the following characteristics:

• Automatic formation

Systems can dynamically join and leave the collection.
• Automatic resource identification

Resources can dynamically identify themselves within the CS collection without manual intervention.
• Transparent access to resources

Resources in the CS collection can be accessed by APPC/VM programs running on z/VM systems using
ISFC in the collection.

• Single name space for global resources and user IDs

Global resources are known throughout the CS collection and their names are unique within the
collection. A user ID uniquely identifies a particular user.

Understanding Communications Programming Terminology

Chapter 31. Understanding Communications Programming Terminology 471

What Is a Domain?
A domain consists of users and a domain controller. A group of interconnected domains form a CS
collection. In a z/VM system running ISFC, CP acts as the domain controller for all of the users defined in
the directory of that system and authorized to use APPC/VM communications.

Transaction programs can use ISFC to access resources, manage resources, and allow users to access
shared resources. Transaction programs can reside in virtual machines on a VM system. Users of these
transaction programs must sign-on to a domain to be able to access or manage resources. This sign-on
ensures a user is authorized to use resources in the CS collection.

What Is a VM Resource?
A VM resource is a program, a data file, a specific set of files, a device, or any other entity or set of entities
that you might want to identify for use in application program processing. A VM resource is identified by
a VM resource name. A VM resource maps to a transaction program, and a resource name maps to a
transaction program name.

A single program can be represented by one or more resource names. For example, a database program
that manages two databases, DB1 and DB2, could be known by the resource name DB1 for requests to
database DB1. However, the same program could be known by the resource name DB2 for requests to
database DB2. Resources are managed by resource managers that run in server virtual machines (see
“What Are Communications Partners?” on page 474).

A resource can be located on the local system or on any other system within the TSAF or CS collection.
There are four types of resources in a TSAF or CS collection:

• Local
• Global
• System
• Private.

The following sections briefly describe the features of the four different types of resources. See z/VM:
Connectivity for a detailed description of the different resource types.

What Are Local and Global Resources?
A local resource is known only to the local system, and a global resource is known to all systems in
the TSAF or CS collection. Only authorized users on the local system can access local resources. When
a resource is local, the names of the resources only need to be unique within the local system and not
within the TSAF or CS collection. Resources (for example, a printer) that should be limited to the users of
one system should be defined as a local resource to that system.

Authorized users in the TSAF or CS collection or the SNA network can access global resources. Each
global resource name must be unique within the TSAF or CS collection in which it resides. Resources
(for example, databases) that contain dynamic information needed by users in the TSAF or CS collection
should be defined as global.

Global and local server virtual machines are explicitly logged on and the resource managers are explicitly
invoked. Therefore, the resource managers are always ready for requests.

If a local and global resource are defined with the same name, the resources are accessed as follows:

• When a local user on the local VM system requests to communicate with the resource, CP routes the
user to the local resource. TSAF or ISFC routes the local user to a global resource only if a local resource
by that name does not exist.

• When a remote user on another VM system in the TSAF or CS collection requests to communicate with
the resource, TSAF or ISFC routes the user to the global resource, even if a local resource with the same
name also exists on the target system.

Understanding Communications Programming Terminology

472 z/VM: 7.2 CMS Application Development Guide

For example, there are two printers, where one is defined as a local resource on the local system and
the other is defined as a global resource. Both resources are identified as PRINTER. When the local user
requests to communicate with the local resource PRINTER and the local resource is unavailable, the local
user will be routed to the global resource PRINTER.

What Are System Resources?
A system resource is known only to the z/VM system where it is located but is remotely accessible from
other systems. A system resource name only needs to be unique to that system. Any authorized user in
the TSAF or CS collection or the SNA network connected to the system on which the system resource
resides can access the system resource. From a SNA system, they are accessed by an AVS global gateway.
Note that AVS must be running on the same VM system as the target system resource. From a requester
on the same VM system, they are accessed the same as a local or global resource on that system. From
a TSAF or CS collection, system resources are accessible through the system gateway of the system on
which the system resource resides. This is done using an LU name of SYSGATE, where SYSGATE is the
system gateway of the target system, and a TPN of the name of the system resource. See “What Is a
System Gateway?” on page 476 for more information. See Table 69 on page 489 for identifying the target
of a connection request.

The server virtual machine must be authorized to manage a system resource. This authorization is the
same that is required for a global resource manager.

Like local and global resource server virtual machines, the system resource server virtual machine needs
to be logged on and the resource manager needs to be invoked before requests for a connection to that
resource can be completed successfully.

What Are Private Resources?
A private resource is known only to the virtual machine in which it is located. It is not identified to CP, and
not explicitly known throughout the TSAF or CS collection. In the private resource server virtual machine,
there is a special NAMES file that lists the private resources and authorized users for each resource. Each
private resource name within the TSAF or CS collection only needs to be unique within the virtual machine
in which it resides. Any authorized users in the TSAF or CS collection or the SNA network can access
private resources.

Resources (for example, a plotter) that are not frequently used should be defined as private. Resources
that need to be limited to a single user should also be defined as private. For example, a user working
on a workstation uses a program to access files in their virtual machine. These files would be defined as
private resources and the workstation user would be the only authorized user of the resources. A resource
that needs to be limited to a single user (like the previous example) or to a group of users (for example, a
department) should be defined as private.

If a system administrator wants to control access to a resource rather than having the resource manager
program control access, the resource should be defined as private. The system administrator can create
a protected batch-like environment using private resources. The administrator can authorize the server
virtual machine to issue privileged instructions. The administrator can also identify which programs run in
the server virtual machine and limit which users can run certain programs.

Unlike local and global resource server virtual machines, the private resource server virtual machine
does not need to be logged on and the resource manager does not need to be invoked when a program
requests a connection. If the private resource server virtual machine is not logged on and its CP directory
entry contains an IPL CMS statement, CP will automatically log it on and invoke the private resource
manager.

In a CS or TSAF collection, private resource support has been enhanced with the system gateway. Using
the system gateway in these environments, the same private server may be defined on all systems in a
TSAF or CS collection. The system gateway may be used to selectively choose the desired private server.
In this case the LU name would be SYSGATE USERID where SYSGATE is the system gateway name of the
target system and USERID is the user ID of the private server.

Understanding Communications Programming Terminology

Chapter 31. Understanding Communications Programming Terminology 473

Resource Interrelationships
Here are some resource interrelationships:

• A VM system can have local and global resources with the same name, and can also have local and
system resources with the same name. In these cases, user requests originating on the same VM
system for access to the resource will be given to the local resource. The global/system resources can
only be accessed from a remote system.

• A VM system cannot have global and system resources with the same name.
• A TSAF or CS collection enforces unique global resource names within the collection.
• A TSAF collection may have a global resource defined at one system and also have system resources

with the same name defined on other systems within the collection (one instance per system). However,
in a CS collection, a system/global resource defined at one system precludes the definition of a global/
system resource with the same name at any other node within the collection.

• A TSAF or CS collection can have system resources with the same name defined on multiple systems
(one instance per system). Selective access to these resources can be made through the system
gateway of the desired system.

• A single system can have a total of 500 global resources and gateways identified. With the combination
of 500 global resources plus gateways, the potential exists for another 65,535 local resources and
65,535 system resources.

What Are Communications Partners?
Communications partners are transaction programs that communicate when one of the programs
requests the services of the other transaction program. The transaction program that requests services
is known as a requester or user program. The service requested is access to a resource. The transaction
program that provides this service or manages this resource is known as the server or resource manager
program. The user program is the communications partner of the resource manager program, and the
resource manager program is the communications partner of the user program.

User programs and resource managers are written using the APPC/VM programming interface. Therefore,
programs running in two virtual machines in a TSAF or CS collection can communicate through the
APPC/VM programming interface. User programs or resource managers running in virtual machines in
the TSAF or CS collection can communicate through the APPC/VM programming interface with APPC
programs in the SNA network.

What Is a Resource Manager?
A resource manager is a program or set of programs executing in a virtual machine and managing access
to one or more VM resources. A resource manager (a transaction program) gets requests from the user
program (another transaction program) to access resources owned by the resource manager.

A resource manager runs in a server virtual machine. You can add entries to the server virtual machine's
CP directory entry to authorize requester virtual machines to connect to the local, global, or private
resource. You can also add entries to the private resource server virtual machine's special NAMES file to
authorize requester virtual machines to connect to private resources. For more information on this special
NAMES file and how to set up server virtual machines for different types of resources, see the z/VM:
Connectivity.

Some examples of resource managers are:

• A database manager
• A file server that manages a set of files
• A virtual machine that manages a high-function printer.

Understanding Communications Programming Terminology

474 z/VM: 7.2 CMS Application Development Guide

What Is a User Program?
A user program is a program that runs in a requester virtual machine and depends on program-to-
program communications with a resource manager for some or all of its processing. A user program starts
a conversation with the other transaction program (a resource manager) when it requests a connection to
a resource managed by the other transaction program. See z/VM: Connectivity for a description how to set
up the requester virtual machine.

What Is an AVS Gateway?
Programs in the SNA network view a TSAF or CS collection as one or more LUs. The LUs defined to
represent the TSAF or CS collection to VTAM are identified as AVS gateways in VM. Gateways are
communication servers. Defining a gateway causes AVS to:

• Let the rest of the SNA network access a defined set of resources, the TSAF or CS collection as the LU
whose name is the same as the AVS gateway's name.

• Communicate with the remote LUs in the SNA network for the APPC/VM programs in the collection as if
these programs resided at the LU whose name is the same as the AVS gateway's name.

AVS gateways are managed by the AVS virtual machine. Gateways can be dynamically added or deleted.
ISFC and the TSAF virtual machine keep up-to-date lists of all gateways in the collection. Each gateway
name must be unique within the TSAF or CS collection where the AVS virtual machine resides.

AVS and VTAM provide services for any two programs using the APPC protocol to communicate with each
other. One program, which uses APPC/VM, is located in the TSAF or CS collection. The other program
is outside the TSAF or CS collection. So that the programs can communicate, AVS establishes a logical
connection between the APPC/VM program in the TSAF or CS collection and the APPC program in the
SNA network so that these programs can communicate. The TSAF virtual machine provides any necessary
connections between the collection's VM systems. CP provides the connection between the APPC/VM
program and AVS. ACF/VTAM provides the session between AVS and the remote LU.

Two types of gateways provide access to resources in the TSAF or CS collection: global gateways provide
access to global and system resources; private gateways provide access to private resources. A global
resource is known to all the systems in a TSAF or CS collection and a private resource is known only
to a virtual machine. Therefore, a system can have both a global and private resource with the same
name. Requesting a connection to a resource through a specific gateway type lets VM know which type of
resource to search for in satisfying the request. For example, a request to connect to a resource through
a private gateway lets VM know to look for a private resource. Global and private gateways are defined
by the AVS command AGW ACTIVATE GATEWAY (described in z/VM: Connectivity). The gateway name is
really the name of an LU for use in communicating over a SNA network.

What Is an AVS Global Gateway?
APPC programs in the SNA network use AVS global gateways to access global resources that reside in
the TSAF or CS collection. Global resource managers use the global gateways to access APPC programs
in the network. An SFS file pool is an example of a resource that could be identified as a global resource
in a TSAF or CS collection. Users in a VM system located in the SNA network would access this file
pool through the global gateway defined in the TSAF collection. Global gateways are also used to access
system resources, but the resource must reside on the same system that the global gateway is identified.

What Is an AVS Private Gateway?
APPC programs in the SNA network use AVS private gateways to connect to private resources located in
the TSAF or CS collection. Private gateways can be defined as either dedicated or nondedicated when the
private gateway is activated.

Private gateways can be dedicated to a single user ID. When a private gateway is mapped to a particular
user ID, all connection requests routed through that gateway will be directly sent to that user ID. The
connection request is not checked to determine which user ID is the target of the request. This dedicated

Understanding Communications Programming Terminology

Chapter 31. Understanding Communications Programming Terminology 475

private gateway should be defined for private resource server virtual machines that receive requests from
multiple users.

A nondedicated private gateway can be used to connect to multiple user IDs. It is not dedicated to a
particular user ID. Connection requests routed through a nondedicated gateway are checked to determine
the user ID to which the connection request needs to be routed. One nondedicated private gateway could
be used by all users who are requesting access to their own virtual machine.

Private gateways may be associated with a Conversation Management Routine (CMR). A CMR is a service
pool manager which routes incoming connections from the SNA network to an available service pool
virtual machine.

What Is a System Gateway?
A system gateway is a gateway defined by the VM system (CP) during IPL and provides a way to access
resources (global, private, or system) on a specific system within a TSAF or CS collection. Figure 81 on
page 476 shows two systems in a TSAF collection both having a system resource X identified. A user
on system VM1 can access system resource X on system VM2 through the system gateway of the target
system (VM2).

Figure 81. Using a System Gateway to Get System Resources

Similarly, Figure 82 on page 476 shows two systems in a TSAF collection, both with the user ID Z defined,
where Z is a private resource manager. User Y on system VM1 can access private resource manager Z on
VM2 through the system gateway of the target system (VM2).

Figure 82. Using a System Gateway to Get to a Private Resource Manager

The system gateway also provides access to private and global resources in a CS collection from an
adjacent TSAF collection. Similarly, private and global resources in a TSAF collection can be accessed
from an adjacent CS collection, as shown in Figure 83 on page 477.

Understanding Communications Programming Terminology

476 z/VM: 7.2 CMS Application Development Guide

Figure 83. Using a System Gateway to Get Resources on an Adjacent Collection

The system gateway name for a system is identified automatically when CP is initialized on the system.
As the default, the system gateway name is the same as the system name that was specified on the
SYSTEM_IDENTIFIER configuration statement. This is the recommended naming convention. However,
if the default system gateway name conflicts with another gateway name, you can specify a unique
gateway name on the SYSTEM_IDENTIFIER configuration statement. See the z/VM: CP Planning and
Administration for more information about the SYSTEM_IDENTIFIER configuration statement.

Understanding Communications Programming Terminology

Chapter 31. Understanding Communications Programming Terminology 477

Understanding Communications Programming Terminology

478 z/VM: 7.2 CMS Application Development Guide

Chapter 32. Program-to-Program Communications

This chapter introduces communications programming concepts and presents some overall information
you will need to write user programs or resource manager programs.

Basic Concepts
Before we start getting into the details of program-to-program communication, this section provides a
foundation for you to understand basic APPC communications concepts.

Communications Partners
In a typical scenario, a user program wants to communicate with a resource manager program. These two
programs are called communications partners. In the following figure, A is the partner of B, and B is the
partner of A. In a CS collection, user programs can be located on z/VM, DOS, NetWare, Windows®, AIX® , or
OS/2® systems. Resource manager programs can be located on z/VM, AIX, OS/2, or NetWare systems.

Figure 84. Communications Partners

However, there could be a virtual machine in the middle that allows for communications between the
two partner programs. This "middle virtual machine" is called an intermediate server, as shown in the
following figure.

Figure 85. Intermediate Servers

For a connection outside your local system within a TSAF collection, the TSAF virtual machine is
an intermediate server. For a connection outside your local system within a CS collection, CP is an
intermediate server. For a connection outside of the TSAF collection, the AVS virtual machine is an
intermediate server. TSAF and AVS are special types of intermediate servers called communications
servers. Note that for terminology purposes, even if a request is routed through one or more intermediate
servers, A's communications partner is B because the intermediate servers are transparent.

Paths
So that two programs can communicate, a logical connection must be established between them.
When this connection is established, the system supplies a name that a program uses to reference the
connection. This connection is known as a conversation in APPC. In APPC/VM, this connection between
programs is called a path.

States
APPC is a half-duplex protocol. That means data can be transmitted back and forth between partners,
but communications can only go in one direction at a time. For instance, if program A is sending data, its
partner, program B, cannot send data until A is done sending.

Program-to-Program Communications

© Copyright IBM Corp. 1990, 2022 479

To let programs communicate, APPC enforces conversation states. These states govern what functions a
program can and cannot perform on a conversation.

The basic set of conversation states are:
Reset

The initial state, before communications begin.
Send

The state in which a program is allowed to send data.
Receive

The state in which a program is ready to receive data.
Confirm

The state in which a program must respond to its communications partner.
Deallocate

The state a program is in when its partner stops communications.

As the program issues functions on a conversation, the state of this conversation can change. The change
in the state of the conversation is a result of the function issued, the result of a function issued by a
partner or result of a system error. A program with multiple conversations could have each conversation
in a different state at any given point in time. For example, one conversation can be in receive state and
another in read state concurrently.

The CPI Communications (also known as SAA communications interface) and APPC/VM assembler
programming interfaces each implement these basic states in various ways. See Chapter 33,
“Understanding CPI Communications,” on page 493 for details on CPI Communications. See z/VM: CMS
Application Development Guide for Assembler for details on using the APPC/VM assembler interface.

Using Basic Communications Functions
Regardless of what programming interface you use, there are three basic steps when communicating with
another program:

1. Starting communications
2. Sending and receiving data
3. Ending communications.

You can think of program communications as being analogous to typical, everyday telephone
communications. The following sections discuss the three basic steps and draw on the telephone analogy.

Step 1: Starting Communications with Another Program
To start communications, a program must first establish a connection. How your program makes the
connection depends on where its target (partner) program is located. When establishing communications,
you must identify your partner program, and we will talk more about this later in this chapter. Think of
establishing program communications as being analogous to dialing a telephone.

When your program issues a command to connect, your communications partner gets notified. After
getting your request to connect, your communications partner can respond in one of two ways:

• Accept the connection, if it wants to communicate with your user program. Think of this as being
analogous to answering a ringing telephone, finding out who is calling, then deciding to talk.

• Reject the connection, if it does not want to communicate with your user program. Think of this as being
analogous to answering a ringing telephone, finding out it is the wrong number, then deciding to hang
up.

The system where the target program resides, and the target program itself, can selectively decide what
programs it will communicate with. We will also talk more about this later in this chapter.

Program-to-Program Communications

480 z/VM: 7.2 CMS Application Development Guide

As mentioned earlier, your program can connect to resources that are in your same system, your same
TSAF collection, your same CS collection, or in an SNA network. The following scenarios show the types of
connections for a source program in z/VM.

Requesting to Start Communications with a Program on Your System: If the resource is on your own
system (VMSYS1 in the following figure), CP routes you there without the need for ISFC or the TSAF virtual
machine. The resource can be either local, global, system, or private.

Figure 86. Target Program Located on the Same System

Requesting to Start Communications with a Program on a Different z/VM System: If a virtual machine
on another system within the TSAF collection is managing either a global or private resource (VMSYS2 in
the following figure), the TSAF virtual machine routes the connection to that resource manager program.
Note that a user program on VMSYS1 can connect to a system resource on VMSYS2 through the system
gateway of VMSYS2. See z/VM: Connectivity for more information.

Figure 87. Target Program Located on Another z/VM System

Requesting to Start Communications with a Program in an SNA Network: If your program connects to
a resource not in the same TSAF collection, AVS and VTAM route the connection to the appropriate LU in
the SNA network. This LU may be another TSAF collection as shown in Figure 88 on page 482.

When trying to start communications with a program outside of your own TSAF collection, you need
special allocate data so that the request gets properly routed.

Program-to-Program Communications

Chapter 32. Program-to-Program Communications 481

Figure 88. Target Program Located in an SNA Network

Step 2: Sending and Receiving Data
When your program requests to start communications and your communications partner accepts the
connection, your program can now send data. As your program sends data, your communications partner
is notified, and it can then receive the data. Think of this as being analogous to the talking that takes place
in a typical telephone conversation.

Once a connection is established, the requesting program is in Send state for the conversation, and its
communications partner is in Receive state. You can only receive data, status, or both when you are in the
Receive state. In Send state you can send data or switch to Receive state to allow your partner to send
data.

To send data, your program must specify buffers. How you set up the data within those buffers depends
on whether your program and your partner are using mapped conversations or basic conversations.
Briefly, programs using mapped conversations just specify data in buffers; programs using basic
conversations must format data into APPC logical records before sending it. Communications partners
must agree to which conversation type they will be using before starting communications.

Step 3: Ending Communications with Another Program
When your program is finished communicating with your partner program, your program should end
communications with your partner. Your partner will then receive notice that you are finished, and then
it will typically finish also. Think of this as being analogous to hanging up the telephone when you are
finished talking.

Using Advanced Communications Functions
In addition to starting and ending conversations, and sending and receiving data, your communications
programs can take advantage of advanced communications functions of:

• Requesting confirmation
• Signaling an error
• Requesting to send data
• Establishing a protected conversation.

Requesting Confirmation
Before you send more data, switch states or deallocate the conversation, you may request that your
communications partner confirm that everything is okay before you continue with the next function.

• When you are sending data to another virtual machine, you can ask your communications partner to
confirm that it received the data and you should continue to send data. When your program tries to do
this, your partner will do one of the following:

– Indicate that your program can continue sending data

Program-to-Program Communications

482 z/VM: 7.2 CMS Application Development Guide

– Indicate that something is wrong
– End communications.

• When you are in Send state and wish to switch to receive state, you can ask your communications
partner to confirm that this is okay, before making the state change.

If you want your program to be able to request confirmation, you must specify a synchronization level of
Confirm when you start communications. Think of this as being analogous to a telephone conversation
where at specific points in the conversation you will not continue talking until you hear a specific,
expected reply from your partner.

• When you are in Send state and wish to end communications, you can ask your communications partner
to confirm that this is okay, before the deallocate is done.

Signaling an Error
When you sense that there is an error in the communication, whether you are in Send or Receive state,
you can signal your communications partner to cause a break in the normal send/receive sequence.

When sending an error notice to your communications partner, you can also send data that describes
the error in more detail to help your partner diagnose the error. Think of this as being analogous to a
telephone conversation where you interrupt your partner's speaking, telling him you do not understand
what he is talking about.

Requesting to Send Data
At some point, while your partner is sending data, you can let him know that you want to send data. Your
partner may choose to ignore your request or agree to your request. If your partner agrees to your request
and switches to Receive state, then you would be able to send data. Think of this as being analogous to a
telephone conversation where your partner is talking but you interrupt to ask if you can talk.

Establishing a Protected Conversation
When you are updating two or more resources, you should consider using conversations set up with
a synchronization level of sync point. Such conversations are called protected conversations and take
advantage of CMS's data integrity facility, Coordinated Resource Recovery (CRR). CRR ensures that all
participating resources are be updated (if no errors occur) or no updates are made (if an error occurs).

For example, suppose you want to transfer money from an account in one bank to an account in a
different bank. CRR would prevent one account decreasing without the other account increasing. That
is, if something happened after one account was decreased but before the other account was increased,
CRR would notify the partner application to undo changes to the account that was decreased and the two
accounts would appear as if nothing occurred.

Identifying Your Communications Partner
For a program initiating a conversation, it must provide certain information to identify its partner. This
includes the partner's transaction program name and other information that describes where the partner
program is located.

A program can choose to explicitly provide this information when it starts communications. However, a
program can also implicitly provide this information by just specifying a symbolic destination name. This
symbolic destination name maps to the partner's transaction program name and location information. For
VM, this mapping is done by a CMS communications directory file.

Using a CMS Communications Directory
If a communications directory is set up at your installation, your program can simply specify a symbolic
destination name to communicate with your partner program. The partner program could be on the same
system, in the same TSAF or CS collection, or in a system in an SNA network.

Program-to-Program Communications

Chapter 32. Program-to-Program Communications 483

A CMS communications directory is a special NAMES file that maps symbolic destination names to the
location and access security information necessary to connect to a target resource. Resources can be
relocated without your programs changing, because the location of the resource is transparent to your
program—only your communications directory would need to be updated.

There can be two user-configurable levels of communications directory files: a system level and a
user level. The system administrator should set up a system-level communications directory file, and
it should be in effect when you log on to your virtual machine. However, you can also create your own
communications directory file by using XEDIT. You might wish to do this for the following reasons:

• Your programs use symbolic destination names that are not in the system file.
• Your programs need to connect to programs that are not specified in the system file.
• You want to override definitions in the system communications directory. (User-level communications

directories are used before system-level ones.)

(z/VM: Connectivity contains more details about communications directory files.)

When making your own communications directory file, you must set it up using tags in a NAMES file. You
can now create or change your communications directories, SCOMDIR NAMES and UCOMDIR NAMES,
using the NAMES command. See the NAMES command usage notes in the z/VM: CMS Commands and
Utilities Reference for more information. For more information on the structure of NAMES files, see the
NAMEFIND command in the z/VM: CMS Commands and Utilities Reference.

Table 67 on page 484 summarizes the contents of a CMS communications directory file entry. The first
column identifies the tag you enter when you edit the file, and the second column describes the tag’s
contents.

Table 67. Contents of a CMS Communications Directory File

Tag Specified Value

:nick. Eight-character symbolic destination name for the target resource.

:luname. The locally known LU name, which identifies where the resource resides. It contains 2 blank-
delimited tokens, each up to 8 characters in length: an LU name qualifier and a target LU name.
The values that can be used for each depend on the connection:

Connection Locally Known LU Name Target LU Name

Private resource within the
TSAF or CS collection

*USERID Private resource manager's
user ID

Local or system resource, or
to a global resource within the
TSAF or CS collection

*IDENT or blank blank

Outside the TSAF or CS
collection

Defined gateway name Name of partner's LU

Global or system resource on
a specific system in the CS or
TSAF collection

System gateway name of target
system

blank

Private resource on a specific
system in the CS or TSAF
collection

System gateway name of the
target system

Private resource manager's
user ID

Resource at remote LU
rem_luname using AVS
gateway loc_luname

loc_luname rem_luname

Program-to-Program Communications

484 z/VM: 7.2 CMS Application Development Guide

Table 67. Contents of a CMS Communications Directory File (continued)

Tag Specified Value

:tpn. The transaction program name as it is known at the target LU. For a local or global resource,
this is the resource name identified by the resource manager. For a private resource, this is the
nickname specified in the private resource server virtual machine's $SERVER$ NAMES file. For a
resource in the SNA network, this is the transaction program name. This resource ID cannot start
with a period. The transaction program name '&TSAF' is reserved for TSAF virtual machines that
are using APPC links.

:modename
.

For connections outside your TSAF or CS collection, this field specifies the mode name for the
SNA session connecting the gateway to the target LU. For connections within the TSAF or CS
collection, this field specifies a mode name of either VMINT or VMBAT, or it is omitted. Only
user programs running in requester virtual machines with OPTION COMSRV specified in their CP
directory entry can specify connections with a mode name of VMINT or VMBAT.

:security. The security type of the conversation (NONE, SAME, or PGM). Security levels are described on
page “What Is Conversation Security?” on page 469.

:userid. The access security user ID, which is required for security type PGM; it is ignored for other
security types.

:password. The access security password, which is required for security type PGM; it is ignored for other
security types.

Note: For additional security, you can specify the access security user ID and password on the APPCPASS
statement in the source virtual machine’s directory, rather than in this file.

Once you create your own communications directory file, you must put it into effect by using the SET
COMDIR command. When a communications directory file is modified, you must use the SET COMDIR
command to put the new copy into effect. (See the z/VM: CMS Commands and Utilities Reference for
details on this command.)

For more information about identifying your communications partner, look at the tables in “Summary of
Connections” on page 488.

Resource Manager Programs
When writing a program to manage a resource, you should consider the four types of resources—local,
global, system, and private—and their differences. (See “VM Terminology” on page 470 to review the
differences between z/VM resources.)

Once you have written a resource manager program, the virtual machine in which it resides must be
properly set up and authorized. The system administrator should be the person to do this. (z/VM:
Connectivity contains the necessary information.)

Local Resource Manager Programs
Local resources are identified only to a particular system in the TSAF or CS collection, and they can only
be accessed from within that system. This means that only authorized user programs on that system can
access the local resource. You could write a local resource manager program to control access to a device,
or data that does not change often and that is easily copied. Examples of local resource managers are
programs that control access to:

• A phone directory
• A department printer.

The local resource manager must be authorized to identify a local resource. The local resource manager
must be running when a request to access its resource is made. In addition, it should be set up to do its

Program-to-Program Communications

Chapter 32. Program-to-Program Communications 485

own security checking based on the incoming user ID when a program tries to establish a connection with
security SAME or PGM.

Global Resource Manager Programs
Global resources are identified to both the TSAF and CS collections. They can be accessed by authorized
user programs in the TSAF collection, CS collection or in the SNA network. When it is important for all
users in your collection to have access to the same resource (because it changes often, for example), the
resource could be defined as global. Examples of global resources are:

• DB2 Server for VM databases
• Shared File System (SFS) file pools.

A global resource manager program must be authorized to identify a global resource. The global resource
manager must be running when a request to access its resource is made. In addition, it should be set
up to do its own security checking based on the incoming user ID when a program tries to establish a
connection with security SAME or PGM.

System Resource Manager Programs
System resources are identified only to a particular z/VM system in the TSAF or CS collection, similar to
local resources. However, they are accessible from a remote system in an SNA network, provided that
AVS is running on the same z/VM system where the system resource resides. A system resource is also
remotely accessible from a remote system in a TSAF or CS collection, provided the access is made using
the system gateway of the z/VM system where the system resource resides. For more information about
AVS or the system gateway, see z/VM: Connectivity.

A system resource manager program must be authorized to identify a global resource (global and system
resources share the same name space on a z/VM system). The system resource manager must be running
when a request to access its resource is made. In addition, it should be set up to do its own security
checking based on the incoming user ID when a program tries to establish a connection with security
SAME or PGM.

Private Resource Manager Programs
A private resource is known only within its virtual machine. However, it can be accessed by authorized
user programs in the TSAF collection, CS collection or in the SNA network. Resources that are not
frequently used or that need to be limited to a single user or group of users should be defined as private
resources. Examples of private resource managers are programs that control access to

• Plotters
• Departmental files or programs
• CMS minidisk files for a user on a workstation.

A program that issues privileged instructions should also be defined as a private resource manager
because the system administrator can control who uses the program and which programs run in a virtual
machine that is authorized to issue privileged instructions.

Considerations for Private Resources
For a private server virtual machine, CMS needs to determine if a user is authorized to access the private
resource and to determine which private resource manager should be invoked. The $SERVER$ NAMES
file is used to accomplish these tasks. The owner of the private server virtual machine registers private
resources and explicitly authorizes the user IDs of users allowed to access its private resource in the
$SERVER$ NAMES file.

Table 68 on page 487 summarizes the contents of a $SERVER$ NAMES file entry. The first column
identifies the tag you enter when you edit the file, and the second column describes the field's usage.

Program-to-Program Communications

486 z/VM: 7.2 CMS Application Development Guide

Table 68. Contents of the $SERVER$ NAMES File

Entry Tag Usage

:nick. Specifies the eight character name of the private resource. '&TSAF' is the name
reserved for TSAF virtual machines that are using APPC links for communication.

:list. Specifies the user IDs or user ID nicknames of the users (requesters) authorized to
use the private resource.

:module. Specifies the CMS-invokable name of the resource manager (program) of the private
resource specified in the nickname field. The file type of the resource manager is
either MODULE or EXEC. The private resource name specified as the nickname will
be passed to the resource manager as a parameter.

See z/VM: Connectivity for more information on the contents of the $SERVER$ NAMES file.

You can now create or change your $SERVER$ NAMES file using the NAMES command. See the NAMES
command usage notes in the z/VM: CMS Commands and Utilities Reference for more information.

The private server manager program may not need to perform security checking—CMS verifies an
incoming user ID for connections attempted with security SAME or PGM. CMS verifies this by checking
that the incoming user ID is found in the $SERVER$ NAMES file. If :list. contains "*" the program may
need to check security.

When a user program requests a connection to a private resource, the private resource manager program
does not have to be running. The private server virtual machine does not even have to be logged on.

If the private server virtual machine is logged on, CMS invokes the private resource manager program
when the program is requested. If the private server virtual machine is not logged on, CP will
automatically log on (AUTOLOG) the virtual machine, and then CMS invokes the private resource manager
program.

In addition, a private resource manager program can be invoked by a name that is different than the
requested resource name (TPN). The :module. tag in the $SERVER$ NAMES file specifies such a program
name.

Certain conditions must be met for a virtual machine to process requests for private resources in an
autologged environment:

• The following CMS commands must be set as follows:

– SET SERVER must be ON
– SET FULLSCREEN must be OFF or SUSPEND
– SET AUTOREAD must be OFF.

(Note that these commands should be set up in a PROFILE EXEC.)
• Nothing has caused CMS to issue a VM READ or CP READ.
• The console stack is empty.
• CMS is not in CMS subset mode.
• CMS is at the Ready; status.

If interactive work needs to be done on a private server virtual machine, the SET SERVER OFF command
should be issued so that any connection requests for private resources are rejected.

See “Scenario 2: Request for a Private Resource” on page 509 for an example of a private resource
manager scenario using CPI Communications routines. See z/VM: CMS Application Development Guide for
Assembler for an example of a private resource manager using the assembler APPC/VM interface. The
z/VM: Connectivity contains detailed information about setting up private server virtual machines.

Program-to-Program Communications

Chapter 32. Program-to-Program Communications 487

Intermediate Servers
You can also write a program that does not actually manage a resource, but that controls access to
another program that does manage a resource. This type of middle program resides in an intermediate
server virtual machine.

As with server virtual machines that manage resources, intermediate server virtual machines must
be properly set up and authorized. The system administrator should be the person to do this. (z/VM:
Connectivity contains the necessary information.)

An intermediate server can set up to intercept all connection requests that are intended for a final target
—a resource manager program. When the program in an intermediate server gets such a connection
request, it must then make its own connection to the final target (the resource manager program). When
the intermediate server makes this connection on behalf of a source program, it should forward the user
ID of the requesting virtual machine as the access security user ID—not the user ID of its own virtual
machine. The intermediate server can specify the original source user ID in CPI Communications and in
the APPC/VM assembler interface.

In addition, an intermediate server should also validate incoming data that a source program sends. This
is because a source program could have the proper authorization to connect to the intermediate server,
but could accidentally or maliciously send incorrect data.

Writing Versatile Programs
You can write an APPC/VM or CPI Communications program to be independent of its partner's location.
A program can basically be written the same way, regardless of whether its partner is on the same z/VM
system, different z/VM system, or other system in an SNA network.

However, a program that works when communicating with a program on the same system may not work
the same way when communicating with a program on a different system. To ensure that an application
running within a system continues to run when communicating outside of a single system, keep these
guidelines in mind:

• Write your application to handle all possible completion indications and return codes for each verb
(APPC function) your application issues. Do not assume that only a subset of completion indications can
occur. Return codes are documented with each verb, whether it be a CPI Communications routine or an
APPC/VM assembler function.

• In general, you cannot determine whether completion of a function means that your partner has
processed or even received your program's request.

For example, your program should not assume that completion of its APPCVM CONNECT function or CPI
Communications Allocate (CMALLC) routine means that your partner has accepted the request.

• When intermediate communications servers like TSAF and AVS handle communications, a program
cannot determine when APPC/VM data and indications get to its partner program. The only way to
ensure that you can have complete synchronization with your partner program is to use functions that
request confirmation from your partner. For example, using the APPC/VM functions SENDCNF (Send
Confirm) and SENDCNFD (Send Confirmed) or the CPI Communications routines Confirm (CMCFM) and
Confirmed (CMCFMD).

To read more about the general APPC program interface, see the Systems Network Architecture
Transaction Programmer's Reference Manual for LU Type 6.2 book.

Summary of Connections
Table 69 on page 489 summarizes how a locally known LU name and resource name are specified in VM.
If a CMS communications directory is used, the user program can specify a symbolic destination name to
identify the locally known LU name and target resource name. If a CMS communications directory is not
used, the user program must identify the complete locally known LU name and target resource name. For
a description of a CMS communications directory and information on how to set one up, see the z/VM:
Connectivity.

Program-to-Program Communications

488 z/VM: 7.2 CMS Application Development Guide

Table 69. Identifying the Target of a Connection Request

Type of Connection Locally Known LU Name TPN Name
Space

LU

From To LU Qualifier Target LU
Name

A program in a
CS collection or
a virtual machine
in the TSAF
collection.

The local resource
or system resource
on the local
system, if they
exist, or the global
resource in the
collection, if it
exists.

*IDENT 0 Local,
Global, or
System
resource
name

Local,
Global, or
System

TSAF or CS
collection

A program in a
CS collection or
virtual machine
in the TSAF
collection.

The userid on
the local system,
if it exists, or
the userid in the
collection, if it
exists.

If more than one
userid exists in the
collection, the one
that is logged on
(if one is) receives
the connection
request; otherwise
the first one found
in the collection
will be chosen. The
requester must be
authorized in the
userids $SERVER$
NAMES file.

*USERID userid Private
resource
name

Private Virtual
machine
userid

A program in a
CS collection or
virtual machine
in the TSAF
collection.

The global or
system resource
on the system
identified by
sysgate in the
collection, if it
exists, or a global
resource in an
adjacent CS or
TSAF collection,
respectively, if it
exists and sysgate
is the system
gateway of the
node that is
common to both
collections.

sysgate 0 Global or
System
resource
name

Global,
System

VM system
identified
by sysgate

Program-to-Program Communications

Chapter 32. Program-to-Program Communications 489

Table 69. Identifying the Target of a Connection Request (continued)

Type of Connection Locally Known LU Name TPN Name
Space

LU

From To LU Qualifier Target LU
Name

A program in a
CS collection or
virtual machine
in the TSAF
collection.

The userid on the
system identified
by sysgate in
the collection or
the userid in an
adjacent CS or
TSAF collection,
if it exists, and
the sysgate is the
system gateway of
the node that is
common to both
collections. The
requester must be
authorized in the
$SERVER$ NAMES
file of the userid.

sysgate userid Private
resource
name

Private Virtual
machine
userid

A program in a CS
or TSAF collection
connected to the
target collection
through VTAM and
AVS.

The system
resource on the
same VM system
as AVS is running
in the TSAF
or CS collection
if it exists,
otherwise the
global resource
in the TSAF or
CS collection if it
exists.

loc_gat AVS
global
gateway

rem_gat AVS
global
gateway

Global or
System
resource
name

Global,
System

TSAF or CS
collection

The user ID tied
to loc_gat in a CS
or TSAF collection
connected to the
target collection
through VTAM and
AVS.

The user ID tied
to rem_gat on the
same VM system
as AVS is running,
if it exists, or
the user ID in
the TSAF or CS
collection if it
exists. The same
search criteria
applies here as for
*USERID userid.

loc_gat AVS
private
dedicated
gateway

rem_gat AVS
private
dedicated
gateway

Private
resource
name

Private Virtual
machine
user ID tied
to rem_gat.

Program-to-Program Communications

490 z/VM: 7.2 CMS Application Development Guide

Table 69. Identifying the Target of a Connection Request (continued)

Type of Connection Locally Known LU Name TPN Name
Space

LU

From To LU Qualifier Target LU
Name

A program in a CS
or TSAF collection
connected to the
target collection
through VTAM and
AVS.

The access user
ID on the same
VM system as
AVS is running
in the TSAF or
CS collection, if
it exists, or the
access user ID
in the TSAF or
CS collection, if it
exists. The same
search criteria
applies here as for
*USERID userid.

loc_gat AVS
private
nondedicated
gateway

rem_gat AVS
private
nondedicated
gateway

Private
resource
name

Private Virtual
machine of
the access
user ID.

The user ID tied
to loc_gat in a CS
or TSAF collection
connected to the
target collection
through VTAM and
AVS.

The access user
ID on the same
VM system as
AVS is running
in the TSAF or
CS collection, if
it exists, or the
access user ID
in the TSAF or
CS collection, if it
exists. The same
search criteria
applies here as for
*USERID userid.

loc_gat AVS
private
dedicated
gateway

rem_gat AVS
private
nondedicated
gateway

Private
resource
name

Private Virtual
machine of
the access
user ID.

A program in a CS
or TSAF collection
connected to the
target collection
through VTAM and
AVS.

The user ID tied
to rem_gat on the
same VM system
as AVS is running,
if it exists or the
user ID the TSAF
or CS collection, if
it exists. The same
search criteria
applies here as for
*USERID userid.

loc_gat AVS
private
nondedicated
gateway

rem_gat AVS
private
dedicated
gateway

Private
resource
name

Private Virtual
machine
user ID tied
to rem_gat.

Which Programming Interface Do You Want to Use?
If you intend to write your communications programs using CPI Communications, continue with Chapter
33, “Understanding CPI Communications,” on page 493. If you intend to write your communications
programs using the APPC/VM assembler interface, refer to the z/VM: CMS Application Development Guide
for Assembler.

Program-to-Program Communications

Chapter 32. Program-to-Program Communications 491

Program-to-Program Communications

492 z/VM: 7.2 CMS Application Development Guide

Chapter 33. Understanding CPI Communications

Common Programming Interface (CPI) Communications (also known as SAA communications interface)
is an SAA defined interface you can use to write APPC communications programs in REXX, assembler or
high-level programming languages. CPI Communications defines a set of routines that programs can use
so that they will be more portable to other systems that abide by SAA's definitions.

In addition, z/VM has defined some routines that are extensions to CPI Communications. These z/VM
extension routines are useful to exploit the capabilities of the z/VM operating system. In this book, the
term "CPI Communications" includes the SAA routines and z/VM's extension routines.

Like the APPC/VM assembler interface, CPI Communications lets your program communicate with
another program that is on the same z/VM system, on a different z/VM system, or in a network defined by
SNA. Both communicating programs (called partner programs) do not have to use CPI Communications
routines. However, writing programs using CPI Communications routines is easier than coding programs
with APPC/VM assembler functions, for two important reasons:

1. CPI Communications routines do not have to be called from assembler language programs. Programs
written in REXX or high-level languages such as COBOL can take advantage of this communications
interface.

2. The CPI Communications definition generally includes fewer parameters on routines.

Throughout this chapter, assume that both partner programs are using CPI Communications routines.

Basics of CPI Communications
CPI Communications is based on the APPC half-duplex protocol, so it enforces states. At a given point
in time, each conversation is always in a particular state, and a program can only issue certain functions
from that state. The CPI Communications conversation states, which are an expansion of the APPC states
defined earlier in this book, are as follows:

• Reset
• Initialize
• Send
• Receive
• Send-Pending
• Confirm
• Confirm-Send
• Confirm-Deallocate
• Defer-Receive
• Defer-Deallocate
• Sync-Point
• Sync-Point-Send
• Sync-Point-Deallocate.

APPC sees a logical connection between programs as a conversation. Each program refers to the
conversation by a system-defined value. In CPI Communications, this value is called a conversation ID.

CPI Communications defines default values for many parameters that determine how routines execute.
Your program can override these default values by calling various Set routines. In addition, your program
can also examine the current value of many of these parameters by calling various Extract routines.

CPI Communications also defines pseudonym character strings for constants that make your programs
easier to read. These character strings are prefixed with "CM" or "XC", and are equated to integer values.

Understanding CPI Communications

© Copyright IBM Corp. 1990, 2022 493

For instance, you can use the character string CM_PARAMETER_ERROR to check for a return code of
19. See the VM appendix in the CPI Communications Reference for information on the pseudonym files
provided by VM.

Invoking CPI Communications Routines
In z/VM, CPI Communications can only be used in a CMS environment. The following SAA languages can
be used on z/VM to call CPI Communications routines and the VM extension routines:

• Application generator (Cross System Product implementation)
• C
• COBOL
• FORTRAN
• PL/I
• REXX (SAA).

In addition, the following non-SAA languages can be used on z/VM:

• Assembler
• Pascal.

See CPI Communications Reference for complete details on coding CPI Communications routines and the
z/VM routines that are extensions to the CPI Communications routines.

Invocation Errors
If CMS cannot execute the CPI Communications routine your program is trying to call, the following error
message is generated:

 1292E Error calling CPI-Communications routine, return code retcode

See the z/VM: CMS and REXX/VM Messages and Codes for details on return codes for message DMS1292E.

Using Basic CPI Communications Functions
To begin writing CPI Communications programs, you need to know the CPI Communications functions
that do the basic steps of starting a conversation, communicating in a conversation, and ending a
conversation.

Starting a Conversation
To start a conversation, your user program must first call the Initialize_Conversation (CMINIT) routine
with a name that identifies the target program. This name can be one of the following:

• A symbolic destination name—This is used as an index to a CMS communications directory file
that contains information necessary to establish the connection. Note that the CMS communications
directory file is called "side information" by SAA.

• The actual target transaction program name or resource ID—Note that the CMS communications
directory file is still searched for the specified name. Therefore, this name is used as the transaction
program name only if it cannot be resolved using the CMS communications directory.

The Initialize_Conversation routine sets various conversation characteristics from the CMS
communications directory file (if available) and sets other conversation characteristics to default values.

After initializing a conversation, your program must call the Allocate (CMALLC) routine to request a
connection. Before calling Allocate, however, a program can change the conversation characteristics that
were set by Initialize_Conversation by calling Set routines. Some of the Set routines allow you to override
characteristics that could have been initialized from the CMS communications directory:

Understanding CPI Communications

494 z/VM: 7.2 CMS Application Development Guide

• Mode name
• TP name
• Partner LU name
• Conversation security type
• Access security user ID
• Access security password.

Before calling the Allocate (CMALLC) routine, your program must decide how data will be sent on the
conversation (specified by conversation_type) and whether synchronization routines will be used in the
conversation (specified by sync_level). You can use the Set functions to change the conversation_type
characteristic and the sync_level characteristic. Your partner program, after it Accepts (CMACCP) the
conversation, can then extract the conversation_type and sync_level characteristics to decide whether it
can handle your choice for these characteristics.

The default conversation type is mapped conversations. Mapped conversations allow you to send and
receive user data without worrying about APPC logical record formats. However, you can change the
conversation type to be a basic conversation. Basic conversations require programs to exchange data in a
standardized format.

The default sync_level value is CM_NONE. CM_NONE specifies that the program will not use
synchronization routines for the conversation. The sync_level characteristic can be changed to
CM_CONFIRM or CM_SYNC_POINT. CM_CONFIRM specifies that the program will perform confirmation
processing on the conversation specified. CM_SYNC_POINT specifies that the conversation is to be a
protected conversation. This means that Coordinated Resource Recovery (CRR) will coordinate commits
(and backouts) of work among multiple protected resources in a distributed application.

For more information on starting a conversation, see CPI Communications Reference.

Sending and Receiving Data on the Conversation
After you call the Allocate (CMALLC) routine:

• The conversation is in Send state for your program
• The conversation type and sync level have been established.

You can now send data, calling the Send_Data (CMSEND) routine. You set up buffers to send data to your
partner program according to the conversation type. Also, before sending data, a program can set the
send_type characteristic for the conversation.

When your communications partner program is started, it accepts the conversation by calling
Accept_Conversation (CMACCP). After calling the Accept_Conversation routine, the conversation is in
Receive state for your partner's program. Your partner receives the data by calling the Receive (CMRCV)
routine. Before receiving data, a program can set the receive_type and (for a basic conversation) the fill
characteristics for the conversation.

Ending a Conversation
When your program is finished communicating with your partner program, you should end the
conversation by calling the Deallocate (CMDEAL) routine. Before ending the conversation, a program
can set the deallocate_type characteristic for the conversation. When your partner program receives a
deallocation notice, the program cannot perform any further functions on that conversation.

Using Advanced CPI Communications Functions
In addition to the basic functions, CPI Communications also provides more advanced functions that you
can use in your programs. These advanced functions allow you to confirm communications with your
partner program, send error indications to your partner, ask your partner for permission to start sending
data, and use Coordinated Resource Recovery (CRR) support.

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 495

Requesting Confirmation
When you are sending data to your partner program, you may want to synchronize execution with your
partner and request confirmation that you should continue to send. To do this, you call the Confirm
(CMCFM) routine. The Confirm is not complete until your partner calls one of the following routines:

• Confirmed (CMCFMD) to indicate that the sender can continue
• Send_Error (CMSERR) to indicate that something is wrong
• Deallocate (CMDEAL) to end communications.

To call Confirm and Confirmed, the program starting the conversation must indicate that confirmation
is allowed on the conversation. The program does this by calling a Set_Sync_Level (CMSSL) to set the
sync_level characteristic for the conversation to CM_CONFIRM or CM_SYNC_POINT. This call must be
made after calling Initialize_Conversation and before calling Allocate.

Signaling an Error
If your program determines that there is an error in the communications, whether the conversation is
in Send or Receive state, your program can call the Send_Error (CMSERR) routine. This signals your
communications partner and causes a break in the normal send/receive sequence.

If you are in Receive state and issue Send_Error:

1. The error notice goes to your communications partner.
2. Your virtual machine enters Send state.

If you are in Send state and issue Send_Error:

1. The error notice goes to your communications partner.
2. Your virtual machine remains in Send state.

When sending an error notice to your communications partner, you can also send log data if the
conversation type is basic. Your log data should provide information that describes the error in detail
to help your partner diagnose the error. To specify log data, your program must call the Set_Log_Data
(CMSLD) routine before calling Send_Error. If your partner is not using CPI Communications, however
your partner must have indicated that it will accept log data. (Note that you can also send log data when
calling the Deallocate (CMDEAL) routine.)

Requesting to Send Data
At some point, when your program is receiving data, you may want to inform your partner that you want
to send data. To do this, you can call Request_To_Send (CMRTS). However, note that your partner can
choose to ignore your Request_To_Send.

Your program will be able to send data when you are informed that your partner has changed states. Your
partner can change states by doing one of the following:

• Calling the Receive (CMRCV) routine
• Calling Set_Send_Type (CMSST) to set the send_type characteristic to

CM_SEND_AND_PREP_TO_RECEIVE, and then calling the Send_Data (CMSEND) routine
• Calling the Prepare_To_Receive (CMPTR) routine.

Establishing a Protected Conversation
A protected conversation allows your distributed application to take advantage of the z/VM data integrity
facility, Coordinated Resource Recovery (CRR). CRR provides services to coordinate updates to two or
more resources. See Chapter 16, “Your Applications and Data Integrity,” on page 241 for more details.
Protected conversations extend this protection to resources on remote systems so that the commit
or rollback of all changes for all conversation partners in a logical unit of work can be coordinated.
Setting a conversation's sync_level characteristic to CM_SYNC_POINT before allocation indicates to CPI

Understanding CPI Communications

496 z/VM: 7.2 CMS Application Development Guide

Communications that you want a protected conversation. See the CPI Communications Reference for more
details on setting up and using protected conversations.

Using VM Extensions to CPI Communications
z/VM provides some routines that are extensions to SAA CPI Communications. Programs using these
routines will require modification to be portable to other SAA systems. However, these routines can be
used to take advantage of the z/VM operating system. These extension routines are briefly introduced in
the sections that follow.

Security
The default security value for CPI Communications conversations is SAME (XC_SECURITY_SAME). In
z/VM, two additional security levels, NONE (XC_SECURITY_NONE) and PGM (XC_SECURITY_PROGRAM)
are available. z/VM provides a routine called Set_Conversation_Security_Type (XCSCST) that lets a
program explicitly specify the security value for the conversation. The security type also can be set in
side information by using the :security. tag.

When the security type is PGM, an access security user ID and password must be
provided. They can be supplied on the :userid. and :password. tags in side information
if :security.PGM has been specified there. These values can also be provided explicitly within
a program by calling the z/VM-provided routines Set_Conversation_Security_User_ID (XCSCSU) and
Set_Conversation_Security_Password (XCSCSP). The access security user ID associated with a
conversation can be obtained with the Extract_Conversation_Security_User_ID (XCECSU) routine.

If there are concerns about placing security information in a file, the values can be provided in an
APPCPASS statement in the virtual machine's CP directory. Entries in an APPCPASS statement do not
override a value provided in either side information or on an explicit Set call.

Values provided on an explicit security Set call override any corresponding information in side information
and take precedence over information in an APPCPASS statement for the conversation. However, when
the security type is PGM, if only a user ID is provided or neither a user ID nor a password is provided
either in side information or with an explicit Set call, then the CP directory is checked for an APPCPASS
statement to supply the missing information. A CM_PRODUCT_SPECIFIC_ERROR occurs if the security
type is PGM and only a security password is provided.

See z/VM: Connectivity for further information on the security types provided by z/VM.

Resource Manager Programs
z/VM provides routines that allow a resource manager application to manage one or more resources and
accept more than one conversation per resource. These routines are:

• Identify_Resource_Manager (XCIDRM), which lets an application define the name of a resource it
wishes to manage.

• Terminate_Resource_Manager (XCTRRM), which lets an application end management of a resource it
had previously defined with Identify_Resource_Manager.

The resource manager application must indicate to CPI Communications its intent to manage a
resource by calling the z/VM extension routine Identify_Resource_Manager. Having done this, the
resource manager application can call the Wait_on_Event (XCWOE) routine to wait for allocation
requests to the resource being managed. When ending the resource manager application, the
Terminate_Resource_Manager routine should be called. Failure to call Terminate_Resource_Manager will
result in the name of the resource remaining active until CMS end-of-command processing.

The resource manager application can be a program that either has been started automatically
as a result of an allocation request or has been started by local (operator) action. When started
automatically as a result of an allocation request, if the resource manager application wishes to declare
its intent to manage a resource, it must call Identify_Resource_Manager before either accepting the
conversation that started it (using Accept_Conversation) or initializing any conversation characteristics
(using Initialize_Conversation). Otherwise, an Identify_Resource_Manager call will not be allowed.

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 497

Global, Local and System
For global, local, and system resource managers, the application must be started and the resources
identified (using Identify_Resource_Manager) before another application can attempt to allocate a
conversation for those resources successfully.

Private
A private resource manager virtual machine can be autologged and the private resource manager
application automatically invoked as a result of a private resource connection request. When CMS is in
the Ready; state for the private resource program, CMS invokes the specified private resource program.
The resource name is passed to the application as a parameter. For example, a REXX private resource
manager program can be coded like this:

 /* This is an example of a private resource manager application. */

 arg resource_name /* private resource name passed as parameter */

 /* Equate pseudonyms to integer values based on CMREXX COPY file. */

 address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
 do index = 1 to pseudonym.0
 interpret pseudonym.index
 end

 resource_manager_type = xc_private /* want a private resource */
 service_mode = xc_multiple /* handle more than 1 at a time*/
 security_level_flag = xc_reject_security_none

 address cpicomm 'XCIDRM resource_name resource_manager_type',
 'service_mode security_level_flag return_code'

 if rc = 0 /* any csl errors? */
 then do
 if return_code = cm_ok
 then do /* don't have to wait for first connection */
 /* go accept the conversation */
 address cpicomm 'CMACCP conversation_id return_code'
 .
 .
 .

Note: Following a successful Identify_Resource_Manager call, the application could have called
Wait_on_Event (XCWOE) before calling Accept_Conversation; the Wait_on_Event would complete
immediately with event_type set to XC_ALLOCATION_REQUEST.

For a discussion of z/VM resources and resource manager programs see z/VM: Connectivity.

Considerations for TP-Model Applications in z/VM
SAA CPI Communications provides a programming interface to IBM's SNA LU 6.2. The set of calls defined
by SAA, however, does not implement every aspect of the LU 6.2 protocol. z/VM provides extensions
to SAA CPI Communications to support several additional LU 6.2 features, such as support for security
types. z/VM also provides routines that are considered extensions to the LU 6.2 architecture. Resource
manager support for accepting multiple incoming conversations, for example, is not part of the LU 6.2
protocol.

This section describes how CPI Communications applications in the z/VM environment can establish
conversations that closely conform to the LU 6.2 model for communications. Such applications are
referred to here as LU 6.2 transaction program model applications, or TP-model applications. While a
TP-model application can be created using only SAA CPI Communications routines, such an application is
also allowed to call most of the z/VM extension routines.

LU 6.2 Communications Model
In LU 6.2, LUs initiate and run transaction programs. A transaction program (TP) initiates a conversation
with its TP partner using the services of the LUs. In Figure 89 on page 499, TP A in LU x allocates a

Understanding CPI Communications

498 z/VM: 7.2 CMS Application Development Guide

conversation to TP B in LU y. LU x formats and presents an allocation request in the form of an LU 6.2
Attach to LU y. LU y validates the Attach and starts a new instance of TP B.

Figure 89. LU 6.2 Communications Model

In this example, both TP A and TP B are TP-model applications:

• TP A is the initial program of a distributed application. It is invoked by some process other than an
Attach, typically by an end-user command. TP A has no incoming conversations.

• TP B is invoked as a result of the Attach presented to LU y. There is one and only one incoming
conversation.

TP A and TP B can allocate any number of conversations.

z/VM TP-Model Applications
In Figure 90 on page 499, assume that the allocation of a conversation by program A in virtual machine
VMUSR1 causes program B to be automatically started by CMS in virtual machine VMUSR2.

Figure 90. Creating a TP-Model Application in z/VM

Both programs basically determine whether they are TP-model applications by the CPI Communications
calls that they issue. Program A is considered a TP-model application so long as it does not
issue the Identify_Resource_Manager (XCIDRM) call. Program B's classification, though, is determined
by how it is started and by the first successful CPI Communications call that it issues. Calling
Accept_Conversation (CMACCP) or Initialize_Conversation (CMINIT) will result in program B being a
TP-model application. If it is not desirable for program B to be a TP-model application, then it should
issue Identify_Resource_Manager as its first CPI Communications call.

z/VM considers an application like program A in Figure 90 on page 499 to be a TP-model application if it
has the following characteristics:

• The application is started by CMS as a result of local (operator) action.
• There are no incoming conversations. However, the application can allocate any number of

conversations.
• The Identify_Resource_Manager z/VM extension routine has not been called.

z/VM considers an application like program B in Figure 90 on page 499 to be a TP-model application if it
has the following characteristics:

• The application is started automatically by CMS as a result of a private resource connection request.
• There is only one incoming conversation, which is the conversation that caused CMS to start the

application. However, the application can allocate any number of conversations.
• The first successful CPI Communications call is to either the Accept_Conversation routine or the

Initialize_Conversation routine.
• The Identify_Resource_Manager extension routine has not been called.

Implications
Certain behavior is enforced and certain services are provided by z/VM for TP-model applications:

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 499

• For TP-model applications like program B in Figure 90 on page 499, there are three z/VM extension
routines that the application is not allowed to call. These routines are: Identify_Resource_Manager,
Terminate_Resource_Manager (XCTRRM), and Set_Client_Security_User_ID (XCSCUI). A call to one of
these three routines results in a return_code of CM_PROGRAM_STATE_CHECK.

• The virtual machine in which a TP-model application like program B in Figure 90 on page 499 is running
may require authorization to issue DIAGNOSE code X'D4'. This authorization is necessary if the TP-
model application is an intermediate server allocating a conversation with a conversation_security_type
characteristic of XC_SECURITY_SAME, which is the default value (and the only security type supported
by SAA CPI Communications). In that case, the access security user ID provided by the incoming
conversation that caused CMS to start the application is automatically propagated on the allocated
conversation (assuming the application performs no CMS work unit manipulation).

See the section entitled “Considerations for Intermediate Servers” on page 500 for more information
on the propagation of access security user IDs.

• For CPI Communications protected conversations (those with the sync_level characteristic set to
CM_SYNC_POINT), screening is performed for TP-model applications to prevent allocation wrapback.
Allocation wrapback occurs when an application tries to allocate a protected conversation whose logical
unit of work identifier (LUWID) is already associated with another protected conversation to which the
target program is a partner. Such a situation can result in deadlock during sync-point processing.

For example, assume that protected conversations between program A and program B and between
program B and program C have been established, as illustrated by the solid lines in Figure 91 on page
500. Three cases of allocation wrapback are illustrated by the dotted lines in that figure. In all of
these cases, allocations are being attempted for protected conversations with the same LUWID. Note
that the work unit in effect when Allocate (CMALLC) is called determines the LUWID for a protected
conversation. See “Notes for Distributed Application Programs” on page 248 for a description of the
relationship between LUWIDs and CMS work units.

Figure 91. Three Potential Conversation Wrap-Back Scenarios

An allocation request that would result in allocation wrapback is automatically rejected for
TP-model applications by CMS in the target virtual machine. If an application allocates a
protected conversation that would result in allocation wrapback, it receives a return_code value of
CM_TP_NOT_AVAILABLE_NO_RETRY on a subsequent call.

Considerations for Intermediate Servers
An intermediate server is a program that handles communications requests to a resource manager
program on behalf of a user program. For example, if program A allocates a conversation to program B
and program B in turn allocates a conversation to program C on behalf of program A (A→B→C), program B
is considered an intermediate server.

An intermediate server, such as program B, allocates the conversation to the remote program, program
C, with a conversation_security_type of xc_security_same. The access security user ID flowed to program
C depends on whether the intermediate server is considered by z/VM to be a TP-model application (as
described in the section entitled “Considerations for TP-Model Applications in z/VM” on page 498).

Note that if the conversation_security_type characteristic for the conversation between program A and
program B is set to XC_SECURITY_NONE and that for the conversation between program B and program C
is XC_SECURITY_SAME, the security type for the latter conversation is effectively XC_SECURITY_NONE.

Understanding CPI Communications

500 z/VM: 7.2 CMS Application Development Guide

TP-Model Application
If the intermediate server is considered to be a TP-model application and the conversation between
program A and program B has a conversation_security_type of XC_SECURITY_SAME, then z/VM flows the
user ID of the virtual machine in which program A is running (VMUSR1) to the target partner, program C,
as shown in Figure 92 on page 501.

Figure 92. Access Security User ID of User Program Flowed from VMUSR1 to VMUSR3

If the conversation allocated between program A and program B has a conversation_security_type of
XC_SECURITY_PROGRAM, then the access security user ID that flows to program C is the user ID set by
program A with a call to Set_Conversation_Security_User_ID (XCSCSU) or provided by program A's virtual
machine either in side information or in an APPCPASS statement.

To propagate the access security user ID associated with the inbound conversation, the virtual machine
running a TP-model intermediate server must be authorized to issue DIAGNOSE code X'D4'. If the
virtual machine does not have the appropriate authorization, an attempt by a TP-model intermediate
server to allocate a conversation with a conversation_security_type of XC_SECURITY_SAME will fail with a
return_code of CM_PRODUCT_SPECIFIC_ERROR.

There are two cases, however, when the intermediate server virtual machine does not need to issue the
DIAGNOSE code to propagate an access security user ID and thus does not need authorization:

• When the inbound access security user ID matches the logon user ID for the TP-model intermediate
server

• When the inbound connection to the intermediate server is made with an alternate user ID that matches
the access security user ID. In this case, the alternate user ID is assigned to the intermediate server's
virtual machine upon accepting the conversation. If the alternate user ID does not match the access
security user ID, the program will not be able to allocate a conversation as an intermediate server. See
z/VM: Connectivity for a description of connections to service pool virtual machines with an alternate
user ID.

Note that a TP-model application typically does not manipulate CMS work units. If the intermediate
server has obtained any additional CMS work units, however, it must ensure that the work unit associated
with the conversation with program A is the current default work unit when allocating the conversation
to program C. If, when Allocate is called, the current default work unit is different from the work unit
associated with the conversation and the conversation_security_type is XC_SECURITY_SAME, program B's
user ID will be flowed to program C, as shown in Figure 94 on page 502.

TP-Model Intermediate Servers and Assigned Alternate User IDs
If a private resource connection request with an alternate user ID starts a TP-model intermediate server
application (for example, a service pool application), then the application must accept the connection
before allocating any outbound conversations.

If the access security user ID presented to the TP-model intermediate server application does not match
the alternate user ID assigned to the virtual machine, then any attempts to issue Allocate (CMALLC) to
establish an outbound conversation will fail with a return_code of CM_PRODUCT_SPECIFIC_ERROR until
the inbound connection that assigned the alternate user ID is terminated.

Non-TP-Model Application
If the intermediate server is not a TP-model application, the access security user ID flowed to program
C when conversation_security_type is XC_SECURITY_SAME is the user ID of the intermediate server
(VMUSR2), as shown in Figure 94 on page 502.

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 501

Figure 93. Access Security User ID of User Program Flowed from VMUSR1 to VMUSR3

Non-TP-model applications often handle multiple inbound conversations, each of which is associated
with a different work unit. For program B to act as an intermediate server (as in Figure 92 on page 501) in
this scenario, it must obtain the access security user ID of the conversation with program A. It then uses
this access security user ID to set the client security user ID that will be flowed to program C.

To obtain the access security user ID for the conversation with program A, program B must issue
the Extract_Conversation_Security_User_ID (XCECSU) call. To flow program A's access security user ID,
VMUSR1 in Figure 94 on page 502, the intermediate server then must call Set_Client_Security_User_ID
(XCSCUI). In addition, the intermediate server must ensure that the work unit associated with the
conversation with program A is the current default work unit when Allocate is called. Note that the virtual
machine in which program B is running (VMUSR2) must have authorization to issue DIAGNOSE code X'D4'
if Set_Client_Security_User_ID is called.

Figure 94. Access Security User ID of Intermediate Server (VMUSR2) Flowed to VMUSR3

CMS Work Units
Because all CPI Communications conversations are associated with CMS work units in z/VM, an extension
routine, Extract_Conversation_Workunit_ID (XCECWU), is provided to allow applications to obtain the
CMS work unit ID for a given conversation. After issuing an Allocate or Accept_Conversation call to
establish a conversation, Extract_Conversation_Workunit_ID is used to extract the CMS work unit ID. The
CMS work unit ID can be specified on such CSL routines as DMSPUSWU (Push Default Work Unit ID),
DMSCOMM (Commit), and DMSROLLB (Rollback).

Note that there is no provision for work unit manipulation in SAA; programs that need to be portable to
other SAA operating environments should use the default work unit. Using the default work unit simply
means never specifying a work unit ID on CSL routines with the workunitid optional parameter and never
manipulating (getting, pushing, or popping) work unit IDs in the applications. See “Using Work Units in
Application Programs” on page 133 for more information on CMS work units.

z/VM Resource Recovery
CMS provides a data integrity facility called Coordinated Resource Recovery (CRR) to coordinate work
among multiple protected resources. Distributed applications can take advantage of this support by using
protected conversations (sync_level set to cm_sync_point).

To participate in CRR, a resource must be able to register an adapter with the CRR recovery server. Four
routines provide functions for programming to the resource recovery adapter interface:

• Extract_Conversation_Security_User_ID (XCECSU)
• Extract_Local_Fully_Qualified_LU_Name (XCELFQ)
• Extract_Remote_Fully_Qualified_LU_Name (XCERFQ)
• Extract_TP_Name (XCETPN).

Understanding CPI Communications

502 z/VM: 7.2 CMS Application Development Guide

See Chapter 18, “Getting a Resource Manager to Participate in CRR,” on page 255 for information about
programming to the CRR interface.

In addition, the Extract_Conversation_LUWID (XCECL) routine can be used to identify the most recent
sync point.

Managing CPI Communications Events in a Virtual Machine
Your program can call the Wait_on_Event (XCWOE) routine to wait for communications from one or more
partners. This routine allows your program to wait for and then take action according to the type of
request it receives.

If your program needs to know about certain events that occur in its virtual machine, you can provide
an interrupt handler that gets control when those events occur. The interrupt handler can then call
Signal_User_Event (XCSUE) to queue the event, called a user event. This user event will be reported when
your communications program issues Wait_on_Event (XCWOE).

See “Scenario 4: Signaling a User Event” on page 515 for an example of how an application can
use the Signal_User_Event routine. See the z/VM: CMS Application Development Guide for Assembler for
information on writing interrupt handlers.

For multitasking applications, directly handle the VMCPIC event rather than using Wait_on_Event. A call
to Wait_on_Event causes the entire application to wait, thus blocking the progress of all the threads. By
using the thread-oriented Event Management Services to handle the VMCPIC event, the same conditions
(except for request IDs and user events signalled by Signal_User_Event) can be handled, while requiring
at most one thread to wait.

Writing Multitasking Programs
A high-performance CPI Communications program may be structured to use the CMS multitasking
facilities. Such a program would create multiple threads to handle operations asynchronously or to take
advantage of the multiprocessor complex.

All CPI Communications calls, with the exception of the Wait_on_Event (XCWOE) call are thread-
synchronous as opposed to virtual machine synchronous. This is to say, when a thread calls a CPI
Communications routine that waits for data or enters some other type of wait, only that thread waits. No
other threads are affected and another thread can be dispatched in place of the waiting thread.

When writing a multitasking CPI Communications program, keep in mind the following rules and
multitasking concepts:

• All conversations are owned by the session and are accessible to all threads in the application. This
means that one thread can allocate a conversation and others can send and receive data on it.

• While a CPI Communications call issued by a thread on a conversation is in progress, any calls issued
by other threads to that same conversation are rejected. Note that the uncoordinated sharing of a
conversation among multiple threads could lead to conversation state checks, especially when threads
are running in a virtual multiprocessor virtual machine. If a conversation must be shared, use the
multitasking synchronization primitives, such as mutexes or semaphores, to coordinate access to the
conversation.

• Operations performed on two different conversations can be issued in parallel without interference. The
only case in which thread synchronization could be necessary is if they are protected conversations in
the same logical unit of work.

• To maintain concurrency, communications events should be waited for or trapped with the thread-
oriented Event Management Services, rather than using the Wait_on_Event (XCWOE) interface.
Wait_on_Event causes the entire application to wait, whereas the event management interface only
requires a single thread to wait.

See the z/VM: CMS Application Multitasking for more information on CMS multitasking.

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 503

Summary of Common Routines
The following routines are part of IBM's SAA CPI Communications. These routines have common names
and use a common syntax across all IBM environments that implement SAA CPI Communications. If you
write application programs that call only these common routines, those applications will be more portable
to other SAA environments.

The routines are shown here in alphabetic order by coded routine name. You must use the coded routine
names when calling CPI Communications routines.

The CPI Communications Reference describes the syntax and parameters for each routine.

Table 70. Summary of CPI Communications Routines

Coded
Routine
Name

Routine Pseudonym Routine Description

CMACCP Accept_Conversation Accepts an incoming conversation and initializes default
values for various conversation characteristics. One or
more of the default values may be overridden by calling
the appropriate SET routine.

CMALLC Allocate Starts a basic or mapped conversation between the
source program and the target program. If the target
program is not within the same TSAF or CS collection,
this routine allocates a session between the source and
target LUs.

CMCFM Confirm Sends a confirmation request to the partner transaction
program and waits for a reply. This routine lets the
partner applications synchronize their processing.

CMCFMD Confirmed Sends a confirmation reply to the target transaction
program. This is a positive response to the partner's call
to the Confirm routine.

CMDEAL Deallocate Ends the conversation.

CMECS Extract_Conversation_State Extracts the conversation state value for the
conversation and returns the value to the calling
program.

CMECT Extract_Conversation_Type Extracts the conversation type value for the
conversation and returns the value to the calling
program.

CMEMN Extract_Mode_Name Extracts the mode name value for the conversation and
returns the value to the calling program.

CMEPLN Extract_Partner_LU_Name Extracts the partner LU name value for the conversation
and returns the value to the calling program.

CMESL Extract_Sync_Level Extracts the synchronization level value for the
conversation and returns the value to the calling
program.

CMFLUS Flush Flushes the calling program LU's send buffer for the
conversation. The LU sends any information it has
buffered for the conversation to the target LU.

Understanding CPI Communications

504 z/VM: 7.2 CMS Application Development Guide

Table 70. Summary of CPI Communications Routines (continued)

Coded
Routine
Name

Routine Pseudonym Routine Description

CMINIT Initialize_Conversation Initializes various conversation characteristics from
side information and default values. Conversation
characteristics may be overridden by calling the
appropriate SET routine.

CMPTR Prepare_To_Receive Changes the conversation from Send to Receive state in
preparation to receive data.

CMRCV Receive Receives data, status, or both sent by the partner
program for a mapped or basic conversation.

CMRTS Request_To_Send Notifies the partner program that the calling program
is requesting to enter Send state for the conversation.
The conversation state is changed only when the
local program receives a send status from the partner
program.

CMSCT Set_Conversation_Type Specifies whether the conversation is mapped or basic.

CMSDT Set_Deallocate_Type Specifies what kind of deallocation should be done for
the conversation.

CMSED Set_Error_Direction Specifies the direction of data flow for the conversation
for which the program detected an error.

CMSEND Send_Data Sends one data record to the partner transaction
program when called for a mapped conversation. In this
case, the data record consists entirely of data.

Or, when called for a basic conversation, sends data to
the partner transaction program. In this case, the data
must consist of one or more APPC logical records.

CMSERR Send_Error Informs the partner program that the calling program
has detected an error.

CMSF Set_Fill Specifies whether a program's next Receive call will
get data independent of its logical record format. This
routine applies only to basic conversations.

CMSLD Set_Log_Data Specifies log data for the conversation. Programs can
use log data to help diagnose errors. This routine
applies only to basic conversations.

CMSMN Set_Mode_Name Specifies the mode name for the conversation. The
mode name denotes network properties for the session
that contains the conversation.

CMSPLN Set_Partner_LU_Name Specifies the LU name where the target program is
located.

CMSPTR Set_Prepare_To_Receive_Type Specifies the kind of prepare to receive to be done for
the conversation.

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 505

Table 70. Summary of CPI Communications Routines (continued)

Coded
Routine
Name

Routine Pseudonym Routine Description

CMSRC Set_Return_Control Sets the return control value for the conversation. This
value specifies when the source LU is to return control
to the local program when the Allocate routine is called,
depending on session availability.

CMSRT Set_Receive_Type Specifies the kind of receive to be done for the
conversation.

CMSSL Set_Sync_Level Sets the synchronization level for the conversation. This
specifies the level of confirmation: NONE, CONFIRM, or
SYNC POINT.

CMSST Set_Send_Type Sets the send type value for the conversation. The send
type specifies what, if any, additional information is to
be sent to the target program in addition to the data
supplied with the Send routine, and whether the data is
to be sent immediately or to be buffered.

CMSTPN Set_TP_Name Sets the TPN value for the conversation. TPN specifies
the name of the target application program.

CMTRTS Test_Request_To_Send_Received Tests the specified conversation to see whether a
Request_To_Send notification has been received from
the partner program.

Summary of z/VM Extension Routines
These routines are individually described in detail in an appendix in the CPI Communications Reference.
They are shown here in alphabetic order by coded routine name.

Table 71. Summary of z/VM Extension Routines

Coded
Routine
Name

Routine Pseudonym Routine Description

XCECL Extract_Conversation_LUWID Extracts the SNA LU 6.2 architected Logical
Unit of Work ID for a protected conversation.

XCECSU Extract_Conversation_Security_User_ID Extracts the access security user ID
associated with a conversation.

XCECWU Extract_Conversation_Workunit_ID Extracts the CMS work unit ID for a
conversation.

XCELFQ Extract_Local_Fully_Qualified_
 LU_Name

Extracts the local fully-qualified LU name for a
conversation.

XCERFQ Extract_Remote_Fully_Qualified_
 LU_Name

Extracts the remote fully-qualified LU name
for a conversation.

XCETPN Extract_TP_Name Extracts the resolved TP name for a
conversation.

Understanding CPI Communications

506 z/VM: 7.2 CMS Application Development Guide

Table 71. Summary of z/VM Extension Routines (continued)

Coded
Routine
Name

Routine Pseudonym Routine Description

XCIDRM Identify_Resource_Manager Declares to CMS a name (resource ID) by
which the resource manager application will
be known. For a local resource manager, this
routine makes the name known to the system;
for a global resource manager, this routine
also makes the name known to the TSAF and
CS collection.

XCSCUI Set_Client_Security_User_ID Lets an intermediate server specify an
alternate user ID (the user ID of a specific
client application).

XCSCSP Set_Conversation_Security_Password Sets the access security password value for
the conversation. The security type must be
PGM. The target LU uses this value and the
user ID to verify the identity of the security
requester.

XCSCST Set_Conversation_Security_Type Sets the security type (NONE, SAME, or
PGM) for the conversation. The security type
determines what security information is sent
to the target. This lets the target verify the
identity of the requester.

XCSCSU Set_Conversation_Security_User_ID Sets the security user ID value for the
conversation. The security type must be
PGM. The target LU uses this value and the
security password to verify the identity of the
requester.

XCSUE Signal_User_Event Queues an event to be reported by a
subsequent Wait_on_Event call in the same
virtual machine.

XCTRRM Terminate_Resource_Manager Ends ownership of a resource by a resource
manager program.

XCWOE Wait_on_Event Waits on communications from one or
more partners, and other events. Events
reported are user events, allocation requests,
information input, notification that a resource
has been revoked, console input, and
asynchronous Shared File System (SFS)
requests.

Scenario 1: Request for a Global Resource
In the following example scenario, a z/VM user program requests a connection to a global resource
manager program that is located in the same TSAF or CS collection. First, log on the server virtual
machine and invoke the global resource manager program, then the user program needs to start a
conversation with the global resource manager. After establishing the conversation, the user program
sends the name of a file to the global resource manager program. The global resource manager program
then sends the entire contents of the file back to the user program. The user program then receives the

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 507

file data and ends the conversation. Both programs use CPI Communications routines to communicate.
For details on the routines shown here, refer to the CPI Communications Reference.

(A scenario for a local resource would be almost identical with the following scenario. The only difference:
in the call to the Identify_Resource_Manager (XCIDRM) routine in step 1, the resource manager type
would be specified as local instead of global.)

 User Program Global Resource Manager Program
 (in Requester Virtual Machine) (in Server Virtual Machine)
 ----------------------------------- -------------------------------

 1. XCIDRM
 2. XCWOE
 3. CMINIT
 4. CMALLC
 5. If event=allocation request
 then CMACCP
 6. CMSST
 7. CMSEND
 8. if CMACCP okay then CMRCV
 9. CMSEND
 10. CMRCV
 . .
 . .
 send/receive sequence
 . .
 . .
 11. CMRCV
 12. CMDEAL
 13. XCTRRM

Figure 95. Global Resource Request Scenario

Virtual Machine Preparation
• Both the requester and server virtual machines require the proper IUCV authorization.
• A CMS communications directory entry is not necessary in the requester virtual machine. When issuing

the Initialize_Conversation routine, we will specify a symbolic destination name equal to the name of
the global resource identified in the server virtual machine.

Program Functions
1. Identify the global resource manager to the z/VM system and the TSAF collection using the

Identify_Resource_Manager (XCIDRM) routine.
2. Call the Wait_on_Event (XCWOE) routine to wait for an allocation request from the user program.
3. Initialize a conversation to the global resource manager program by calling the

Initialize_Conversation (CMINIT) routine. The symbolic destination name used is the same as the
resource ID specified in the XCIDRM call by the resource manager program.

4. Allocate the conversation from the user program to the resource manager program by calling the
Allocate (CMALLC) routine.

5. The CMALLC from the user program completes the XCWOE call issued in step 2 with an allocation
request event. Now, accept the inbound allocation request using the Accept_Conversation (CMACCP)
routine.

6. Using the Set_Send_Type (CMSST) routine, set the send_type characteristic to
CM_SEND_AND_PREPARE_TO_RECEIVE so that after the data is sent, our conversation will be in
Receive state and we can receive data.

7. Send the name of the file we want from the resource manager program using the Send_Data
(CMSEND) routine.

8. If CMACCP completes without error, receive the name of the file from the user program using the
Receive (CMRCV) routine. Status should also be received indicating that the conversation is now in
Send state for the resource manager.

Understanding CPI Communications

508 z/VM: 7.2 CMS Application Development Guide

9. Start the Send portion of the Send/Receive sequence. The resource manager program will issue as
many Send_Datas (CMSENDs) as necessary to send the requested file to the user program.

10. Start the Receive portion of the Send/Receive sequence. The user program will issue as many
Receives (CMRCVs) as necessary to receive the file sent by the resource manager program.

11. After sending the whole file to the user program, the resource manager program issues Receive
(CMRCV) to put the user program in Send state and to receive data from the user program.

After receiving the file contents successfully from the resource manager program, a CMRCV call will
complete with a status received value indicating that we are now in Send state and that there is no
more data coming from the resource manager program.

12. The user program calls the Deallocate (CMDEAL) routine to deallocate the conversation normally.
13. The deallocation by the user program completes the resource manager program's outstanding

CMRCV with a CM_DEALLOCATED_NORMAL return code. Once this deallocation return code is
reported, the resource manager program does not take any action, the conversation is ended.
The resource manager program now terminates management of this resource by issuing the
Terminate_Resource_Manager (XCTRRM) routine. (Note that instead of terminating the resource,
the resource manager program could loop back to step 2 and wait for more allocation requests. In
order to handle additional conversations, the resource manager program must have issued XCIDRM
specifying that it will service more than one conversation.)

Scenario 2: Request for a Private Resource
In the following example scenario, a user program requests a private resource from a private resource
manager program. The flows for this scenario are very similar to those in Scenario 1. First, the user
program starts a conversation with the private resource manager program. After the conversation is set
up, the user program sends the name of a file to the private resource manager program. The private
resource manager program then sends the entire contents of the file back to the user program. The user
program, after getting the file, ends the conversation. The programs use CPI Communications routines to
communicate. For details on the routines shown here, see the CPI Communications Reference.

Note that for this scenario, both sides of the conversation use only the SAA CPI Communications routines,
while Scenario 1, describing a global resource, requires the use of z/VM-extension routines.

 User Program Private Resource Manager Program
 (in Requester Virtual Machine - USER1) (in Server Virtual Machine - LIBVM)
 -- -------------------------------------

 Enable the system CMS Create $SERVER$ NAMES file,
 communications directory SET SERVER ON
 Create user communications SET FULLSCREEN OFF
 directory file

 1. CMINIT
 2. CMALLC
 3. CMACCP
 4. CMSST
 5. CMSEND
 6. if CMACCP okay then CMRCV
 7. CMSEND
 8. CMRCV
 . .
 . .
 send/receive sequence
 . .
 . .
 9. CMRCV
 10. CMDEAL

Figure 96. Private Resource Request Scenario

Virtual Machine Preparation
• For our scenario, the requester virtual machine has a user ID of USER1 and the private server virtual

machine has a user ID of LIBVM,

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 509

• The requester virtual machine must be authorized to connect to LIBVM through the CP user directory.
• The CMS communications directory files need to be enabled in the requester virtual machine, USER1.

Your system administrator usually would set up a system file called SCOMDIR NAMES, and that file
would be in effect when you log on. You can also set up your own communications directory file and
call it UCOMDIR NAMES. For this example, a communications directory file entry in UCOMDIR NAMES
should be set up as follows:

:nick.BOOK :tpn.LIBRARY
 :luname.*USERID LIBVM
 :security.SAME

After setting up the UCOMDIR entry and issuing "SET COMDIR RELOAD", the user program can use
BOOK (specified by the :nick. tag) as a symbolic destination name which will map to the TPN called
LIBRARY (specified by the :tpn. tag) in the private server virtual machine that has user ID LIBVM
(specified by the :luname. tag). Security is SAME (specified by the :security. tag), which means the
access security user ID for the requester virtual machine is passed to the private server virtual machine.

• The private server virtual machine, LIBVM, must have a $SERVER$ NAMES file containing the names
of private resources it is managing, and listing which virtual machines are authorized to access each
resource.

For purposes of this example, suppose the $SERVER$ NAMES file for this private server virtual machine
just has a single entry as follows:

:nick.LIBRARY :list.USER1
 :module.PRIVLIB

Setting up the above entry in $SERVER$ NAMES will indicate that the access security user ID USER1
(specified by the :list. tag) is authorized to connect to the private resource LIBRARY (specified by
the :nick. tag) and that the PRIVLIB exec (specified by the :module. tag) is to be invoked.

In addition, SERVER must be set ON and FULLSCREEN must be set OFF or SUSPEND.

Program Functions
1. Initialize a conversation to the private resource manager program using the Initialize_Conversation

(CMINIT) routine. The symbolic destination name specified on CMINIT should be BOOK which will
map to the entry in the UCOMDIR NAMES file that we set up in the requester virtual machine.

2. Allocate the conversation to the private resource manager using the Allocate (CMALLC) routine.
3. The private resource request will go to the LIBVM virtual machine. CMS will look in its $SERVER$

NAMES to make sure that USER1 is authorized to connect to the private resource LIBRARY. Because
USER1 is authorized, CMS then invokes the private resource manager program, PRIVLIB. The private
resource manager program will then accept the conversation by using the Accept_Conversation
(CMACCP) routine.

Note: Because this is a private resource manager program and there is only one incoming
conversation, there is no need to call the Identify_Resource_Manager (XCIDRM), Wait_on_Event
(XCWOE) or Terminate_Resource_Manager (XCTRRM) routines. This allows the program to use only
the SAA CPI Communications routines.

4. Call the Set_Send_Type (CMSST) routine to set send_type to CM_SEND_AND_PREPARE_TO_RECEIVE.
The next time data is sent to the conversation partner, the conversation state will switch to Receive.

5. Send the name of the file we want from the resource manager program using the Send_Data
(CMSEND) routine.

6. If the CMACCP completed okay, now receive the name of the file using the Receive (CMRCV) routine.
Status should also be received indicating that the conversation is now in Send state for the resource
manager.

7. Start the Send portion of the Send/Receive sequence. The resource manager program will issue as
many Send_Datas (CMSENDs) as necessary to send the requested file to the user program.

Understanding CPI Communications

510 z/VM: 7.2 CMS Application Development Guide

8. Start the Receive portion of the Send/Receive sequence. The user program will issue as many
Receives (CMRCVs) as necessary to receive the file sent by the resource manager program.

9. After sending the whole file to the user program, the resource manager program issues Receive
(CMRCV) to put the user program in Send state and to receive data from the user program.

10. After receiving the file contents successfully from the resource manager program, a CMRCV call will
complete with a status received value indicating that we are now in Send state and that there is
no more data coming from the resource manager program. The user program calls the Deallocate
(CMDEAL) routine to deallocate the conversation normally. This deallocate completes the resource
manager program's outstanding CMRCV with a CM_DEALLOCATED_NORMAL return code, indicating
that the conversation has been deallocated normally. Once this deallocate return code is reported,
the resource manager program does not take any action, the conversation is ended.

Scenario 3: Synchronizing Multiple Updates
In the following example scenario, two applications work together to update three files. The applications
use CPI Communications routines to communicate with each other and Resource Recovery routines
to synchronize the file updates. The user program updates two SFS files and establishes a protected
conversation with the target program. Then, the target program, which is invoked as a private resource,
updates a third SFS file. After the target program updates the third SFS file, the target program asks if
the updates should be committed or rolled back. If the target program commits the updates, then the
user program asks if the updates should be committed or rolled back. If the user program commits the
updates, then all updates are committed. If the target program or user program rolls back the updates
after either prompt, all changes are rolled back.

Note: These example programs ask if the updates should be committed or rolled back. Most applications
automatically proceed with whichever process is appropriate.

USERID1 is the user ID of the user virtual machine, which resides on SYSTEM1. USERID1 executes the
user program, CRREXMP1 EXEC. CRREXMP1 EXEC updates the CHILDS LIST file in CRRDIR1 and the
TOYSTORE ORDERS file in CRRDIR2.

USERID2 is the user ID of the target virtual machine, which may reside on either SYSTEM1 or SYSTEM2.
USERID2 executes the target program, CRREXMP2 EXEC. CRREXMP2 EXEC updates the SANTAS SACK file
in CRRDIR3.

Virtual Machine Preparation
The following information describes the user ID and virtual machine requirements needed to execute your
programs. For more information on setting up a UCOMDIR NAMES file, $SERVER$ NAMES file, and an AVS
virtual machine, see z/VM: Connectivity.

• USERID1 sets up a UCOMDIR NAMES file containing an entry for CRREXMP2. This UCOMDIR NAMES
entry specifies information to connect to USERID2 and to start CRREXMP2 as a private resource.

• USERID2 uses the $SERVER$ NAMES file to identify the users that are authorized to use the private
resource, CRREXMP2.

• USERID1 and USERID2 must have IUCV authorization.
• A recovery server virtual machine must be available on the system. If USERID1 and USERID2 are on

different systems, a recovery server must be available on both systems.
• An SFS server virtual machine must be available to create SFS directories. If USERID1 and USERID2 are

on different systems, an SFS server may be required on both systems. USERID1 and USERID2 must be
enrolled in an SFS file pool with 500 blocks.

• If USERID1 and USERID2 reside on different systems, each system must have an AVS virtual machine
available with private gateways (GATE1 and GATE2) established to support protected conversations.

• The private server virtual machine, USERID2, must have the following set:

– SET SERVER ON
– SET FULLSCREEN OFF

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 511

– SET AUTOREAD OFF

Virtual Machines in the Same System
Assume that USERID1 and USERID2 are in the same system.

USERID1 sets up the following UCOMDIR NAMES entry for CRREXMP2:

:nick.CRREXMP2 :tpn.CRREXMP2
 :luname.*USERID USERID2
 :security.NONE

On the target virtual machine, the $SERVER$ NAMES entry for CRREXMP2 contains the following
information:

:nick.CRREXMP2 :list.*

Virtual Machines on Different Systems
Now, assume that USERID1 and USERID2 are in separate systems in an SNA network. An AVS virtual
machine must be available on SYSTEM1 and SYSTEM2.

The AVS virtual machine for SYSTEM1 defines a dedicated private gateway, called GATE1, that supports a
protected conversation. The AVS virtual machine for SYSTEM2 defines a dedicated private gateway, called
GATE2, that supports a protected conversation.

USERID1 sets up the following UCOMDIR NAMES entry for CRREXMP2:

:nick.CRREXMP2 :tpn.CRREXMP2
 :modename.FILESERV
 :luname.GATE1 GATE2
 :security.NONE

On the target virtual machine, the $SERVER$ NAMES entry for CRREXMP2 contains the following
information:

:nick.CRREXMP2 :list.*

Overview for Synchronizing Multiple Updates
The following is a high-level overview of the REXX applications that update the files.

Understanding CPI Communications

512 z/VM: 7.2 CMS Application Development Guide

 CRREXMP1: CRREXMP2:
 (in User Virtual Machine) (in Server Virtual Machine)
----------------------------------- -------------------------------

Enable the user CMS communications Create $SERVER$ NAMES file,
 directory (UCOMDIR NAMES) SET SERVER ON,
 SET FULLSCREEN OFF,
 SET AUTOREAD OFF

 1. DMSSSPTO
 2. DMSSETAG

 3. DMSOPEN (File 1)
 4. DMSWRITE (File 1)
 5. DMSCLOSE (File 1)

 6. DMSOPEN (File 2)
 7. DMSWRITE (File 2)
 8. DMSCLOSE (File 2)

 9. CMINIT
10. CMSSL
11. CMALLC
 12. CMACCP
13. CMCFM
 14. CMRCV
 15. CMCFMD
16. CMSEND
17. CMPTR
 18. CMRCV
 19. CMCFMD

 20. DMSSSPTO
 21. DMSSETAG

 22. DMSOPEN (File 3)
 23. DMSWRITE (File 3)
 24. DMSCLOSE (File 3)

< For backout processing >

 25. SRRBACK
26. CMRCV
27. SRRBACK
 28. CMSDT
 29. CMDEAL
30. CMRCV

< For commit - commit processing >

 31. CMDEAL
 32. SRRCMIT
33 CMRCV
34. SRRCMIT

< For commit - backout processing >

 35. CMDEAL
 36. SRRCMIT
37. CMRCV
38. SRRBACK
 39. CMSDT
 40. CMDEAL
41. CMRCV

Figure 97. Synchronizing Multiple Updates Scenario

Program Functions
The following are step-by-step descriptions of the overview described previously. (1) is for CRREXMP1
and (2) is for CRREXMP2.

1. (1): DMSSSPTO to set synchronization point options
2. (1): DMSSETAG to set the transaction tag
3. (1): DMSOPEN the CHILDS LIST file in SFS directory .CRRDIR1

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 513

4. (1): DMSWRITE to CHILDS LIST
5. (1): DMSCLOSE with NOCOMMIT option to close CHILDS LIST
6. (1): DMSOPEN the TOYSTORE ORDERS file in SFS directory .CRRDIR2
7. (1): DMSWRITE to TOYSTORE ORDERS
8. (1): DMSCLOSE with NOCOMMIT option to close TOYSTORE ORDERS
9. (1): CMINIT (Initialize_Conversation) to set up the protected conversation

10. (1): CMSSL (Set_Sync_Level) to set the sync_level for the conversation to cm_sync_point
11. (1): CMALLC (Allocate) to allocate the protected conversation
12. (2): CMACCP (Accept_Conversation) to accept the protected conversation
13. (1): CMCFM (Confirm) to ensure partner has received allocation
14. (2): CMRCV (Receive) to get confirmation request
15. (2): CMCFMD (Confirmed) to respond to the confirmation request
16. (1): CMSEND (Send_Data) to send the data record to the partner
17. (1): CMPTR (Prepare_To_Receive) to enter Receive state
18. (2): CMRCV (Receive) to receive the data record and partner's request to enter Receive state
19. (2): CMCFMD (Confirmed) to confirm the partner's state request
20. (2): DMSSSPTO to set synchronization point options
21. (2): DMSSETAG to set the transaction tag
22. (2): DMSOPEN the SANTAS SACK file in SFS directory .CRRDIR3
23. (2): DMSWRITE to SANTAS SACK
24. (2): DMSCLOSE with NOCOMMIT option to close SANTAS SACK
25. (2): SRRBACK (Backout) to initiate backout processing
26. (1): CMRCV (Receive) to receive the backout indication
27. (1): SRRBACK (Backout) to perform backout processing
28. (2): CMSDT (Set_Deallocate_Type) to set the deallocate_type to CM_DEALLOCATE_ABEND
29. (2): CMDEAL (Deallocate) to deallocate the protected conversation
30. (1): CMRCV (Receive) to receive the deallocation notification
31. (2): CMDEAL (Deallocate) to deallocate the conversation after a successful syncpoint
32. (2): SRRCMIT (Commit) to initiate commit processing
33. (1): CMRCV (Receive) to receive the commit request indication
34. (1): SRRCMIT (Commit) to perform commit processing
35. (2): CMDEAL (Deallocate) to deallocate the conversation after a successful syncpoint
36. (2): SRRCMIT (Commit) to initiate commit processing
37. (1): CMRCV (Receive) to receive the commit request indication
38. (1): SRRBACK (Backout) to respond backout to commit request
39. (2): CMSDT (Set_Deallocate_Type) to set the deallocate_type to CM_DEALLOCATE_ABEND
40. (2): CMDEAL (Deallocate) to deallocate the protected conversation
41. (1): CMRCV (Receive) to receive the deallocation notification

Source Program for Synchronizing Multiple Updates
See “Example 3: Synchronizing Multiple Updates Using CRR and CPI Communications” on page 569 for
the user and target REXX applications.

Understanding CPI Communications

514 z/VM: 7.2 CMS Application Development Guide

Scenario 4: Signaling a User Event
This example scenario demonstrates how the CPI Communications VM extension routines
Signal_User_Event (XCSUE) and Wait_on_Event (XCWOE) can be used by an application to find out that a
specific time interval has elapsed.

In addition to the communications partner programs written in REXX, an assembler program is needed to
set the timer and to get control when the timer interrupt occurs. Here is a summary of what each program
does:
SUESAMP1 EXEC

This is a REXX exec that allocates a conversation to another REXX exec, SUESAMP2 EXEC, with the
intent of receiving data for 10 seconds. After allocating the conversation, SUESAMP1 performs a
NUCXLOAD of the module created from the SUESAMP3 assembler program and then calls SUESAMP3.
Next, SUESAMP1 calls Wait_on_Event in a loop to receive the data sent by SUESAMP2 and to
determine when to stop receiving data and deallocate the conversation.

SUESAMP2 EXEC
This exec accepts the conversation from SUESAMP1 EXEC and sends data until that conversation is
deallocated.

SUESAMP3 ASSEMBLE
This program is assembled into a relocatable module. It sets an interval timer using the OS/MVS
simulated macro STIMER. When the interval elapses, STIMER drives the external interrupt handler in
the SUESAMP3 module. When the interrupt handler gets control, it calls Signal_User_Event to post an
event that can be reported by the Wait_on_Event called by SUESAMP1.

The comment sections of the program listings more fully describe what each program does. For the
purposes of this example, USERID1 is the user ID of the virtual machine that will execute SUESAMP1
EXEC and the SUESAMP3 module. USERID2 is the user ID of the virtual machine that will execute
SUESAMP2 EXEC.

Virtual Machine Preparation
This section describes the steps required to execute the programs used in this example scenario. For
more information on setting up UCOMDIR NAMES and $SERVER$ NAMES files, see z/VM: Connectivity.

• USERID1 requires a UCOMDIR NAMES file with an entry for SUESAMP2, like this:

:nick.SUESAMP2 :tpn.SUESAMP2
 :luname.*USERID USERID2

If USERID1 and USERID2 are not in the same TSAF collection, a :modename. tag is also required and
the target gateway(s) must be listed on the :luname. tag.

If a UCOMDIR NAMES file already existed, the SET COMDIR RELOAD command must be issued after
the entry has been added. If a UCOMDIR NAMES file is created, the SET COMDIR FILE USER
UCOMDIR NAMES command must be issued.

• USERID2 requires a $SERVER$ NAMES file that identifies the users that are authorized to use the
private resource, SUESAMP2, like this:

:nick.SUESAMP2 :list.USERID1

or like this, if all users are to be allowed access:

:nick.SUESAMP2 :list.*

• USERID2 should have an IUCV ALLOW statement in its CP directory unless connection access is
restricted (see the z/VM: Connectivity). USERID2 must have the following commands in the PROFILE
EXEC:

– SET SERVER ON
– SET FULLSCREEN OFF

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 515

– SET AUTOREAD OFF
• After SUESAMP3 ASSEMBLE has been created, it must be compiled into a relocatable module on

USERID1. Here is the sequence of commands:

GLOBAL TXTLIB CMSSAA VMLIB
GLOBAL MACLIB DMSGPI OSMACRO
ASSEMBLE SUESAMP3
LOAD SUESAMP3 (RLDSAVE)
GENMOD SUESAMP3 (SYSTEM)

After the execs have been created and all of the preceding steps have been completed, you can run the
sample programs by entering:

suesamp1

from the command line of the USERID1 virtual machine.

The three programs and the output from executing them are listed on the following pages.

SUESAMP1 EXEC Listing
/*--*/
/* SUESAMP1 EXEC */
/* */
/* This EXEC is the source program for the demonstration of the */
/* CPI Communications VM extension routine Signal_User_Event */
/* (XCSUE). It NUCXLOADs and calls SUESAMP3 MODULE (sample */
/* ASSEMBLE provided for this) to set a timer and handle the */
/* subsequent interrupt. It establishes a CPI Communications */
/* conversation, and SUESAMP2 EXEC handles the partner side of */
/* the conversation. A CMS communications directory entry for */
/* nickname SUESAMP2 is required by SUESAMP1. */
/* */
/* Because this program is for demonstration purposes, only */
/* minimal error checking is included. */
/* */
/* Main logic of SUESAMP1: */
/* */
/* Initialize program constants */
/* Start a conversation with the partner */
/* Execute nucleus extension program to set a timer for */
/* 10 seconds. Its interrupt handler, driven when the */
/* timer "pops", will issue Signal_User_Event (XCSUE). */
/* Do forever */
/* Wait (XCWOE) for XCSUE user_event or data from partner */
/* If data is available, receive it */
/* Else if a user_event occurred then leave */
/* End */
/* Show the results of the XCWOE (user_data from XCSUE) */
/* End the conversation with the partner */
/*--*/

arg args

call Initialize
call Main_Prog

Get_Out:
 say
 Exit
/*--*/
/* INITIALIZE: Set up program variables and constants */
/*--*/
Initialize:

 address command 'ESTATE CMREXX COPY *'
 if (rc ¬= 0) then call error 'CMREXX COPY file not found.'
 else do
 'execio * diskr CMREXX COPY * (finis stem PSEUDONYM.'
 do i = 1 to pseudonym.0
 interpret pseudonym.i
 end
 end
 say

Understanding CPI Communications

516 z/VM: 7.2 CMS Application Development Guide

 say '*'copies('-', 78)'*'
 msg = 'SUESAMP1: CPI Communications XCSUE Sample Source Program'
 say ' ' msg
 say '*'copies('-', 78)'*'
 say

 return

/*--*/
/* MAIN_PROG: Call Get_Conversation to start the conversation */
/* Call Set_Timer to start the timer program */
/* Do Forever */
/* Call Wait_on_Event (XCWOE) */
/* If more data, call Receive_And_Confirmed */
/* Else leave */
/* End */
/* Show XCSUE user_data reported on XCWOE */
/* Call End_Conversation to end the conversation */
/*--*/
Main_Prog:

 call Get_Conversation
 call Set_Timer

 say 'XCWOE loop is beginning'
 loop_count = 0
 do forever
 x = 'XCWOE -- Wait_on_Event'
 address cpicomm 'XCWOE res_id conv event_type' ,
 'event_info_len event_buf cm_rc'
 if (cm_rc ¬= cm_ok) then
 call error x, 'cm_rc', cm_return_code.cm_rc, ,
 cm_return_code.cm_ok
 if (event_type = xc_information_input) then call Receive_And_Confirmed
 else if (event_type = xc_user_event) then leave
 else call error x, 'event_type', xc_event_type.event_type, ,
 xc_event_type.xc_user_event
 end

 say 'XCWOE loop is complete, performed' loop_count 'times'
 say
 say 'User_Event received by XCWOE:'
 say ' Event_ID parameter =' res_id
 say ' User_Data parameter =' left(event_buf, event_info_len)
 say

 call End_Conversation

 return
/*--*/
/* SET_TIMER: Nucxload SUESAMP3, which calls STIMER macro to set */
/* a timer for 10 seconds. Its interrupt handler gets */
/* control when the timer "pops" and issues XCSUE */
/*--*/
Set_Timer:

 'nucxload suesamp3 (system'
 'suesamp3'

 say 'SUESAMP3 called, timer set for 10 seconds'

 return

/*--*/
/* GET_CONVERSATION: Issue CMINIT, CMSSL, CMALLC, and CMPTR to */
/* start a CPI Communications conversation. */
/* The CMINIT sets up conversation */
/* characteristics and gives us the */
/* conversation_id, the CMSSL sets the */
/* sync_level of this conversation to */
/* cm_confirm, and the CMALLC requests a */
/* session for the conversation. The CMPTR */
/* will switch the conversation from send to */
/* receive state, and also flow a confirmation */
/* request to the partner since the sync_level */
/* of the conversation is cm_confirm. */
/*--*/
Get_Conversation:

 x = 'CMINIT -- Initialize_Conversation'
 sym_dest_name = 'SUESAMP2'
 address cpicomm 'CMINIT conv_id sym_dest_name cm_rc'

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 517

 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 x = 'CMSSL -- Set_Sync_Level'
 sync_level = cm_confirm
 address cpicomm 'CMSSL conv_id sync_level cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 x = 'CMALLC -- Allocate'
 address cpicomm 'CMALLC conv_id cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok
 x = 'CMPTR -- Prepare_To_Receive'
 address cpicomm 'CMPTR conv_id cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 m = 'CMINIT, CMSSL, CMALLC, and CMPTR complete for conversation'
 say m conv_id

 return

/*--*/
/* RECEIVE_AND_CONFIRMED: Issue CMRCV. If confirm status is */
/* received, then we have received a */
/* complete data record so we'll respond */
/* CMCFMD and increment the loop counter. */
/*--*/
Receive_And_Confirmed:

 reql = event_info_len

 x = 'CMRCV -- Receive'
 address cpicomm 'CMRCV conv_id buf reql datr recl stat rts cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok
 if (stat = cm_confirm_received) then do
 x = 'CMCFMD -- Confirmed'
 address cpicomm 'CMCFMD conv_id cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok
 loop_count = loop_count + 1
 end

 return

/*--*/
/* END_CONVERSATION: Issue CMSERR to reject any data that might */
/* have been sent but not received yet. That */
/* will switch the conversation to send state. */
/* Issue CMSDT to set the deallocate_type to */
/* cm_deallocate_flush, then CMDEAL to */
/* deallocate the conversation. */
/*--*/
End_Conversation:

 x = 'CMSERR -- Send_Error'
 address cpicomm 'CMSERR conv_id rts_rec cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok
 x = 'CMSDT -- Set_Deallocate_Type'
 address cpicomm 'CMSDT conv_id cm_deallocate_flush cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 x = 'CMDEAL -- Deallocate'
 address cpicomm 'CMDEAL conv_id cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 say 'CMSERR, CMSDT and CMDEAL complete for conversation' conv_id

 return
 --/
/* ERROR: Display input error message and exit SUESAMP1. */
/*--*/
Error:

 parse arg message, parm_name, act_val, exp_val
 parm_msg = ' (Unexpected' parm_name 'value)'

Understanding CPI Communications

518 z/VM: 7.2 CMS Application Development Guide

 x = 'Error:' message
 if (parm_name ¬= '') then x = x parm_msg

 say
 say x

 if (parm_name ¬= '') then do
 say
 say ' Expected value:' exp_val
 say ' Received value:' act_val
 end

 signal Get_Out

 return

SUESAMP2 EXEC Listing
/*--*/
/* SUESAMP2 EXEC */
/* */
/* This EXEC is the target program for the demonstration of the */
/* CPI Communications VM extension routine Signal_User_Event */
/* (XCSUE). SUESAMP1 EXEC allocates a CPI Communications */
/* conversation, and this EXEC handles the partner side of that */
/* conversation. An entry in the private resource authorization */
/* file ($SERVER$ NAMES) is required for SUESAMP2. */
/* */
/* Because this program is for demonstration purposes, only */
/* minimal error checking is included. */
/* */
/* Main logic of SUESAMP2: */
/* */
/* Initialize program constants */
/* Start conversation initiated by the partner */
/* Do forever */
/* Send data (CMSEND) to the partner */
/* If Send_Error indication received, then leave */
/* End */
/* Receive conversation termination indication from partner */
/*--*/

arg args

call Initialize
call Main_Prog

Get_Out:
 say
 Exit

/*--*/
/* INITIALIZE: Set up program variables and constants */
/*--*/
Initialize:

 address command 'ESTATE CMREXX COPY *'
 if (rc ¬= 0) then call error 'CMREXX COPY file not found.'
 else do
 'execio * diskr CMREXX COPY * (finis stem PSEUDONYM.'
 do i = 1 to pseudonym.0
 interpret pseudonym.i
 end
 end

 send_rec = 'This is a record of data for the CMSEND call.'
 send_rec_len = length(send_rec)
 say
 say '*'copies('-', 78)'*'
 msg = 'SUESAMP2: CPI Communications XCSUE Sample Target Program'
 say ' ' msg
 say '*'copies('-', 78)'*'
 say

 return

/*--*/
/* MAIN_PROG: Call Get_Conversation to start the conversation */
/* Do Forever */

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 519

/* Call Send_And_Confirm to send data */
/* If send_error was received then leave */
/* End */
/* Call End_Conversation to receive deallocation */
/*--*/
Main_Prog:

 call Get_Conversation /* Do CMACCP, CMRCV, CMCFMD */
 say 'CMSEND loop is beginning'
 loop_count = 0

 got_send_err = 0
 do forever
 call Send_and_Confirm
 if (got_send_err = 1) then leave
 else loop_count = loop_count + 1
 end

 say 'CMSEND loop is complete, performed' loop_count 'times'

 call End_Conversation

 return

/*--*/
/* GET_CONVERSATION: Issue CMACCP, CMRCV, and CMCFMD to start a */
/* CPI Communications conversation. The CMACCP */
/* is in response to the source's CMALLC. The */
/* CMRCV will report the confirmation request */
/* generated by the source's CMPTR (since the */
/* sync_level of the conversation was set to */
/* cm_confirm). The CMCFMD will respond */
/* positively to the confirmation request. The */
/* CMSST specifies that a request for */
/* confirmation will be sent with subsequent */
/* CMSEND calls. */
/*--*/
Get_Conversation:

 x = 'CMACCP -- Accept_Conversation'
 address cpicomm 'CMACCP conv_id cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok
 x = 'CMRCV 1 -- Receive'
 reql = 2
 address cpicomm 'CMRCV conv_id buf reql datr recl stat rts cm_rc'
 if (cm_rc ¬= cm_ok) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok
 if (stat ¬= cm_confirm_send_received) then ,
 call error x, 'stat_rec', cm_status_received.stat, ,
 cm_confirm_received

 x = 'CMCFMD -- Confirmed'
 address cpicomm 'CMCFMD conv_id cm_rc'
 if (cm_rc ¬= cm_ok) then
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 x = 'CMSST -- Set_Send_Type'
 address cpicomm 'CMSST conv_id cm_send_and_confirm cm_rc'
 if (cm_rc ¬= cm_ok) then
 call error x, 'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

 m = 'CMACCP, CMRCV, CMCFMD, and CMSST complete for conversation'
 say m conv_id

 return

/*--*/
/* SEND_AND_CONFIRM: Issue CMSEND to send data to partner. */
/* Because the send_type was previously set to */
/* cm_send_and_confirm, a confirmation request */
/* will be sent along with the data. If a */
/* send_error is received, a flag is set. */
/*--*/
Send_And_Confirm:

 x = 'CMSEND -- Send_Data'
 address cpicomm 'CMSEND conv_id send_rec send_rec_len rts_rec cm_rc'

 if (cm_rc = cm_program_error_purging) then got_send_err = 1
 else if (cm_rc ¬= cm_ok) then ,
 call error x,'cm_rc', cm_return_code.cm_rc, cm_return_code.cm_ok

Understanding CPI Communications

520 z/VM: 7.2 CMS Application Development Guide

 return
/*--*/
/* END_CONVERSATION: Issue CMRCV to receive the deallocation */
/* notification to terminate the CPI */
/* Communications conversation. */
/*--*/

End_Conversation:

 x = 'CMRCV 2 -- Receive'
 reql = 2
 address cpicomm 'CMRCV conv_id buf reql datr recl stat rts cm_rc'
 if (cm_rc ¬= cm_deallocated_normal) then ,
 call error x, 'cm_rc', cm_return_code.cm_rc, ,
 cm_return_code.cm_deallocated_normal

 m = 'Normal deallocation received for conversation'
 say m conv_id

 return

/*--*/
/* ERROR: Handle unexpected results */
/*--*/
Error:

 parse arg message, parm_name, act_val, exp_val
 parm_msg = ' (Unexpected' parm_name 'value)'

 x = 'Error:' message
 if (parm_name ¬= '') then x = x parm_msg

 say; say x

 if (parm_name ¬= '') then do
 say
 say ' Expected value:' exp_val
 say ' Received value:' act_val
 end

 signal Get_Out

 return

SUESAMP3 ASSEMBLE Listing
--
* SUESAMP3 ASSEMBLE *
* *
* This program is the timer portion for the demonstration of the *
* CPI Communications VM extension routine Signal_User_Event *
* (XCSUE). To create a module from this program, assemble it, *
* LOAD it with the RLDSAVE option, and GENMOD it with the SYSTEM *
* option. Note that you will need to issue GLOBAL TXTLIB CMSSAA *
* prior to the LOAD. *
* *
* Because this program is just for demonstration purposes, only *
* minimal error checking is included. *
* *
* Main Logic of SUESAMP3: *
* *
* Issue call to STIMER macro to set a timer to "pop" in 10 *
* seconds. *
* When the timer "pops", the interrupt handler specified on the *
* STIMER call is driven. Signal_User_Event (XCSUE) is called *
* in the interrupt handler so that we can post a user_event *
* to be reported on a subsequent Wait_On_Event (XCWOE) call *
* by our calling program (SUESAMP1). *
--
*
SUESAMP3 CSECT Identify this program
 STM R14,R12,12(R13) Save system's registers
 LR R12,R15 Set up addressability
 USING SUESAMP3,R12 Establish base register 12
 ST R13,SAVEMAIN+4 Save pointer to system's save area
 LA R13,SAVEMAIN R13 points to our save area
*
--

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 521

* Issue STIMER macro to pop interrupt handler in 10 seconds. *
* Exit TIMESUP will get control when that time has expired. *
--
*
SETTIMER EQU *
 STIMER REAL,TIMESUP,DINTVL=SECOND10
*
--
* Return control to CMS. *
--
*
EXIT EQU *
 L R13,SAVEMAIN+4 Restore ptr. to system's save area
 L R14,12(R13) Restore the system registers
 LM R0,R12,20(R13) Get registers
 BR R14 Return control to the system
**--*
* The following routine is the external interrupt handler for *
* STIMER interrupts. Save the registers, issue XCSUE to signal *
* that the timer exit was issued, restore registers and return. *
--
*
TIMESUP EQU *
 STM R14,R12,12(R13) Save system's registers
 LR R12,R15 Set up addressability
 USING TIMESUP,R12 Establish base register 12
*
 LA R0,SUELNGTH Obtain storage needed for interrupt
 CMSSTOR OBTAIN,BYTES=(R0) handler
 LR R5,R1 R1 has address of storage obtained
 USING SUE,R5 Map our storage to SUE DSECT
*
 ST R13,SUESAVE+4 Save pointer to system's save area
 LA R13,SUESAVE R13 points to our save area
*
* Call XCSUE to post the user event
 CALL XCSUE,(EVENTID,USERDATA,USERDLEN,SUERC),VL
*
 L R13,SUESAVE+4 Restore R13 pointer
*
 LA R0,SUELNGTH Release storage we obtained
 CMSSTOR RELEASE,BYTES=(R0),ADDR=(R5)
 DROP R5
*
 LM R14,R12,12(R13) Restore the system's registers
 BR R14 Return to CMS
*
--
* Program storage areas and constants. *
--
*
SAVEMAIN DS 18F Save area for the user program
 DS 0D Need doubleword boundary
* HHMMSSTH STIMER DINTVL format (10 seconds)
SECOND10 DC CL8'00001000'
EVENTID DC CL8'SUESAMP3' Event_ID for XCSUE
* User_Data for XCSUE
USERDATA DC CL31'Timer has expired for SUESAMP3!'
 DS 0F Fullword alignment
USERDLEN DC A(L'USERDATA) User_Data length for XCSUE
SUERC DC F'0' Return_Code for XCSUE
**--*
* DSECTS *
--
*
SUE DSECT
SUESAVE DS 18F Save area for the user program
SUELNGTH EQU *-SUE Length of DSECT
*
 REGEQU Include the register equates
 END SUESAMP3

Execution Results
The results of executing SUESAMP1 EXEC are shown in the following figures. The number of times the
loop is executed may vary from execution to execution.

Understanding CPI Communications

522 z/VM: 7.2 CMS Application Development Guide

Allocating Program's Results
--
 SUESAMP1: CPI Communications XCSUE Sample Source Program
--

CMINIT, CMSSL, CMALLC, and CMPTR complete for conversation 00000000
SUESAMP3 called, timer set for 10 seconds
XCWOE loop is beginning
XCWOE loop is complete, performed 2063 times

User_Event received by XCWOE:
 Event_ID parameter = SUESAMP3
 User_Data parameter = Timer has expired for SUESAMP3!

CMSERR, CMSDT and CMDEAL complete for conversation 00000000

Ready;

Figure 98. Results on USERID1 Virtual Machine

Accepting Program's Results
--
 SUESAMP2: CPI Communications XCSUE Sample Target Program
--

CMACCP, CMRCV, CMCFMD, and CMSST complete for conversation 00000000
CMSEND loop is beginning
CMSEND loop is complete, performed 2063 times
Normal deallocation received for conversation 00000000

Ready;

Figure 99. Results on USERID2 Virtual Machine

Scenario 5: Using the VMCPIC Event
• Example 1 – Replacing XCWOE

A multitasking application should use Event Management Services instead of Wait_on_Event (XCWOE)
to wait on communications events so that only one thread, rather than the entire application, is required
to wait.

Using XCWOE Using VMCPIC
----------- ----------------
 . .
 . .
 . .
XCWOE(....) EventMonitorCreate(for VMCPIC
 event with key *
 or VMCONINPUT event)
 returns a monitor token

 EventWait(on monitor token
 returned above)

 EventRetrieve(on monitor token
 returned above)
 . .
 . .
 . .

Figure 100. Replacing XCWOE
• Example 2 – Allocation requests on any resource

The following application waits until any allocation request arrives for any resource or until a timeout
timer has expired. It uses Timer Services for the timeout timer.

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 523

Explanation Application
----------- -----------
 . .
 . .
 . .
1) Identified as resource XCIDRM(for resource SOMENAME)
 manager for resource
 SOMENAME
 . .
 . .
 . .
2) Start a timer for the timeout TimerStartInt(...)
 returns timer token TOKN

3) Build event key X'00000001'* eventkey =
 using pseudonym for event_type XC_ALLOCATION_REQUEST'*'

4) Create a monitor for the EventMonitorCreate(for
 events on which to wait VMTIMER event with key TOKN*
 or VMCPIC event with key eventkey)
 returns a monitor token
 . .
 . .
 . .

5) Wait for either the timeout EventWait(on above monitor token)
 timer to expire or an application goes into a wait
 allocation request on any
 resource
 . .
 . .
 . .
6) One of the following signals application wakes up and continues
 occurs processing
 - an allocation request for
 SOMENAME .
 - timeout timer expires or is .
 stopped .

7) Get event data associated EventRetrieve(on monitor token
 with signal returned above)
 . .
 . .
 . .

Figure 101. Allocation Requests on Any Resource
• Example 3 – Resource revoked notification on any resource

The following application waits until any resource revoked notification comes in for any resource or
until its timeout timer has expired. To do this, it needs to change the VMCPIC event key on the
EventMonitorCreate in step 3 above. This will be done using the CPI Communications pseudonym for
the event_type. (In step 6 the application wakes up due to a resource revoked notification rather than an
allocation request). Our new step 3 would look like this:

Explanation Application
----------- -----------
 . .
 . .
 . .
3) Build event key X'00000003'* eventkey =
 using pseudonym for event_type XC_RESOURCE_REVOKED'*'
 Create a monitor for the EventMonitorCreate(for
 events on which to wait VMTIMER event with key TOKN*
 or VMCPIC event with key eventkey)
 returns a monitor token
 . .
 . .
 . .

Figure 102. Resource Revoked Notification on Any Resource
• Example 4 – Information input on a conversation

The following application waits for information input on a particular conversation. In this example we
will deal with one event.

Understanding CPI Communications

524 z/VM: 7.2 CMS Application Development Guide

Explanation Application
----------- -----------
 . .
 . .
 . .
1) Accept a conversation and get CMACCP(..)
 the conversation_ID returns conversation_ID 00000001
 . .
 . .
 . .

2) Build event key of event type eventkey =
 concatenated with the XC_INFORMATION_INPUT conversation_ID
 conversation_ID

3) Create a monitor for the EventMonitorCreate(for
 event on which to wait VMCPIC event with key
 eventkey)
 returns a monitor token

4) Wait for information input EventWait(on above monitor token)
 on conversation 00000001 application goes into a wait
 . .
 . .
 . .
5) Information input occurs application wakes up
 on conversation 00000001

6) Get the event data which EventRetrieve(on above monitor
 will give you the token)
 event_info_length

7) Receive information from partner CMRCV(...)
 . .
 . .
 . .

Figure 103. Information Input on a Conversation
• Example 5 – Console input

The following application waits for console input only.

Explanation Application
----------- -----------
 . .
 . .
 . .

1) Create a monitor for the EventMonitorCreate(for
 event on which to wait VMCONINPUT event)
 returns a monitor token

2) Wait for console input EventWait(on above monitor token)
 application goes into a wait
 . .
 . .
 . .
3) Console input occurs application wakes up

4) Read the input from the LINERD(...)
 console

5) Handle input as appropriate
 . .
 . .
 . .

Understanding CPI Communications

Chapter 33. Understanding CPI Communications 525

Understanding CPI Communications

526 z/VM: 7.2 CMS Application Development Guide

Appendix A. Assembler Examples

These Assembler examples follow:

• “Example 1: Assembler Application Using the CSL Extract/Replace Routine” on page 527
• “Example 2: Assembler Application Using CSL Routines to Open, Read, and Close Files” on page 529

Example 1: Assembler Application Using the CSL Extract/Replace
Routine

The following assembler program, called CSLASSEM ASSEMBLE, calls DMSERP, the CSL routine in VMLIB
that accesses the extract/replace function. This particular call is extracting the access mode of the first
read/only CMS disk.

Assembler Application Using Extract/Replace
* === *
* This program issues a call to the EXTRACT/REPLACE CSL routine, *
* DMSERP, to extract the accessmode of the first READ/ONLY CMS disk. *
* === *
*
CSLASSEM CSECT , Program identifier
MAINENT DS 0H
 USING *,R15
 B PROLOG
 DC AL1(16)
 DC C'CSLASSEM 90.058'
 DROP R15
PROLOG STM R14,R12,12(R13) Standard linkage
 LR R12,R15
PSTART EQU CSLASSEM
 USING PSTART,R12
 ST R13,SAVE01+4
 LA R14,SAVE01
 ST R14,8(,R13)
 LR R13,R14
*
* CALL EXTRACT/REPLACE VIA CSL
*
* === *
*
* An EXTRN statement is need to identify to the ASSEMBLER that DMSCSL
* is an EXTeRNal reference.
*
 EXTRN DMSCSL
*
* The parameters on the call to DMSCSL are described in the DATA
* section of this program.
*
* The call to EXTRACT/REPLACE is issued to determine what the
* access mode (INFONAME) of the first READ/ONLY disk (SARGNAM).
* BUFFER contains the access mode of the first READ/ONLY disk.
*
 CALL DMSCSL,(EXTREP,RTNCODE,DOEXTRAT,NUMARGS, *
 INFONAME,BUFFER,DATATYP,BUFLEN, *
 FLAGS,SRCHTYP,TOKEN, *
 SARGNAM,SARGVAL,SVALTYP,SVALLEN,SARGTYP),VL
*
* Display results using the APPLMSG macro
*
* == *
*
 APPLMSG APPLID=TCP,HEADER=NO,TEXT='RTNCODE= &&1', *
 SUB=(DECA,(RTNCODE,4))
 APPLMSG APPLID=TCP,HEADER=NO,TEXT='BUFFER= &&1', *
 SUB=(HEXA,(BUFFER,20))
 APPLMSG APPLID=TCP,HEADER=NO,TEXT='BUFFER= &&1', *
 SUB=(CHARA,(BUFFER,8))
 APPLMSG APPLID=TCP,HEADER=NO,TEXT='DATATYP = &&1', *
 SUB=(DECA,(DATATYP,4))

Assembler Examples

© Copyright IBM Corp. 1990, 2022 527

 APPLMSG APPLID=TCP,HEADER=NO,TEXT='BUFLEN = &&1', *
 SUB=(DECA,(BUFLEN,4))
*RETURN CODE(RC);
 L R15,RC
 L R13,4(,R13)
 L R14,12(,R13)
 LM R00,R12,20(R13)
 BR R14
*END SAMPERXP
* === *
* ============ DATA Section ============== *
* === *
*
DATA DS 0H
 DS 0F
SAVE01 DS 18F Save area used for linkage
 DS 0F
WORDONE DC F'1' Define a value of one
 DS 0D
EXTREP DC CL8'DMSERP ' The CSL routine to be invoked
RTNCODE DC F'99' Setup bad return code
* when function is complete it
* should be zero (0).
DOEXTRAT DC CL8'EXTRACT ' Identify function - EXTRACT
NUMARGS DC F'1' Number of arguments in call
* There is only one in
* this case
*
* Infoname identifies the information that is to be extracted.
INFONAME DC CL20'ACCESS_MODE '
*
* Buffer contains the value of the extracted data.
*
BUFFER DC CL1'0'
*
* Data type identifies the type of data being extracted.
* The value of DATATYP changes after the call to DMSCSL.
* 32 -character string
* 4 -numeric
* 9 -indicator
* 13 -address
*
DATATYP DC F'0'
*
* Buflen contains the length of the buffer on input to the CSL call.
* On output the BUFLEN contains the actual length of the data being
* extracted.
BUFLEN DC F'4'
*
* FLAGS are used to control the search process
FLAGS DC CL8'00000000'
*
* SRCHTYP is a keyword either AND or OR indicating the way multiple
* search arguments will be combined.
SRCHTYP DC CL4'OR '
* Token is used for storing input and output information when
* multiple occurrences of the designated INFONAME exist.
*
TOKEN DS F
*
* The next 5 parameters comprise the SEARCH ARGUMENT.
* SARGNAM contains an information name that is used to qualify the
* search for INFONAME
* SARGVAL is the value which the SARGNAM value will be compared against
* SVALTYP contains the data type of the value contained in SARGVAL
* SVALLEN is the length, in bytes, of the value contained in SARGVAL.
* SARGTYP is the type of comparison to be preformed. Valid values:
* EQ -equal
* GT -greater than
* LT -less than
* GE -greater or equal
* LE -less or equal
* NE -not equal
SARGNAM DC CL20'CMS_READ_ONLY_DISK '
SARGVAL DC CL1'1'
SVALTYP DC F'9'
SVALLEN DC F'1'
SARGTYP DC CL2'EQ'
*
RC DC F'0'
R00 EQU 0
R01 EQU 1

Assembler Examples

528 z/VM: 7.2 CMS Application Development Guide

R02 EQU 2
R03 EQU 3
R04 EQU 4
R05 EQU 5
R06 EQU 6
R07 EQU 7
R08 EQU 8
R09 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 DS 0D
@ENDDATA EQU *
@MODLEN EQU @ENDDATA-CSLASSEM
 END CSLASSEM

After executing the above program, here is what would be displayed on your terminal (assuming that the
B disk is the first minidisk accessed as read/write):

RTNCODE= 0
BUFFER= C2000000
BUFFER= B
DATATYP = 32
BUFLEN = 1

Remember when writing an assembler program with a call to a CSL routine:

• Use the following statement to identify to the assembler that DMSCSL is an external reference:

EXTRN DMSCSL

Example 2: Assembler Application Using CSL Routines to Open,
Read, and Close Files

The following assembler program, called OPRDCL, opens a file, called TESTMC FILE, reads one record
from the file, and closes the file. This application assumes that TESTMC FILE is in a directory accessed as
B. OPRDCL ASSEMBLE contains the following.

OPRDCL CSECT
 USING *,R15
 STM R14,R12,12(R13)
 L R12,=A(SAVE01)
 ST R12,8(,R13)
 ST R13,4(,R12)
 LR R13,R12
 BALR R12,0
 USING *,R12
 DROP R15
 SPACE 3
 APPLMSG TEXT='DOING DMSOPEN'
 CALL DMSCSL,(ROUTINE,RETURN,REASON,PARM1,PARM2, -
 PARM3, -
 PARM4, -
 PARM5),VL
 BAL 8,DISPLAY
 APPLMSG TEXT='DOING DMSREAD'
 CALL DMSCSL,(ROUTIN1,RETURN,REASON,PARM5,PARM7,PARM8, -
 PARM9, -
 PARM10, -
 PARM11),VL
 BAL 8,DISPLAY
 SPACE 3
 APPLMSG TEXT='DOING DMSCLOSE'
 CALL DMSCSL,(ROUTIN2,RETURN,REASON,PARM5,PARM12, -
 PARM13),VL
 BAL 8,DISPLAY
 B EXIT
 SPACE 3

DISPLAY L 2,RETURN
 APPLMSG TEXT='RETURN IS &&1',SUB=(HEX,(2))

Assembler Examples

Appendix A. Assembler Examples 529

 L R4,REASON
 APPLMSG TEXT='REASON CODE &&1',SUB=(HEX,(4))
 SPACE 3
 BR R8 LEAVE!

EXIT L R13,=A(SAVE01)
 L R13,4(,R13)
 ST R15,16(R13)
 LM R14,R12,12(R13)
 BR R14
 EJECT
SAVE01 DS 18F
ROUTINE DC C'DMSOPEN '
ROUTIN1 DC C'DMSREAD '
ROUTIN2 DC C'DMSCLOSE'
RETURN DC F'0'
REASON DC F'0'
PARM1 DC C'TESTMC FILE .'
PARM2 DC A(L'PARM1)
PARM3 DC C'READ CACHE'
PARM4 DC A(L'PARM3)
PARM5 DC C' '
PARM6 DC C' '
PARM7 DC F'2'
PARM8 DC F'200'
PARM9 DC CL200' '
PARM10 DC F'200'
PARM11 DC F'0'
PARM12 DC C'COMMIT'
PARM13 DC A(L'PARM12)
 SPACE 4
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 EJECT
 END

If the file was successfully opened, read, and closed, the following is displayed:

DOING DMSOPEN
RETURN IS 00000000.
REASON CODE 00000000.
DOING DMSREAD
RETURN IS 00000000.
REASON CODE 00000000.
DOING DMSCLOSE
RETURN IS 00000000.
REASON CODE 00000000.

Assembler Examples

530 z/VM: 7.2 CMS Application Development Guide

Appendix B. C Example

The following C application, called CSLC C, calls DMSERP, the CSL routine in VMLIB that accesses the
extract/replace function. This particular call is extracting the access mode of the first read-only CMS disk.
CSLC C contains the following:

#include <stdio.h>

 /* This sample C application program calls Extract/Replace, */
 /* via DMSCSL, to obtain the access mode of the first */
 /* read/only CMS disk. */

 /* DMSCSL - External interface routine to extract/replace */
 /* RTNCODE - Return code from extract/replace */
 /* BUFFER - Value that was extracted */
 /* BUFF - Value that was extracted */
 /* DATATYPE - Data type of data extracted */
 /* BUFLNGTH - Length of buffer/length of extracted data */
 /* SRCHTYPE - Logical type of search */
 /* TOKEN - Pointer of sorts */
 /* SARGNAM1 - Search argument name */
 /* SARGVAL1 - Search argument value */

 #pragma linkage(DMSCSL,OS)

 extern int DMSCSL(const char *RTNNAME, int *RC, ...);

 main()
 {
 int RTNCODE = 1;
 char BUFFER[] = "XXXXX";
 int DATATYPE = 0;
 int BUFLNGTH = 5;
 char SRCHTYPE[] = "OR ";
 int TOKEN;
 char SARGNAM1[] = "CMS_READ_ONLY_DISK ";
 char SARGVAL1 = '1';
 int i; printf ("Before RESET call:\n");
 printf ("RTNCODE = %d\n",RTNCODE);
 printf ("BUFFER = ");
 for(i = 0; i < 5;i++)
 printf("%1x",BUFFER[i]);
 printf("\n");
 printf ("DATATYPE = %d\n",DATATYPE);
 printf ("BUFLNGTH = %d\n",BUFLNGTH);
 printf ("SRCHTYPE = \"%s\"\n",SRCHTYPE);
 printf ("TOKEN = %d\n",TOKEN);
 printf ("SARGNAM1 = \"%s\"\n",SARGNAM1);
 printf ("SARGVAL1 = \"%c\"\n",SARGVAL1);

 DMSCSL("DMSERP ", &RTNCODE, "RESET ");

 printf("\n");

 printf ("After RESET call:\n");
 printf ("RTNCODE = %d\n",RTNCODE);
 DMSCSL("DMSERP ", &RTNCODE, "EXTRACT ", 1,
 "ACCESS_MODE ", &BUFFER, &DATATYPE, &BUFLNGTH,
 "00000000", &SRCHTYPE, &TOKEN,
 &SARGNAM1, &SARGVAL1, 9, 1, "EQ");

 printf("\n");

 printf ("After EXTRACT call:\n");
 printf ("RTNCODE = %d\n",RTNCODE);
 printf ("BUFFER = ");
 for(i = 0; i < 5;i++)
 printf("%1x",BUFFER[i]);
 printf("\n");
 printf ("DATATYPE = %d\n",DATATYPE);
 printf ("BUFLNGTH = %d\n",BUFLNGTH);
 printf ("SRCHTYPE = \"%s\"\n",SRCHTYPE);
 printf ("TOKEN = %d\n",TOKEN);
 printf ("SARGNAM1 = \"%s\"\n",SARGNAM1);

C Example

© Copyright IBM Corp. 1990, 2022 531

 printf ("SARGVAL1 = \"%c\"\n",SARGVAL1);

 if(RTNCODE == 0)
 {
 printf("\nYour first accessed R/O mode is ");
 for(i = 0; i < BUFLNGTH;i++)
 printf("%1c",BUFFER[i]);
 printf("\n");
 {

Remember the following notes when coding a C program with a call to a CSL routine:

• To declare DMSCSL, use the "extern" statement as shown above.
• When passing an integer value as a parameter, you must preface the parameter name with an

ampersand (&) as shown in the DMSCSL calls in the above program.
• To pass a parameter as a literal, you must surround it with double quotation marks rather than single

quotation marks.
• CSL does not append a null on character strings it returns. The C program must take this into

consideration.
• The #pragma statement for DMSCSL, as shown in the above program, is required in order to ensure that

DMSCSL is called with the correct linkage.

C Example

532 z/VM: 7.2 CMS Application Development Guide

Appendix C. COBOL Examples

These COBOL examples follow:

• “Example 1: Simple COBOL Application” on page 533
• “Example 2: Complete COBOL Application” on page 533
• “Example 3: COBOL Application Using a CSL Routine Call” on page 535

Example 1: Simple COBOL Application
The following is a sample COBOL application called WELCOME. This application prompts you to enter your
first name and last name. Then it welcomes you to CMS. WELCOME COBOL contains the following code:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MYPROG.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 FNAME PIC X(22) VALUE "ENTER YOUR FIRST NAME:".
 77 LNAME PIC X(23) VALUE "AND NOW YOUR LAST NAME:".
 01 ANSWR.
 05 ANSLT PIC X(16) VALUE "WELCOME TO CMS, ".
 05 AFRST PIC X(8) VALUE SPACES.
 05 FILLER PIC X VALUE SPACES.
 05 ALAST PIC X(8) VALUE SPACES.
 PROCEDURE DIVISION.
 DISPLAY FNAME UPON CONSOLE.
 ACCEPT AFRST FROM CONSOLE.
 DISPLAY LNAME UPON CONSOLE.
 ACCEPT ALAST FROM CONSOLE.
 DISPLAY ANSWR UPON CONSOLE.
 STOP RUN.

Figure 104. Simple COBOL Application

Example 2: Complete COBOL Application
The following COBOL application lets you add, change, delete, or display records of peoples' names, by
serial number. The records must be added before they can be changed, deleted, or displayed.

This application package consists of two parts:

• The source COBOL program, called COBOL1 COBOL, prompts you for information. Then it adds,
changes, deletes, or displays the records of the work file.

• The exec program, called DRIVE1 EXEC. DRIVE1 invokes COBOL1. It does the file management for
COBOL1 using CMS commands. COBOL1 creates a temporary work file, so DRIVE1 checks if the file
already exists. If the work file exists, DRIVE1 issues an error message and does not call COBOL1. If the
work file does not exist, DRIVE1 issues the FILEDEF commands and calls COBOL1.

Upon return, DRIVE1 tests the return code set by COBOL1. If the return code indicates an incomplete
work file, DRIVE1 erases the work file. If the return code indicates a completed work file, DRIVE1 erases
the old master file and renames the work file as the new master file. The master file is called NAMES
DATA.

To execute this application, issue the following commands:

COBOL2 COBOL1
GLOBAL TXTLIB VSC2LTXT
LOAD COBOL1
GENMOD COBOL1
DRIVE1

DRIVE1 EXEC contains the following information:

COBOL Examples

© Copyright IBM Corp. 1990, 2022 533

&TRACE
STATE WORK DATA A
&IF &RETCODE GT 0 &GOTO -OK
&TYPE FILE 'WORK DATA A' EXISTS. ERASE AND TRY AGAIN.
&EXIT
-OK
FILEDEF NAMES DISK NAMES DATA
FILEDEF WORK DISK WORK DATA
COBOL1
&IF &RETCODE NE 0 &GOTO -NG
STATE WORK DATA A
&IF &RETCODE GT 0 &GOTO -NF
ERASE NAMES DATA A
RENAME WORK DATA A NAMES DATA A
-NF
&EXIT
-NG
ERASE WORK DATA A
&EXIT

COBOL1 COBOL contains the following information:

Complete COBOL Application
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOL1.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE ASSIGN TO DA-3390-S-NAMES
 ACCESS MODE IS SEQUENTIAL.
 SELECT OUTFILE ASSIGN TO DA-3390-S-WORK
 ACCESS MODE IS SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.
 FD INFILE
 RECORDING MODE IS F
 LABEL RECORDS OMITTED
 DATA RECORD IS EMPRECIN.
 01 EMPRECIN.
 03 SERIALNIN PIC X(6).
 03 FRSTNMIN PIC X(16).
 03 LASTNMIN PIC X(16).
 FD OUTFILE
 RECORDING MODE IS F
 LABEL RECORDS OMITTED
 DATA RECORD IS EMPRECOUT.
 01 EMPRECOUT.
 03 SERIALNOUT PIC X(6).
 03 FRSTNMOUT PIC X(16).
 03 LASTNMOUT PIC X(16).
 WORKING-STORAGE SECTION.
 01 FNAME PIC X(16) VALUE SPACES.
 01 LNAME PIC X(16) VALUE SPACES.
 01 INPLINE1.
 03 FNTYPE PIC X VALUE SPACES.
 03 FILLER PIC X.
 03 EMPSER PIC X(6) VALUE SPACES.
 01 ERRMSG PIC X(20) VALUE "INCORRECT SERIAL NO.".
 01 GOODMSG PIC X(20) VALUE "OPERATION COMPLETED.".
 01 MENULINE1 PIC X(21) VALUE "ENTER FUNCTION NUMBER".
 01 MENULINE2 PIC X(27) VALUE "(1-ADD, 2-CHANGE, 3-ERASE, ".
 01 MENULINE3 PIC X(17) VALUE "4-DISPLAY, 5-END)".
 01 MENULINE4 PIC X(23) VALUE "&REQUIRED SERIAL NO.: ".
 01 RECFRSTNM PIC X(18) VALUE "ENTER FIRST NAME: ".
 01 RECLASTNM PIC X(17) VALUE "ENTER LAST NAME: ".
 01 RECFLAG PIC X VALUE "I".
 88 REC-FOUND VALUE "F".
 88 SKIP-REC VALUE "S".
 88 END-OF-FILE VALUE SPACES.
 PROCEDURE DIVISION.
 DISPLAY MENULINE1 UPON CONSOLE.
 DISPLAY MENULINE2 MENULINE3 UPON CONSOLE.
 DISPLAY MENULINE4 UPON CONSOLE.
 ACCEPT INPLINE1 FROM CONSOLE.
 IF FNTYPE < 0 AND FNTYPE > 5 THEN
 OPEN INPUT INFILE OUTPUT OUTFILE
 PERFORM FINDREC UNTIL END-OF-FILE

COBOL Examples

534 z/VM: 7.2 CMS Application Development Guide

 CLOSE INFILE
 CLOSE OUTFILE.
 STOP RUN.
 FINDREC.
 PERFORM READREC.
 IF EMPSER = SERIALNIN THEN
 MOVE "F" TO RECFLAG
 IF FNTYPE NOT = 1 THEN
 IF FNTYPE = 3 THEN
 DISPLAY GOODMSG UPON CONSOLE
 MOVE "S" TO RECFLAG
 PERFORM COPYREST UNTIL END-OF-FILE
 ELSE
 MOVE FRSTNMIN TO FNAME
 MOVE LASTNMIN TO LNAME
 PERFORM DISPNAME
 ELSE
 DISPLAY ERRMSG UPON CONSOLE
 PERFORM COPYREST UNTIL END-OF-FILE
 ELSE
 IF NOT END-OF-FILE THEN
 MOVE EMPRECIN TO EMPRECOUT
 PERFORM WRITEREC
 ELSE
 IF FNTYPE = 1 THEN
 MOVE SPACES TO FNAME
 MOVE SPACES TO LNAME
 PERFORM DISPNAME
 ELSE
 DISPLAY ERRMSG UPON CONSOLE.
 DISPNAME.
 DISPLAY FNAME LNAME UPON CONSOLE.
 IF FNTYPE = 4 THEN
 DISPLAY GOODMSG UPON CONSOLE
 PERFORM COPYREST UNTIL END-OF-FILE
 ELSE
 MOVE EMPSER TO SERIALNOUT
 DISPLAY RECFRSTNM UPON CONSOLE
 ACCEPT FRSTNMOUT FROM CONSOLE
 DISPLAY RECLASTNM UPON CONSOLE
 ACCEPT LASTNMOUT FROM CONSOLE
 DISPLAY GOODMSG UPON CONSOLE
 PERFORM WRITEREC
 IF FNTYPE = 2 THEN
 MOVE "S" TO RECFLAG
 PERFORM COPYREST UNTIL END-OF-FILE.
 COPYREST.
 IF SKIP-REC THEN
 MOVE "F" TO RECFLAG
 ELSE
 IF NOT END-OF-FILE THEN
 MOVE EMPRECIN TO EMPRECOUT
 PERFORM WRITEREC.
 IF NOT END-OF-FILE THEN
 PERFORM READREC.
 READREC.
 READ INFILE AT END
 MOVE SPACES TO RECFLAG.
 WRITEREC.
 WRITE EMPRECOUT.

Example 3: COBOL Application Using a CSL Routine Call
The following VS COBOL II application, called CSLCOB COBOL, calls DMSERP, the CSL routine in VMLIB
that accesses the extract/replace function. This particular call is extracting the access mode of the first
read/only CMS disk.

CSLCOB COBOL contains the following:

COBOL Examples

Appendix C. COBOL Examples 535

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE.
 *
 * THIS SAMPLE VS COBOL II APPLICATION PROGRAM CALLS
 * EXTRACT/REPLACE VIA DMSCSL TO GET THE ACCESS MODE OF THE FIRST
 * READ/ONLY CMS DISK.
 *
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 RTNNAME PIC X(8) VALUE "DMSERP ".
 01 RETCODE PIC 99999 COMP-4.
 01 FUNCT PIC X(8) VALUE "EXTRACT ".
 01 NUMARGS PIC 99999 VALUE 1 COMP-4.
 01 INFONAME PIC X(20) VALUE "ACCESS_MODE ".
 01 BUFFER PIC X(5) VALUE " ".
 01 DATATYP PIC 99999 VALUE 0 COMP-4.
 01 BUFLEN PIC 99999 VALUE 5 COMP-4.
 01 FLAGS PIC X(8) VALUE "00000000".
 01 SRCHTYP PIC X(4) VALUE "OR ".
 01 TOKEN PIC 99999 COMP-4.
 01 SARGNAM PIC X(20) VALUE "CMS_READ_ONLY_DISK ".
 01 SARGVAL PIC X VALUE "1".
 01 SVALTYP PIC 99999 VALUE 9 COMP-4.
 01 SVALLEN PIC 99999 VALUE 1 COMP-4.
 01 SARGTYP PIC XX VALUE "EQ".
 PROCEDURE DIVISION.
 CALL-DMSCSL SECTION.
 CALL "DMSCSL" USING RTNNAME, RETCODE, FUNCT, NUMARGS,
 - INFONAME, BUFFER, DATATYP, BUFLEN, FLAGS,
 - SRCHTYP, TOKEN, SARGNAM, SARGVAL, SVALTYP,
 - SVALLEN, SARGTYP.
 RETURN-DMSCSL SECTION.
 DISPLAY "RETCODE = " RETCODE UPON CONSOLE.
 DISPLAY "BUFFER = " BUFFER UPON CONSOLE.
 DISPLAY "DATATYP = " DATATYP UPON CONSOLE.
 DISPLAY "BUFLEN = " BUFLEN UPON CONSOLE.
 STOP RUN.

Figure 105. COBOL Application with CSL Routine Call

After executing the above program, here is what would be displayed on your terminal (assuming that the
B disk is the first minidisk accessed as read/only):

RETCODE = 00000
BUFFER = B
DATATYP = 00032
BUFLEN = 00001

Remember the following notes when coding a VS COBOL II program with a call to a CSL routine:

• Each argument in the parameter list must be called (listed) by name.
• Each variable in the parameter list must be level 01.
• Number variables must be fullwords (at least five but less than ten "9"s) and they must be COMP-4, not

zoned decimal.
• Hexadecimal values are displayed as decimal.

COBOL Examples

536 z/VM: 7.2 CMS Application Development Guide

Appendix D. FORTRAN Examples

These FORTRAN examples follow:

• “Example 1: Simple FORTRAN Application” on page 537
• “Example 2: Complete FORTRAN Application” on page 537
• “Example 3: FORTRAN Application Using a CSL Routine Call” on page 539

Example 1: Simple FORTRAN Application
The following is the sample FORTRAN program called WELCOME. This application prompts you to enter
your first name and last name. Then it welcomes you to CMS.

WELCOME FORTRAN contains the following

 PROGRAM WELCOME
 CHARACTER*8 F,S
 WRITE (6,5)
 READ (5,2) F
 WRITE (6,10)
 READ (5,2) S
 WRITE (6,15) F,S
2 FORMAT (A8)
5 FORMAT (' ENTER YOUR FIRST NAME.')
10 FORMAT (' AND NOW YOUR LAST NAME.')
15 FORMAT (' WELCOME TO CMS, ',A8,1X,A8)
 STOP
 END

Figure 106. Simple FORTRAN Application

Example 2: Complete FORTRAN Application
The following FORTRAN program lets the user add, change, delete, or display records in a file of peoples'
names, by serial number. Records must be added before they can be changed, deleted or displayed.

This application package consists of two parts:

• The source FORTRAN program, called FORT1 FORTRAN, prompts you for information. Then it adds,
changes, deletes, or displays the records of the work file.

• The exec program, called DRIVE2 EXEC. DRIVE2 invokes FORT1. It does the file management for FORT1
using CMS commands. FORT1 creates a temporary work file, so DRIVE2 checks if the file already exists.
If the work file exists, DRIVE2 issues an error message and does not call FORT1. If the work file does
not exist, DRIVE2 issues the FILEDEF commands and calls FORT1.

Upon return, DRIVE2 tests the return code set by FORT1. If the return code indicates an incomplete
work file, DRIVE2 erases the work file. If the return code indicates a completed work file, DRIVE2 erases
the old master file and renames the work file as the new master file. The master file is called NAMES
DATA.

To execute this application, issue the following commands:

FORTVS2 FORT1
GLOBAL TXTLIB VSF2FORT
GLOBAL LOADLIB VSF2LOAD
LOAD FORT1
GENMOD FORT1
DRIVE2

DRIVE2 EXEC contains the following information:

&TRACE
STATE WORK DATA A

FORTRAN Examples

© Copyright IBM Corp. 1990, 2022 537

&IF &RETCODE GT 0 &GOTO -OK
&TYPE FILE 'WORK DATA A' EXISTS. ERASE AND TRY AGAIN.
&EXIT
-OK
FILEDEF NAMES DISK NAMES DATA
FILEDEF WORK DISK WORK DATA
FORT1
&IF &RETCODE NE 0 &GOTO -NG
STATE WORK DATA A
&IF &RETCODE GT 0 &GOTO -NF
ERASE NAMES DATA A
RENAME WORK DATA A NAMES DATA A
-NF
&EXIT
-NG
ERASE WORK DATA A
&EXIT

FORT1 FORTRAN contains the following information:

FORTRAN Examples

538 z/VM: 7.2 CMS Application Development Guide

 IMPLICIT INTEGER (A-Z)
 CHARACTER*6 EMPSER,SERNO
 CHARACTER*16 FNAME,LNAME,BNAME
 CHARACTER*21 MSGOK,MSGNG
 DATA BNAME /' '/
 DATA MSGOK /'1OPERATION COMPLETED.'/
 DATA MSGNG /'1INCORRECT SERIAL NO.'/
 FOUND = 0
 ENDSW = 0
100 FORMAT ('1ENTER FUNCTION NUMBER ')
200 FORMAT (' (1-ADD, 2-CHANGE, 3-ERASE, 4-DISPLAY, 5-END)')
300 FORMAT (' & REQUIRED SERIAL NO.')
400 FORMAT (I1,1X,A6)
500 FORMAT (A16,A16,A6)
600 FORMAT (A16)
700 FORMAT (' ENTER FIRST NAME:')
800 FORMAT (' ENTER LAST NAME:')
900 FORMAT (' ',A16,1X,A16)

1000 FORMAT (A21)
 WRITE (6,100)
 WRITE (6,200)
 WRITE (6,300)
 READ (6,400) FNTYPE,EMPSER
 IF (FNTYPE.GT.4) GO TO 70
 OPEN (UNIT=11, FILE='NAMES')
 OPEN (UNIT=12, FILE='WORK')
10 READ (11,500,ERR=75,IOSTAT=INT,END=15) SERNO,FNAME,LNAME
 IF (INT.NE.0) GO TO 75
 IF (EMPSER.EQ.SERNO) GO TO 20
 WRITE (12,500,ERR=75,IOSTAT=INT) SERNO,FNAME,LNAME
 GO TO 10
15 FOUND = 0
 ENDSW = 1
 GO TO 25
20 FOUND = 1
25 IF (FNTYPE.EQ.1.AND.FOUND.EQ.0) GO TO 30
 IF (FNTYPE.GT.1.AND.FOUND.EQ.1) GO TO 35
 WRITE (6,1000) MSGNG
 IF (FOUND.EQ.0) GO TO 65
 GO TO 55
30 FNAME = BNAME
 LNAME = BNAME
 GO TO 45
35 IF (FNTYPE.EQ.3) GO TO 40
 GO TO 45
40 WRITE (6,1000) MSGOK
 GO TO 60
45 WRITE (6,900) FNAME,LNAME
 IF (FNTYPE.EQ.4) GO TO 50
 SERNO = EMPSER
 WRITE (6,700)
 READ (5,600) FNAME
 WRITE (6,800)
 READ (5,600) LNAME
50 WRITE (6,1000) MSGOK
55 WRITE (12,500,ERR=75,IOSTAT=INT) SERNO,FNAME,LNAME
 IF (ENDSW.EQ.1) GO TO 65
60 READ (11,500,ERR=75,IOSTAT=INT,END=65) SERNO,FNAME,LNAME
 IF (INT.EQ.0) GO TO 55
65 CLOSE (UNIT=11)
 CLOSE (UNIT=12)
 STOP
70 STOP 10
75 STOP 20
 END

Figure 107. Complete FORTRAN Application

Example 3: FORTRAN Application Using a CSL Routine Call
The following VS FORTRAN program, called CSLFORT FORTRAN, contains a call to DMSERP, the CSL
routine in VMLIB that accesses the extract/replace function. This particular call is extracting the access
mode of the first read/only CMS disk. CSLFORT FORTRAN contains the following:

FORTRAN Examples

Appendix D. FORTRAN Examples 539

FORTRAN Application Using CSL Routine Call
C
C THIS SAMPLE VS FORTRAN APPLICATION PROGRAM CALLS EXTRACT/REPLACE,
C VIA DMSCSL, TO GET THE ACCESS MODE OF THE FIRST READ/ONLY CMS DISK.
C
 PROGRAM SAMPLE
C
C DMSCSL - EXTERNAL INTERFACE ROUTINE TO EXTRACT/REPLACE
C RNAME - CSL ROUTINE NAME (EXTRACT/REPLACE)
C RCODE - RETURN CODE FROM EXTRACT/REPLACE
C FUNCT - FUNCTION TO BE PERFORMED
C NARGS - NUMBER OF SEARCH ARGUMENTS
C INAME - INFORMATION NAME
C BUFFER - VALUE THAT WAS EXTRACTED
C DTYP - DATA TYPE OF DATA EXTRACTED
C BLEN - LENGTH OF BUFFER/LENGTH OF EXTRACTED DATA
C FLAGS - FLAGS
C SRTYP - LOGICAL TYPE OF SEARCH
C TOKEN - EXTRACT/REPLACE INTERNAL BOOKKEEPER
C SNAM - SEARCH ARGUMENT NAME
C SVAL - SEARCH ARGUMENT VALUE
C VTYP - SEARCH ARGUMENT VALUE'S DATA TYPE
C VLEN - SEARCH ARGUMENT VALUE'S LENGTH
C STYP - COMPARISON TYPE
C
 EXTERNAL DMSCSL
 CHARACTER*8 RNAME
 INTEGER RCODE
 CHARACTER*8 FUNCT
 INTEGER NARGS
 CHARACTER*20 INAME
 CHARACTER*2 BUFFER
 INTEGER DTYP
 INTEGER BLEN
 CHARACTER*8 FLAGS
 CHARACTER*4 SRTYP
 INTEGER TOKEN
 CHARACTER*20 SNAM
 CHARACTER SVAL
 INTEGER VTYP
 INTEGER VLEN
 CHARACTER*2 STYPC
 RNAME = 'DMSERP'
 FUNCT = 'EXTRACT'
 NARGS = 1
 INAME = 'ACCESS_MODE'
 BLEN = 2
 FLAGS = '00000000'
 SRTYP = 'OR '
 SNAM = 'CMS_READ_ONLY_DISK'
 SVAL = '1'
 VTYP = 9
 VLEN = 1
 STYP = 'EQ'
C
C CALL EXTRACT/REPLACE VIA DMSCSL
C
 CALL DMSCSL (RNAME, RCODE, FUNCT, NARGS, INAME, BUFFER,
 * DTYP, BLEN, FLAGS, SRTYP, TOKEN, SNAM, SVAL,
 * VTYP, VLEN, STYP)
C
C DISPLAY RESULTS
C
 WRITE (6,30) ' RCODE = ', RCODE
 WRITE (6,40) ' BUFFER = ', BUFFER
 WRITE (6,30) ' DTYP = ', DTYP
 WRITE (6,30) ' BLEN = ', BLEN
C
 30 FORMAT (A9, I4)
 40 FORMAT (A10, A2)
C
 END

After executing the above program, here is what would be displayed on your terminal (assuming that the
B disk is the first minidisk accessed as read/only):

RCODE = 0
BUFFER = B

FORTRAN Examples

540 z/VM: 7.2 CMS Application Development Guide

DTYP = 1
BLEN = 1

Please keep the following notes in mind when coding a VS FORTRAN program with a call to a CSL routine:

• Use the following statement to declare DMSCSL:

EXTERNAL DMSCSL

• You cannot pass hexadecimal values as literal constants in search arguments in a parameter list
(Z80000000 or Z00000000) because the VS FORTRAN compiler treats them as variables names and
flags them as too long.

• Hexadecimal constants may be used only as data initialization values.
• To initialize hex values to variables declared as integers, use the following data initialization statement:

DATA var1/Z80000000/, var2/Z00000000/

FORTRAN Examples

Appendix D. FORTRAN Examples 541

FORTRAN Examples

542 z/VM: 7.2 CMS Application Development Guide

Appendix E. PL/I Example

The following OS PL/I Version 2 program, called CSLPLI PLI, calls DMSERP, the CSL routine in VMLIB
that accesses the Extract/Replace function. This particular call is extracting the access mode of the first
read/only CMS disk.

CSLPLI PLI contains the following:

 SAMPLE: PROCEDURE OPTIONS(MAIN);

 /* This sample PL/I application program calls Extract/Replace, */
 /* via DMSCSL, to obtain the access mode of the first */
 /* read/only CMS disk. */

 /* DMSCSL - external interface routine to Extract/Replace */
 /* RTNNAME - CSL routine (Extract/Replace) */
 /* RETCODE - return code from Extract/Replace */
 /* FUNCT - function to be performed */
 /* NUMARGS - number of search arguments */
 /* INFONAME - information name */
 /* BUFFER - value that was extracted */
 /* DATATYP - data type of data extracted */
 /* BUFLEN - length of buffer/length of extracted data */
 /* FLAGS - flags */
 /* SRCHTYP - logical type of search */
 /* TOKEN - Extract/Replace internal bookkeeper */
 /* SARGNAM - search argument name */
 /* SARGVAL - search argument value */
 /* SVALTYP - search argument value data type */
 /* SVALLEN - search argument value length */
 /* SARGTYP - comparison type */

 DCL DMSCSL OPTIONS (ASM INTER) ENTRY,
 RTNNAME CHAR(8) INIT('DMSERP '),
 RETCODE FIXED BINARY(31),
 FUNCT CHAR(8) INIT('EXTRACT '),
 NUMARGS FIXED BINARY(31) INIT(1),
 INFONAME CHAR(20) INIT('ACCESS_MODE '),
 BUFFER CHAR(1) INIT(' '),
 DATATYP FIXED BINARY(31),
 BUFLEN FIXED BINARY(31) INIT(1),
 FLAGS CHAR(8) INIT('00000000'),
 SRCHTYP CHAR(4) INIT('OR '),
 TOKEN FIXED BINARY(31),
 SARGNAM CHAR(20) INIT('CMS_READ_ONLY_DISK '),
 SARGVAL CHAR(1) INIT('1'),
 SVALTYP FIXED BINARY(31) INIT(9),
 SVALLEN FIXED BINARY(31) INIT(1),
 SARGTYP CHAR(2) INIT('EQ');

Figure 108. PL/I Program Part 1 of 2

 /* Call Extract/Replace via CSL */

 CALL DMSCSL(RTNNAME, RETCODE, FUNCT, NUMARGS, INFONAME,
 BUFFER, DATATYP, BUFLEN, FLAGS, SRCHTYP, TOKEN,
 SARGNAM, SARGVAL, SVALTYP, SVALLEN, SARGTYP);

 /* Display results */

 PUT EDIT ('RETCODE = ', RETCODE)(A);
 PUT SKIP EDIT ('BUFFER = ', BUFFER)(A);
 PUT SKIP EDIT ('DATATYP = ', DATATYP)(A);
 PUT SKIP EDIT ('BUFLEN = ', BUFLEN)(A);

 END SAMPLE;

Figure 109. PL/I Program Part 2 of 2

After executing the above program, here is what would be displayed on your terminal (assuming that the
B disk is the first minidisk accessed as read/only):

PL/I Example

© Copyright IBM Corp. 1990, 2022 543

RETCODE = 0
BUFFER = B
DATATYP = 32
BUFLEN = 1

Please keep the following notes in mind when coding a PL/I program with a call to a CSL routine:

• Numbers in the parameter list must be declared, initialized, and passed as variables.
• Use the following statement to declare DMSCSL:

DCL DMSCSL OPTIONS (ASM INTER) ENTRY;

PL/I Example

544 z/VM: 7.2 CMS Application Development Guide

Appendix F. REXX Examples

These REXX examples follow:

• “Example 1: REXX Application Using the CSL Extract/Replace Routine” on page 545
• “Example 2: REXX Application Using Namedefs” on page 545

Example 1: REXX Application Using the CSL Extract/Replace
Routine

The following REXX application, called CSLREXX EXEC, calls DMSERP, the CSL routine in VMLIB that
accesses the extract/replace function. This particular call is extracting the access mode of the first read/
only CMS disk.

/* CSLREXX EXEC */

address command
funct='RESET'
retcode=0
call csl 'DMSERP retcode funct' /* Reset EXTRACT/REPLACE */

/* Extract the access mode of the first read-only disk */

/* routine=DMSERP */
retcode=0
funct='EXTRACT'
numargs=1
infoname='ACCESS_MODE'
buffer=''
datatyp=0
buflen=4
flags='00000000'
srchtyp='OR'
token=0
sargnum='CMS_READ_ONLY_DISK'
sargval='1'
svaltyp=9
svallen=1
sargtyp='EQ'

call csl 'DMSERP retcode funct numargs infoname buffer datatyp',
 'buflen flags srchtyp token',
 'sargnum sargval svaltyp svallen sargtyp'

buffer=strip(buffer)

say 'RETCODE = 'retcode
say 'BUFFER = 'buffer
say 'DATATYP = 'datatyp
say 'BUFLEN = 'buflen
exit

Example 2: REXX Application Using Namedefs
The following example, called READWRIT EXEC, opens, reads, writes, and closes files using the CSL
routines DMSOPEN, DMSREAD, DMSWRITE, and DMSCLOSE. One record is read from one file and then
written to another file. This example also uses namedefs to identify the files being used. The namedef
commands are in a separate file called OPENSETU EXEC. To run this sample program, the NAMEDEFs in
OPENSETU EXEC must be changed to directories and files that the current user has access to. In addition,
the input file (INFILE) must point to a non-empty file, and the output file (OUTFILE) must not exist in the
target directory.

OPENSETU EXEC contains the following:

REXX Examples

© Copyright IBM Corp. 1990, 2022 545

/* OPENSETU EXEC */
'CREATE NAMEDEF GIVEFILE EXEC INFILE'
'CREATE NAMEDEF SERVER8:FAIRLIEA. INDIR'
'CREATE NAMEDEF GETFILE EXEC OUTFILE'
'CREATE NAMEDEF SERVER8:FAIRLIEA. OUTDIR'

Figure 110. REXX Application Using Namedefs

READWRIT EXEC contains the following:

/* READWRITE EXEC uses: */
/* DMSOPEN, DMSREAD, DMSWRITE, DMSCLOSE, CACHE, V, */
/* and namedefs. */

EXEC OPENSETU

/* Setting up variables for the OPEN before the READ. */
retcode=0
reascode=0
fileid1 = infile indir
fileid1len = length(fileid1)
opentype.1 = 'READ'
opentype.2 = 'CACHE'
opentype.3 = 'V'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid1 fileid1len opentype',
 'opentypelen tokenr'
say 'DMSOPEN:'
say 'return code is 'retcode
say 'reason code is 'reascode
/* Setting up variables for the READ. */
records=1
datalen=130
buffer=0
bufferlen=130
bytesread=16

call csl 'DMSREAD retcode reascode tokenr records datalen buffer',
 'bufferlen bytesread'
say ' '
say 'DMSREAD:'
say 'return code is 'retcode
say 'reason code is 'reascode

/* Setting up variables (to commit) for the CLOSE of the */
/* input file. */
commit='COMMIT'
comlen=length(commit)

call csl 'DMSCLOSE retcode reascode tokenr commit comlen'

say 'DMSCLOSE (for the READ):'
say 'return code is 'retcode
say 'reason code is 'reascode

/* Setting up variables for the OPEN before the WRITE. */
fileid2 = outfile outdir
fileid2len = length(fileid2)
opentype.1 = 'NEW'
opentype.2 = 'CACHE'
opentype.3 = 'V'
opentype = opentype.1 opentype.2 opentype.3
opentypelen = length(opentype)

call csl 'DMSOPEN retcode reascode fileid2 fileid2len opentype',
 'opentypelen tokenw'

say 'DMSOPEN:'
say 'return code is 'retcode
say 'reason code is 'reascode

call csl 'DMSWRITE retcode reascode tokenw records datalen buffer',
 'bufferlen'
say ' '
say 'DMSWRITE:'
say 'return code is 'retcode
say 'reason code is 'reascode

REXX Examples

546 z/VM: 7.2 CMS Application Development Guide

/* Setting up variables (to commit) for the CLOSE of */
/* the output file. */
commit='COMMIT'
comlen=length(commit)

call csl 'DMSCLOSE retcode reascode tokenw commit comlen'

say 'DMSCLOSE (for the WRITE):'
say 'return code is 'retcode
say 'reason code is 'reascode

exit

REXX Examples

Appendix F. REXX Examples 547

REXX Examples

548 z/VM: 7.2 CMS Application Development Guide

Appendix G. VS Pascal Example

The following VS Pascal program, called CSLPASC PASCAL, calls DMSERP, the CSL routine in VMLIB that
accesses the extract/replace function. This particular call (1) extracts the access mode of the first read/
only CMS disk and then (2) gets the access mode of the next CMS minidisk that is both read/only and is an
extension of the S-disk.

CSLPASC PASCAL contains the following:

 PROGRAM CSLPASC(OUTPUT);

 (* This sample VS Pascal application program calls *)
 (* Extract/Replace, via DMSCSL, to obtain the access mode of *)
 (* the first read/only CMS disk and of the next CMS minidisk *)
 (* that is both read/only and an extension of the S-disk. *)

 TYPE
 fstring2 = packed array(.1..2.) of char;
 fstring4 = packed array(.1..4.) of char;
 fstring8 = packed array(.1..8.) of char;
 fstring20 = packed array(.1..20.) of char;

 (* PROCA calls Extract/Replace via DMSCSL with one search *)
 (* argument (15 parameters). *)

 PROCEDURE PROCA (const P0: fstring8; var P1: integer;
 const P2: fstring8; const P3: integer;
 const P4: fstring20; var P5: char;
 var P6: integer; var P7: integer;
 const P8: fstring8; const P9: fstring4;
 var P10: integer; const P11: fstring20;
 const P12: char; const P13: integer;
 const P14: integer; const P15: fstring2);

 PROCEDURE DMSCSL (const P0: fstring8; var P1: integer;
 const P2: fstring8; const P3: integer;
 const P4: fstring20; var P5: char;
 var P6: integer; var P7: integer;
 const P8: fstring8; const P9: fstring4;
 var P10: integer; const P11: fstring20;
 const P12: char; const P13: integer;
 const P14: integer; const P15: fstring2);
 FORTRAN;
 BEGIN;
 DMSCSL (P0, P1, P2, P3, P4, P5, P6, P7, P8,
 P9, P10, P11, P12, P13, P14, P15);
 END;
 (* PROCB calls Extract/Replace via DMSCSL with two search *)
 (* arguments (20 parameters). *)

 PROCEDURE PROCB (const P0: fstring8; var P1: integer;
 const P2: fstring8; const P3: integer;
 const P4: fstring20; var P5: char;
 var P6: integer; var P7: integer;
 const P8: fstring8; const P9: fstring4;
 var P10: integer; const P11: fstring20;
 const P12: char; const P13: integer;
 const P14: integer; const P15: fstring2;
 const P16: fstring20; const P17: char;
 const P18: integer; const P19: integer;
 const P20: fstring2);

 PROCEDURE DMSCSL (const P0: fstring8; var P1: integer;
 const P2: fstring8; const P3: integer;
 const P4: fstring20; var P5: char;
 var P6: integer; var P7: integer;
 const P8: fstring8; const P9: fstring4;
 var P10: integer; const P11: fstring20;
 const P12: char; const P13: integer;
 const P14: integer; const P15: fstring2;
 const P16: fstring20; const P17: char;
 const P18: integer; const P19: integer;
 const P20: fstring2);
 FORTRAN;
 BEGIN;

VS Pascal Example

© Copyright IBM Corp. 1990, 2022 549

 DMSCSL (P0, P1, P2, P3, P4, P5, P6, P7,
 P8, P9, P10, P11, P12, P13, P14,
 P15, P16, P17, P18, P19, P20);
 END;

 VAR
 RTNNAME: FSTRING8; (* CSL routine being called *)
 RETCODE: INTEGER; (* return code from Extract/Replace *)
 FUNCT: FSTRING8; (* Extract/Replace function *)
 NUMARGS: INTEGER; (* number of search arguments *)
 INFONAME: FSTRING20; (* information name *)
 BUFFER: CHAR; (* contains value that was extracted *)
 DATATYP: INTEGER; (* data type of data extracted *)
 BUFLEN: INTEGER; (* buffer length/length of ext. data *)
 FLAGS: FSTRING8; (* flags *)
 SRCHTYP: FSTRING4; (* logical type of search *)
 TOKEN: INTEGER; (* internal bookkeeper *)
 SARGNAM1: FSTRING20; (* first search argument name *)
 SARGVAL1: CHAR; (* first search argument value *)
 SARGNAM2: FSTRING20; (* second search argument name *)
 SARGVAL2: CHAR; (* second search argument value *)
 SVALTYP1: INTEGER; (* search argument value data type *)
 SVALTYP2: INTEGER; (* search argument value data type *)
 SVALLEN1: INTEGER; (* search argument value data length *)
 SARGTYP: FSTRING2; (* comparison type *)

 BEGIN

 RTNNAME := 'DMSERP ';
 FUNCT := 'EXTRACT ';
 NUMARGS := 1;
 INFONAME := 'ACCESS_MODE';
 BUFFER := ' ';
 BUFLEN := 1;
 SRCHTYP := 'AND';
 FLAGS := '00000000';
 SARGNAM1 := 'CMS_READ_ONLY_DISK';
 SARGVAL1 := '1';
 SARGNAM2 := 'ACCESS_MODE_EXTEND';
 SARGVAL2 := 'S';
 SVALTYP1 := 9;
 SVALTYP2 := 32;
 SVALLEN1 := 1;
 SARGTYP := 'EQ';

 PROCA (RTNNAME, RETCODE, FUNCT, NUMARGS,
 INFONAME, BUFFER, DATATYP, BUFLEN,
 FLAGS, SRCHTYP, TOKEN, SARGNAM1,
 SARGVAL1, SVALTYP1, SVALLEN1, SARGTYP);

 (* Display results from first call to Extract/Replace *)

 WRITELN ('RETCODE = ', RETCODE);
 WRITELN ('BUFFER = ', BUFFER);
 WRITELN ('DATATYP = ', DATATYP);
 WRITELN ('BUFLEN = ', BUFLEN);

 NUMARGS := 2;
 FLAGS := '11000000';
 PROCB (RTNNAME, RETCODE, FUNCT, NUMARGS,
 INFONAME, BUFFER, DATATYP, BUFLEN,
 FLAGS, SRCHTYP, TOKEN, SARGNAM1,
 SARGVAL1, SVALTYP1, SVALLEN1, SARGTYP,
 SARGNAM2, 'S', SVALTYP2, SVALLEN1, SARGTYP);

 (* Display results from second call to Extract/Replace *)

 WRITELN;
 WRITELN ('RETCODE = ', RETCODE);
 WRITELN ('BUFFER = ', BUFFER);
 WRITELN ('DATATYP = ', DATATYP);
 WRITELN ('BUFLEN = ', BUFLEN);

 END.

After executing the above program, here is what would be displayed on your terminal (assuming that the
B disk is the first minidisk accessed as read/only, and the Y disk is the first read/only minidisk accessed
after the B-disk and as an extension of the S-disk):

VS Pascal Example

550 z/VM: 7.2 CMS Application Development Guide

 RETCODE = 0
 BUFFER = B
 DATATYP = 32
 BUFLEN = 1

 RETCODE = 0
 BUFFER = Y
 DATATYP = 32
 BUFLEN = 1

Keep the following notes in mind when coding a VS Pascal program with a call to a CSL routine:

• Declare DMSCSL as a FORTRAN routine.
• Parameters should be passed as variables by reference, rather than passing them as literals and

constants.
• If you call DMSCSL several times with parameter lists that are defined differently or have different

numbers of parameters, declare internal procedures to call different formats of DMSCSL.
• Hexadecimal values are displayed as character or integer, depending on how the variable is declared.

To display the values as hexadecimal, use an integer parameter and call the function ITOHS with the
integer.

• You cannot use an undeclared variable in a call to DMSCSL.

VS Pascal Example

Appendix G. VS Pascal Example 551

VS Pascal Example

552 z/VM: 7.2 CMS Application Development Guide

Appendix H. CPI Communications Examples

These CPI Communications examples follow:

• “Example 1: CPI Communications User Program in z/VM” on page 553
• “Example 2: CPI Communications Resource Manager Program in z/VM” on page 561
• “Example 3: Synchronizing Multiple Updates Using CRR and CPI Communications” on page 569

Example 1: CPI Communications User Program in z/VM
The following program, CPICRQST EXEC, is a sample REXX user program that requests a file, receives
it, and then displays it. This program works in conjunction with the “Example 2: CPI Communications
Resource Manager Program in z/VM” on page 561.

See the z/VM: REXX/VM Reference for more information about the REXX statements shown in this
program.

/*************************** CPICRQST *******************************/
/* */
/* Description: This program sends a request for a file to the */
/* specified VM Resource Manager (as created by the CPICSERV */
/* EXEC). The contents of the requested file is displayed on */
/* the console. */
/* */
/* External References: */
/* SAA Common Programming Interface Communications Reference */
/* z/VM Connectivity Planning, Administration, and Operation */
/* CMREXX COPY: Contains all of the SAA and VM-specific */
/* constants. */
/* */
/* Detailed Information: */
/* */
/* This is a sample CPI Communications program. It sends a */
/* request for a particular file to the specified resource */
/* (server), then receives and displays the data received from */
/* the that server. */
/* */
/* For demonstration purposes, there is the ability for the */
/* user to request 'n' records, which will be created dynamically */
/* by the server. */
/* */
/* This program uses some VM-specific CPI Communications */
/* routines which may not be portable to other operating systems. */
/*:: */
/* Syntax: (defaults indicated by asterisk) */
/* */
/* CPICRQST fn ft <FROM> resource_id <VIA> local_LU remote_LU */
/* (TRACE | NOTRACE* */
/* SECURITY(PGM | SAME* | NONE) */
/* USERID(userid) */
/* PASSWORD(password) */
/* BASIC | MAPPED* */
/* VERIFY| NOVERIFY* */
/* FORCERR nnn | NOFORCERR* */
/* CONFIRM | NOCONFIRM* */
/* STATS(userid) */
/* TYPE* | NOTYPE */
/*:: */
/* Parameters: */
/* */
/* fn ft is the filename and filetype of the file to be sent. */
/* If fn is a number and ft is 'RECORDS', it is treated */
/* as a request for 'n' dynamically created records. */
/* */
/* resource_id is the name of the resource. It is a */
/* CPI-Communications symbolic destination name. If it */
/* is the nickname of an entry in an active */
/* communications directory (COMDIR) file, it will be */
/* resolved accordingly. */
/* */
/* SECURITY() specifies the security level of the conversation. */

CPI Communications Examples

© Copyright IBM Corp. 1990, 2022 553

/* If not specified, the value from the communications */
/* directory is used. If there is no communications */
/* directory entry, the default will be NONE. */
/* */
/* USERID() is the userid to be sent to the remote LU for */
/* verification. Only valid with SECURITY(PGM). */
/* */
/* PASSWORD() is the password to be sent to the remote LU for */
/* verification. Only valid with SECURITY(PGM). */
/* */
/* BASIC Indicates the conversation type. The default is */
/* MAPPED MAPPED. */
/* */
/* TRACE specifies whether certain CPI-C routines are traced. */
/* NOTRACE The default is NOTRACE. */
/* */
/* VERIFY specifies whether the data returned by the server */
/* NOVERIFY is to be verified. If VERIFY is specified, the */
/* file must be available on an accessed disk or */
/* directory. Also, the VERIFY option will suppress */
/* the display of the returned data. The default is */
/* NOVERIFY. */
/* */
/* FORCERR nnn specifies that a SEND_ERROR is to be issued after */
/* NOFORCERR the indicated number of records are received. If nnn */
/* is larger than the number of records, then the */
/* SEND_ERROR will be issued immediately before the */
/* conversation is deallocated. NOTE: Log data is only */
/* available when the BASIC option is specified. */
/* The default is NOVERIFY. */
/* */
/* TYPE specifies whether the received records are displayed. */
/* NOTYPE at the console. The default is TYPE. */
/* */
/* STATS() specifies the user who is to receive statistics data. */
/* The data is of the form 'N=nnnn T=tttt R=rrrr', */
/* where: nnnn is the number of records */
/* tttt is the time it took to get the records */
/* rrrr is the number of records per second. */
/* */
/* Return Codes: */
/* 0 - Everything completed OK */
/* 1-200 - CPI Communications error. Return code is architected. */
/* 999 - Error in command syntax */
/* 1xxx - Error xxx from CMS command */
/* 2000 - Runtime syntax error. Invalid environment or programming */
/* error has occurred. */
/* 3000 - VERIFY was specified and a record has been received that */
/* does not match the expected value. */
/* */
/**/
Trace Off

arg filename filetype rest '(' options
If filename = '?' then Signal Help

'IDENTIFY (LIFO'
pull . . nodeid .
exitrc = 0
If word(rest,1) = 'FROM' then /* 'FROM' is optional */
 parse var rest . resource_id rest
Else
 parse var rest resource_id rest

LU_Name = ''
If word(rest,1) = 'VIA' then /* 'VIA' is optional */
 parse var rest . LU_Name
Else
 parse var rest LU_Name
LU_Name = strip(LU_Name)
Call Process_Options
'VMFCLEAR'
 /* If verification is required,*/
If verify then /* get comparison data. */
 If datatype(filename,'W') & filetype = 'RECORDS' then
 Do
 file.0 = filename /* Either generate our own... */
 Do i = 1 to file.0
 FILE.i = left('TEST RECORD NUMBER' i, 80)
 End
 End
 Else /* ...or read the data file. */

CPI Communications Examples

554 z/VM: 7.2 CMS Application Development Guide

 Do
 'ESTATE' filename filetype '*'
 If rc <> 0 then
 Call ErrorExit '001 Error' rc 'from ESTATE', 1000+rc

 'EXECIO * DISKR' filename filetype '* (FINIS STEM FILE.'
 If rc <> 0 then
 Call ErrorExit '002 Error' rc 'from EXECIO. Unable to read',
 filename filetype'.', 1000+rc
 End

/* Get CPI Communications constants */
'EXECIO * DISKR CMREXX COPY * (FINIS STEM CPICCONST.'
If rc <> 0 then
 Call ErrorExit '002 Error' rc 'from EXECIO. Unable to read',
 'CMREXX COPY.', 1000+rc
Do i = 1 to cpicconst.0; interpret cpicconst.i; end
Address CPIComm /* Switch environments */
Call On Error /* Catch CSL errors */
 /* Initialize conversation */
'CMINIT conversation_id' resource_id 'CM_RC'
If CM_RC <> CM_OK then
 Call EMSG 'Unable to init conversation to resource' resource_id

Select /* Determine security level */
 When security = 'NONE' then security_level = XC_SECURITY_NONE
 When security = 'SAME' then security_level = XC_SECURITY_SAME
 When security = 'PGM' then security_level = XC_SECURITY_PROGRAM
 Otherwise security_level = ''
End

If security_level <> '' then /* Not using default security */
 Do
 'XCSCST conversation_id security_level CM_RC'
 If CM_RC <> CM_OK then
 Call EMSG 'Unable to set security level for conversation',
 conversation_id
 End

If security_userid <> '' then /* Not using default userid */
 Do
 id_length = length(security_userid)
 'XCSCSU conversation_id security_userid id_length CM_RC'
 If CM_RC <> CM_OK then
 Call EMSG 'Unable to set security userid for conversation',
 conversation_id
 End

If security_password <> '' then /* Not using default pw */
 Do
 id_length = length(security_password)
 'XCSCSP conversation_id security_password id_length CM_RC'
 If CM_RC <> CM_OK then
 Call EMSG 'Unable to set security password for conversation',
 conversation_id
 End

/* If remote LU name is character '0', change it to 8 X'00's */
Parse var LU_Name local_LU remote_LU
if remote_LU = '0' then
 remote_LU = d2c(0,8)
LU_Name = local_LU remote_LU

Select
 when Local_LU = '' then nop /* Global/local resource */
 when Local_LU = '*USERID' then /* Private resource */
 do
 plul = length(LU_Name)
 'CMSPLN conversation_id LU_Name plul CM_RC'
 end
 Otherwise /* Remote resource via AVS or */
 plul = length(LU Name) /* ISFC. */
 'CMSPLN conversation_id LU_Name plul CM_RC'
 if modename_parm <> '' then /* Modename not required for */
 do /* connections via ISFC. */
 modenamel = length(modename_parm)
 'CMSMN conversation_id modename_parm modenamel CM_RC'
 end
End

/***/

CPI Communications Examples

Appendix H. CPI Communications Examples 555

/* Display everything we can find out about partner */
/***/
'CMEPLN conversation_id plu plu_length CM_RC'

If CM_RC <> 0 then
 Say 'Extract PLU name failed, rc='CM_RC

plu = left(plu,plu_length)
parse var plu plu1 plu2

tpn_length = 3
'XCETPN conversation_id tpn tpn_length CM_RC'
tpn = left(tpn, tpn_length)

sayrqst = 'Requesting' filename filetype 'from'

Select
 When plu_length = 0 then
 Say sayrqst 'Local or Global resource' tpn
 When plu1 = '*USERID' then
 Say sayrqst 'Private resource' tpn 'owned by user' plu2
 Otherwise
 if plu2 = d2c(0,8) then
 Say sayrqst 'Global resource' tpn 'via ISFC gateway' plu1
 else
 Say sayrqst tpn 'at LU' plu2 'via gateway' plu1
 'CMEMN conversation_id modename modename_length CM_RC'
 If CM_RC <> 0 then
 Say 'Extract Mode name failed'
 else
 if modename_length > 0 then
 Say ' Mode name is' left(modename,modename_length)
End

If convtype = 'BASIC' then /* Set the conversation type */
 Do
 'CMSCT conversation_id CM_BASIC_CONVERSATION CM_RC'
 If CM_RC <> CM_OK then
 Call EMSG 'Unable to set conversation type to BASIC'
 End

if confirm then
 'CMSSL conversation_id CM_CONFIRM CM_RC'

/***/
/* Allocate a conversation to the server */
/***/
runtime = time('R')
'CMALLC conversation_id CM_RC'
Call TraceSAA 'CMALLC conversation_id CM_RC'

If CM_RC <> CM_OK then
 Call EMSG 'Unable to allocate conversation to' resource_id

send_type = CM_SEND_AND_PREP_TO_RECEIVE /* What to do after CMSEND */
'CMSST conversation_id send_type CM_RC'

If CM_RC <> CM_OK then
 Call EMSG 'Unable to set Send type'

request = 'From' nodeid':' filename filetype '*'
send_length = length(request)

If convtype = 'BASIC' then /* Prefix LL if necessary */
 Do
 send_length = send_length + 2
 request = d2c(send_length,2) || request
 End
/***/
/* Send the request to the server */
/***/
'CMSEND conversation_id request send_length rts CM_RC'
Call TraceSAA 'CMSEND send_length CM_RC'

If CM_RC <> CM_OK then
 Call EMSG 'Unable to send request to' resource_id

/**/
/* Now we have to receive the data that the server will return to us. */
/* We first get 12 bytes of header information. It contains: */
/* - Logical record length */
/* - Return code from server (i.e. from EXECIO) */

CPI Communications Examples

556 z/VM: 7.2 CMS Application Development Guide

/* - Number of records sent */
/* Each of these values is a 4-byte binary field. */
/* */
/* We then receive the data one logical record at a time, until CMRCV */
/* returns an indication in STATUS that no more data is available. */
/* The DATA_RECEIVED variable may indicate that data is complete */
/* if the server sent the data using several calls to CMSEND. */
/* However, the server will either sever the conversation or switch */
/* to receive state at the end of the file transmission, and this */
/* will be reported in the STATUS field. */
/**/

If convtype = 'MAPPED' then
 requested_length = 12
Else
 requested_length = 14 /* Allow for LL */

'CMRCV conversation_id buffer requested_length data_received',
 'received_length status rts CM_RC'

Call TraceSAA 'CMRCV data_received received_length status CM_RC'

If CM_RC <> CM_OK then
 Call EMSG 'Error receiving data on conversation' conversation_id

If convtype = 'BASIC' then /* Skip LL */
 buffer = substr(buffer,3)

parse var buffer lrecl 5 eiorc 9 sendrec 13 .

lrecl = c2d(lrecl)
Say 'LRECL='lrecl', EXECIO RC='c2d(eiorc)', Records='c2d(sendrec)
If convtype = 'MAPPED' then /* Set length of first CMRCV */
 requested_length = lrecl
Else /* For BASIC, receive LL first */
 requested_length = lrecl+2

recno = 0
compmsg = '****** Data received successfully ******'
log_data = ''

/***/
/* Start receiving the data records */
/***/
Do until find(CM_SEND_RECEIVED CM_CONFIRM_SEND_RECEIVED, status) > 0,
 | CM_RC = CM_DEALLOCATED_NORMAL
 'CMRCV conversation_id buffer requested_length data_received',
 'received_length status rts CM_RC'

 Call TraceSAA 'CMRCV data_received received_length recno status CM_RC'

 If CM_RC <> CM_OK & CM_RC <> CM_DEALLOCATED_NORMAL then
 Call EMSG 'Error receiving data on conversation' conversation_id

 if find(CM_CONFIRM_RECEIVED CM_CONFIRM_SEND_RECEIVED, status) > 0 then
 do
 say 'Confirming receipt of record'
 'CMCFMD conversation_id CM_RC'
 Call TraceSAA 'CMCFMD CM_RC'
 end

 If data_received <> CM_NO_DATA_RECEIVED then
 Do /* We have some data! */
 recno = recno + 1 /* Increment record number */
 inrec = left(buffer, received_length)

 If convtype = 'BASIC' then
 Do
 If requested_length = lrecl+2 then /* Strip LL from record */
 inrec = substr(inrec,3)

 If data_received = CM_COMPLETE_DATA_RECEIVED then
 requested_length = lrecl+2 /* Need to receive LL, too */
 Else
 requested_length = lrecl /* Only data, no LL */
 End
 If ¬verify then /* If we don't have to verify */
 if typing then /* and we are supposed to */
 say inrec /* display data, do so. */
 else nop
 Else /* Otherwise, validate it. */
 If ¬Valid_Data(recno, inrec, lrecl) then

CPI Communications Examples

Appendix H. CPI Communications Examples 557

 do /* If it's no good, stop now. */
 compmsg = '****** Conversation Ended ******'
 exitrc = 3000
 leave
 end

 /***/
 /* See if user wants to force an error. If so, set the */
 /* log data, issue a SEND_ERROR, and stop processing. */
 /***/
 If forcerr > 0 & forcerr = recno then
 do
 log_data = 'User forced error after record' recno
 log_data_length = length(log_data)
 'CMSLD conversation_id log_data log_data_length CM_RC'
 CALL TRACESAA 'CMSLD CM_RC'
 'CMSERR conversation_id rts CM_RC'
 CALL TRACESAA 'CMSERR CM_RC'
 compmsg = '******' log_data '******'
 leave
 end
 End
End

/* Give user another opportunity to force an error. */
If forcerr > 0 & log_data = '' then /* Only allowed if SEND_ERROR */
 Do /* not already issued. */
 log_data = 'User forced error after all data received'
 log_data_length = length(log_data)
 'CMSLD conversation_id log_data log_data_length CM_RC'
 'CMSERR conversation_id rts CM_RC'
 CALL TRACESAA 'CMSERR CM_RC'
 compmsg = '******' log_data '******'
 End

Say compmsg /* Display completion message */

'CMDEAL conversation_id CM_RC' /* Deallocate conversation */
runtime = time('E')
If CM_RC <> CM_OK then
 Call EMSG 'Error deallocating conversation' conversation_id

stats = 'N='recno 'T='format(runtime,,2) 'R='format(recno/runtime,,2)
if stats_user <> '' then
 address command 'CP MSG' stats_user stats
exit exitrc

 /*-------------------- Subroutines ----------------------*/

TraceSAA:
 /***/
 /* Display variables and their values. The routine name */
 /* and a list of variables is passed. If the variable */
 /* name is 'CM_RC', then the pseudonym will be displayed */
 /* instead of its numeric value. The conversation state */
 /* will also be displayed. */
 /***/
 If traceit <> 'YES' then return
 Signal OFF Error

 Arg SAAroutine plist
 Say '****' SAAroutine '****'

 'CMECS conversation_id state ECS_RC'
 if ECS_RC = CM_OK then
 Say 'Conversation State =' CM_CONVERSATION_STATE.state

 Do i = 1 to words(plist)
 SAAvar = word(plist,i)
 Select
 when i = words(plist) then /* LAST VARIABLE IN LIST IS RC */
 say ' 'value('CM_RETURN_CODE.'SAAvar)
 when Saavar = 'DATA_RECEIVED' then
 say ' 'CM_DATA_RECEIVED.data_received
 When SAAvar = 'STATUS' then
 say ' 'CM_STATUS_RECEIVED.status
 otherwise
 Say ' 'SAAvar':' value(SAAvar)
 End
 End
 if value(saavar) = CM_PRODUCT_SPECIFIC_ERROR then
 Call PSE_CHECK

CPI Communications Examples

558 z/VM: 7.2 CMS Application Development Guide

return
Valid_Data:
 /***/
 /* Verify that received record contains what we think */
 /* it should contain. FILE stem was set during */
 /* initialization. If record isn't valid, set the */
 /* Log Data and issue a SEND_ERROR. */
 /***/
 parse arg record#, input_record, record_length
 check_data = left(FILE.record#,record_length)
 If input_record <> check_data then
 Do
 log_data = 'Received record did not match source record' recno
 log_data_length = length(log_data)
 Say log_data
 Say "Expected: '"strip(check_data)"'"
 Say "Received: '"strip(input_record)"'"
 hexrec = c2x(strip(input_record))
 hexrec1 = ''
 hexrec2 = ''
 do z = 1 to length(hexrec) by 2
 hexrec1 = hexrec1 || substr(hexrec,z,1)
 hexrec2 = hexrec2 || substr(hexrec,z+1,1)
 end
 Say " (Hex) '"hexrec1"'"
 Say " "hexrec2
 'CMSLD conversation_id log_data log_data_length CM_RC'
 'CMSERR conversation_id rts CM_RC'
 CALL TRACESAA 'CMSERR CM_RC'
 return 0
 End
 Else
 return 1

Process_Options:
 /***/
 /* Check specified options. */
 /***/
 syntax_rc = 99

 If resource_id = '' then
 Call ErrorExit '001 No resource name specified', syntax_rc

 If filename = '' then
 Call ErrorExit '002 No filename specified', syntax_rc
 If filetype = '' then
 Call ErrorExit '003 No filetype specified', syntax_rc
 /* Set defaults: */
 convtype = 'MAPPED' /* Mapped conversation */
 security = '' /* Don't override security*/
 traceit = 'NO' /* No tracing */
 verify = 0 /* Don't check data */
 forcerr = 0
 typing = 1
 confirm = 0
 security_userid = ''
 security_password = ''
 modename_parm = ''
 stats_user = ''

 Do i = 1 to words(options) /* Scan options */
 option = word(options, i)
 Select
 When option = 'VERIFY' then verify = 1
 When option = 'NOVERIFY' then verify = 0
 When option = 'TRACE' then traceit = 'YES'
 When option = 'NOTRACE' then traceit = 'NO'
 When option = 'TYPE' then typing = 1
 When option = 'NOTYPE' then typing = 0
 When option = 'MAPPED' then convtype = 'MAPPED'
 When option = 'BASIC' then convtype = 'BASIC'
 When left(option,6) = 'STATS(' then
 parse var option '(' stats_user ')'
 When left(option,7) = 'USERID(' then
 parse var option '(' security_userid ')'
 When left(option,9) = 'PASSWORD(' then
 parse var option '(' security_password ')'
 When left(option,9) = 'MODENAME(' then
 parse var option '(' modename_parm ')'
 When option = 'SECURITY(PGM)' then security = 'PGM'
 When option = 'SECURITY(NONE)' then security = 'NONE'
 When option = 'SECURITY(SAME)' then security = 'SAME'

CPI Communications Examples

Appendix H. CPI Communications Examples 559

 When option = 'CONFIRM' then confirm = 1
 When option = 'NOCONFIRM' then confirm = 0
 When option = 'NOFORCERR' then forcerr = 0
 When option = 'FORCERR' then
 do
 i = i + 1
 forcerr = word(options,i)
 if forcerr = '' then forcerr = 1
 end
 Otherwise Call ErrorExit '004 Invalid option:' option, syntax_rc
 End
 End
Return

ErrorExit:
 /***/
 /* An error was detected by the program. */
 /* Display message and exit with specified return code. */
 /***/
 parse arg nnn msg, exitrc
 Say 'CPICRQST'nnn msg
 exit exitrc

ERROR:
 /***/
 /* A host command has failed. CSL errors will be */
 /* translated into a more meaningful error message. */
 /***/
 if rc > 0 then
 parmnum = right(rc,3,'0')+0
 rtn = strip(word(sourceline(sigl),1),'B',"'")

 Select
 When rc = -3 then
 do
 say "CPICRQST005 Routine '"rtn"'not available"
 return
 end
 When rc < -28000 then
 emsg = 'Invalid variable name for parameter number' parmnum
 When rc < -27000 then
 emsg = 'Invalid data type for parameter number' parmnum
 When rc < -26000 then
 emsg = 'Incorrect data length for parameter number' parmnum
 Otherwise
 emsg = 'Return code was' rc
 End

 Say
 Say '==> Run-time error encountered in line' sigl
 Say '==>' emsg
 Say '==>' strip(sourceline(sigl))
 exit 2000
EMSG:
 /***/
 /* An execution-time error has occurred. If it was a */
 /* CSL error, then the return code will be translated */
 /* into a more meaningful error message. */
 /***/
 parse arg msg
 Say msg
 CM_RC = CM_RC + 0
 If symbol('CM_Return_Code.'CM_RC) = 'VAR' then
 Say 'RC =' CM_Return_Code.CM_RC
 Else
 Say 'RC =' CM_RC

 if CM_RC = CM_PRODUCT_SPECIFIC_ERROR then
 Call PSE_CHECK

 Exit CM_RC

PSE_CHECK:
 address command 'EXECIO * DISKR CPICOMM LOGDATA * (FINIS STEM LOG. '
 parse value value('log.'log.0) with . rest
 if subword(rest,1,2) = 'CMSIUCV CONNECT' then
 do
 IUCVERR. = 'Unknown error'
 IUCVERR.1011 = 'Resource or gateway not found'
 IUCVERR.1013 = 'You have exceeded your maximum',
 'number of connections'
 IUCVERR.1014 = 'Partner has exceeded maximum number',

CPI Communications Examples

560 z/VM: 7.2 CMS Application Development Guide

 'of connections'
 IUCVERR.1015 = 'Not authorized to connect to resource'
 IUCVERR.1029 = 'Not authorized to act for another user'
 IUCVERR.1040 = 'Invalid locally known LU name'
 IUCVERR.1041 = 'Invalid mode name'
 IUCVERR.1047 = 'Invalid security subfields in FMH-5'
 IUCVERR.1049 = 'Partner does not allow connections using',
 'SECURITY(NONE)'
 IUCVERR.1052 = 'No APPCPASS statement found in your VM',
 'directory entry'
 IUCVERR.1053 = 'Invalid TPN length'
 IUCVERR.1054 = 'Invalid TPN'
 IUCVERR.1089 = 'Path does not support SYNCLVL=SYNCPT'
 parse var rest cmsiucv .
 say ' ['IUCVERR.cmsiucv '('cmsiucv')]'
 end
 else
 Say strip(rest)
 return

HELP:
/*Signal Help1; Help1: helpstart = sigl + 1; Signal Help2; */
/*
HELP2: Signal Help3;
Help3: helpend = sigl - 1
*/
Do i = 1 by 1 until left(sourceline(i),4) = '/*::'; end
Do i = i+1 by 1 while left(sourceline(i),4) <> '/*::'
 parse value sourceline(i) with '/*' text '*/'
 Say text
End
say "'fn ft' can be specified as 'n RECORDS' for demonstration purposes."
say "See the prolog of this exec for more information."
exit 0

Example 2: CPI Communications Resource Manager Program in
z/VM

The following program, CPICSERV EXEC, is a sample REXX resource manager program that takes a
request for a file and then sends the contents of the file back to the requesting program. This program
works in conjunction with the “Example 1: CPI Communications User Program in z/VM” on page 553.

See the z/VM: REXX/VM Reference for more information about the REXX statements shown in this
program.

/*************************** CPICSERV *******************************/
/* */
/* Description: */
/* This program brings up a VM Resource Manager and handles */
/* requests for files. The partner program is CPICRQST EXEC. */
/* */
/* External References: */
/* SAA Common Programming Interface Communications Reference */
/* z/VM Connectivity Planning, Administration, and Operation */
/* CMREXX COPY: Contains all of the SAA and VM-specific */
/* constants. */
/* */
/* Detailed Information: */
/* */
/* This program is a sample of how to create a VM CPI */
/* Communications-based resource manager. In response to a */
/* request for a file from the partner program (CPICRQST), this */
/* program will send the contents of that file back to the */
/* requester. */
/* */
/* This program uses some VM-specific CPI Communications */
/* routines which may not be portable to other operating systems. */
/* */
/* Syntax: */
/* */
/* CPICSERV <resource_id> <(options > */
/* */
/* Options: (default indicated by '*') */
/* PRIVATE | LOCAL | GLOBAL */
/* TRACE | NOTRACE* */
/* MONITOR userid */

CPI Communications Examples

Appendix H. CPI Communications Examples 561

/* BUFFER* | NOBUFFER */
/* */
/* Where: */
/* */
/* resource_id is the name of the resource. The default is your */
/* VM userid. Certain 3-character prefixes will */
/* affect the resource type; see below. */
/* */
/* PRIVATE specifies the type of resource. If the resource_id */
/* LOCAL begins with PRV or CNP then the default is PRIVATE, */
/* GLOBAL LCL or CNL " LOCAL, */
/* GBL or CNG " GLOBAL */
/* Otherwise, the default is GLOBAL. */
/* */
/* TRACE indicates whether the CPI-Communications routines */
/* NOTRACE are to be trace. The default is NOTRACE. */
/* */
/* BUFFER indicates whether data is to be sent in 32k (max) */
/* NOBUFFER blocks (BUFFER) or in lrecl size records (NOBUFFER).*/
/* */
/* MONITOR specifies the user who is to receive statistical */
/* data messages. A message is generated for every */
/* file request. The format is: */
/* */
/* uuuuuuuu N=nnnnn T=ttttt Bps=bbbbbbb */
/* */
/* uuuuuuuu is the requesting userid */
/* nnnnn is the number of records sent */
/* ttttt is the time needed to process the request */
/* (in seconds) */
/* bbbbbbb is an estimate of the number of bytes */
/* transmitted per second. */
/* */
/* LOCAL and GLOBAL resources require VM directory authorization */
/* via the IUCV *IDENT statement. See the z/VM Connectivity, */
/* Administration, and Operation book for more information. */
/* */
/**/
Trace Off

/* Get CPI Communications constants */
'EXECIO * DISKR CMREXX COPY * (FINIS STEM CPICCONST.'
If rc ¬= 0 then exit rc
Do i = 1 to cpicconst.0; interpret cpicconst.i; End

Arg resid '(' options /* Get resource id & options */
resid = word(resid userid(), 1) /* Resid defaults to userid */

Call Process_Options /* Scan options */
'VMFCLEAR'

Address CPIComm /* Switch environments */
Call On Error /* Trap errors */
Signal On NoValue

If server_scope ¬= XC_PRIVATE then /* Issue a nice message */
 Do
 /**/
 /* Tell CP about this resource using the Identify_Resource_ */
 /* Manager routine, XCIDRM. */
 /* */
 /* The server has two primary characteristics: */
 /* - It can only serve one client (user) at a time, but it */
 /* can service additional clients after the first without */
 /* exiting. Request are queued simply by avoiding calls */
 /* to XCWOE while a conversation is active. */
 /* */
 /* - It will accept conversations from users who allocate */
 /* their conversations with SECURITY(NONE). */
 /**/

 service_mode = XC_MULTIPLE /* Service many clients */
 secnone = XC_ACCEPT_SECURITY_NONE /* Accept SECURITY(NONE) */

 'XCIDRM resid server_scope service_mode secnone CM_RC'
 /* Parameter check is OK (it means we already own resource). */
 If CM_RC ¬= CM_OK & CM_RC ¬= CM_PROGRAM_PARAMETER_CHECK then
 Do
 Say 'Unable to manage resource' resid':' CM_RETURN_CODE.CM_RC
 Exit CM_RC
 End

CPI Communications Examples

562 z/VM: 7.2 CMS Application Development Guide

 if monitor <> '' then
 address command 'CP MSG' monitor 'Server is up'

 Say restype 'resource' resid 'is now up and ready for work.'
 Say
 Say "At 'waiting' message, you can enter one of the following:"
 Say ' TERMINATE to relinquish control of resource.'
 Say ' STOP to just halt server. Resource is still owned.'
 Say ' TRACE to start CPI Communications trace.'
 Say ' NOTRACE to stop CPI Communications trace.'
 Say ' <other> is considered to be a CP or CMS command'
 Say
 End

Do Forever
 If server_scope ¬= XC_PRIVATE then /* Use Wait_On_Event */
 Do
 Say
 Say 'Waiting for work, TERMINATE, STOP, TRACE, NOTRACE, CP, or',
 'CMS command'
 'XCWOE resid conversation_id event length buffer WOE_rc'
 End
 Else
 event = XC_ALLOCATION_REQUEST /* Simulate an XCWOE call */
 Select
 When event = XC_ALLOCATION_REQUEST then
 Do
 address command 'CP SPOOL CONS PURGE'
 address CMS 'VMFCLEAR'
 'CMACCP conversation_id ACCP_rc'
 If ACCP_rc ¬= CM_OK then
 Say 'Unable to accept conversation, rc =' ACCP_rc

 'XCETPN conversation_id tpn tpnl cm_rc'
 tpn = left(tpn,tpnl)
 say restype 'server' tpn 'running...'

 Call Display_Partner_Info

 'CMECT conversation_id conversation_type CM_RC'
 If conversation_type = CM_MAPPED_CONVERSATION then
 Say 'Conversion type is MAPPED'
 Else
 Say 'Conversion type is BASIC'

 numrecs = 0
 etime = time('R')
 Call Process_Request

 if monitor <> '' then
 do
 etime = time('R')
 msg = partner_id ' N='numrecs ' T='format(etime,,1),
 ' Bps='format(numrecs*lrecl/etime,,0)
 address command 'CP MSG' monitor msg
 end

 If server_scope = XC_PRIVATE then
 exit
 End

 When event = XC_CONSOLE_INPUT then
 Call User_Input left(buffer,length)

 Otherwise
 Say 'Unexpected' XC_EVENT_TYPE.event 'received'
 Signal Terminate_Server
 End
End /* Do forever */
Exit 999 /* Should never reach this point */
Process_Request:
/**/
/* A request for a file has been received */
/**/
confirm = 0
requested_file = ''
length = 50 /* Max length of initial rcv */
 /* Receive file id */
Do until CMRCV_RC ¬= CM_OK ,
 & left(CM_RETURN_CODE.CMRCV_RC,16) <> 'CM_PROGRAM_ERROR'
 'CMRCV conversation_id buffer length data_flag',
 'received_length status_flag rts_flag CM_RC'

CPI Communications Examples

Appendix H. CPI Communications Examples 563

 CMRCV_RC = CM_RC
 Call TraceSAA 'CMRCV data_flag received_length status_flag CM_RC'

 Select
 When CMRCV_RC = CM_DEALLOCATED_NORMAL then
 Say 'Conversation with' partner_id 'ended'

 When CMRCV_RC = CM_OK then
 Do
 If data_flag ¬= CM_NO_DATA_RECEIVED then
 Do
 If conversation_type = CM_BASIC_CONVERSATION then
 buffer = substr(buffer, 3, received_length-2)
 Else
 buffer = left(buffer, received_length)
 requested_file = requested_file || buffer
 End

 Select
 when status_flag = CM_SEND_RECEIVED then
 Call Send_It
 when status_flag = CM_CONFIRM_SEND_RECEIVED then
 do
 confirm = 1
 'CMCFMD conversation_id CM_RC'
 say 'User desires confirmation of records sent'
 Call TraceSAA 'CMCFMD CM_RC'
 Call Send_It
 end
 when status_flag = CM_CONFIRM_DEALLOC_RECEIVED then
 do
 'CMCFMD conversation_id CM_RC'
 say 'Confirming deallocation'
 Call TraceSAA 'CMCFMD CM_RC'
 leave
 end
 otherwise nop
 End
 End
 Otherwise
 Call Analyze_CM_RC 'CMRCV'
 End
End
return

Send_It:
/**/
/* The request has been received. It is either: */
/* */
/* 1. The file name and type of a file the user wishes to be */
/* transmitted, or */
/* */
/* 2. A number indicating how many program-generated sequential */
/* records are to be sent. This is indicated by a numeric */
/* file name and a file type of 'RECORDS' */
/* */
/* We send the file back to the user in the following format: */
/* - A 12-byte header consisting of LRECL, EXECIO return code */
/* and number of records sent. */
/* - The file contents */
/**/
Parse VAR requested_file . . fn ft fm .

If datatype(fn,'W') & ft = 'RECORDS' then
 Do /* User requested that dummy */
 lrecl = 80 /* records be generated. */
 whatsent = fn 'records'
 erc = 0
 file.0 = fn
 senddata = ''
 Do i = 1 to file.0
 senddata = senddata || left('TEST RECORD NUMBER' i, lrecl)
 End
 End
Else /* Look for the requested file */
 Do
 Address Command /* Talk to CMS for a minute... */
 'SET CMSTYPE HT' /* Find first occurrence of file*/
 'MAKEBUF' /* in the search order. */
 cmscmd = 'LISTFILE'
 'LISTFILE' fn ft fm '(FIFO ALLOC NOHEADER'
 erc = rc

CPI Communications Examples

564 z/VM: 7.2 CMS Application Development Guide

 If rc = 0 then /* If file found, get the */
 Do /* length of longest record. */
 pull lrecl .
 cmscmd = 'EXECIO'
 'EXECIO * DISKR' fn ft fm '(FINIS STEM FILE.'
 erc = rc
 If rc = 0 then /* Compress file into a single */
 Do /* physical record composed of */
 senddata = '' /* logical records of length */
 Do i = 1 to file.0 /* 'lrecl'. */
 senddata = senddata || left(file.i, lrecl)
 End
 whatsent = "file '"fn ft fm"'"
 End
 End

 If erc ¬= 0 then /* LISTFILE or EXECIO error */
 Do
 file.0 = 0 /* No records to process */
 senddata = '==> Error during' cmscmd 'processing <=='
 lrecl = length(senddata)
 whatsent = 'error message'
 End

 'DROPBUF'
 'SET CMSTYPE RT'
 Address CPIComm
 End

 /***/
 /* Build and send the header with lrecl, EXECIO return code, and */
 /* number of records. */
 /***/
sendhdr = d2c(lrecl,4) || d2c(erc,4) || d2c(file.0,4)
send_size = length(sendhdr)
numrecs = file.0
Drop File.
If conversation_type = CM_BASIC_CONVERSATION then
 Do /* Add LL to front of header */
 send_size = send_size + 2
 sendhdr = d2c(send_size, 2) || sendhdr
 End
 /* Send header */
'CMSEND conversation_id sendhdr send_size rts CM_rc'
Call TraceSAA 'CMSEND send_size CM_RC'

If CM_RC ¬= CM_OK then /* Check for errors */
 Do
 Call Analyze_CM_RC 'CMSEND of header'
 Return
 End
if confirm then
 do
 'CMSST conversation_id CM_SEND_AND_CONFIRM CM_RC'
 Call TraceSAA 'CMSST CM_RC'
 end

size = length(senddata)
Say 'Sending' whatsent '('size 'bytes) to' partner_id

 /**/
 /* Compute the largest record that can be sent with a single */
 /* CMSEND. It will be the largest multiple of the LRECL that */
 /* is less than or equal to 32,765. (32K - 2 bytes for LL) */
 /* */
 /* Note that this is not done if NOBUFFER is specified. */
 /**/
if buffering then
 interval = 32765 % lrecl * lrecl

else
 interval = lrecl

If traceit then
 Say 'Maximum send length =' interval

Do while size > 0
 send_size = min(size,interval) /* How much data can we send? */
 senddata2 = left(senddata,send_size) /* Set up send buffer */
 Say '...as a record of' right(send_size,5) 'bytes'
 If conversation_type = CM_BASIC_CONVERSATION then
 Do /* Add LL to front of record */

CPI Communications Examples

Appendix H. CPI Communications Examples 565

 send_size = send_size + 2
 senddata2 = d2c(send_size, 2) || senddata2
 End
 /* Send it to user */
 'CMSEND conversation_id senddata2 send_size rts CM_rc'
 Call TraceSAA 'CMSEND send_size rts CM_RC'

 If CM_RC ¬= CM_OK then /* Check for errors */
 Do
 Call Analyze_CM_RC 'CMSEND'
 Return
 End

 size = size - interval /* Figure out how much data */
 If size > 0 then /* remains to be sent. */
 senddata = substr(senddata,interval+1)
end
'CMPTR conversation_id CM_RC' /* Turn the conversation around */
call TraceSAA 'CMPTR conversation_id CM_RC'

If CM_RC ¬= CM_OK then
 Call Analyze_CM_RC 'CMPTR'

Return /* Go back & wait for next event */

Analyze_CM_RC:

/**/
/* Figure out what when wrong the CPI-Communications call. */
/* */
/* If a product-specific error occurs, detailed information about the */
/* error is written to the CPICOMM LOGDATA file. We will extract */
/* the data and display it. */
/* */
/* If the client (user) issues a SEND_ERROR (indicating that the data */
/* received was corrupted), will assume that Log Data was sent. */
/* Note that Log Data is only available on BASIC conversations. */
/* The Log Data is in the form of an SNA Error Log GDS variable. */
/* See the VM/ESA: CP Programming Services book for the format of the */
/* Error Log GDS variable. */
/**/
 parse arg whocalled
 Select
 when CM_RC = CM_PRODUCT_SPECIFIC_ERROR then
 Do
 address command 'EXECIO * DISKR CPICOMM LOGDATA *',
 '(FINIS STEM LOG.'
 parse value value('log.'log.0) with . rest
 Say strip(rest)
 End
 when index(CM_Return_Code.CM_RC,'PROGRAM_ERROR') > 0 then
 If conversation_type = CM_BASIC_CONVERSATION then
 Do
 address command 'EXECIO * DISKR CPICOMM LOGDATA *',
 '(FINIS STEM LOG.'
 Log_Data = value('log.'log.0)
 gds3 = c2d(substr(log_data,5,2))
 user_data = substr(log_data,GDS3+7)
 Say CM_Return_Code.CM_RC':' user_data
 End
 Else
 Say CM_Return_Code.CM_RC '(no additional information available)'

 otherwise
 Say CM_Return_Code.CM_RC 'on' whocalled 'to' partner_id
 End
Return
User_Input:
/**/
/* User typed something. Figure out what to do. */
/**/
 arg user_buffer

 Select
 When user_buffer = '' then nop

 When user_buffer = 'STOP' then
 Do
 Say 'Terminating immediately due to STOP command.'
 exit
 End

CPI Communications Examples

566 z/VM: 7.2 CMS Application Development Guide

 When user_buffer = 'TERMINATE' then
 Signal Terminate_server

 When user_buffer = 'TRACE' then
 traceit = 1

 When user_buffer = 'NOTRACE' then
 traceit = 0
 Otherwise
 Address CMS user_buffer
 End
Return

Terminate_Server:
/**/
/* Bring down server. If we are in the middle of a conversation, */
/* deallocate it. We will terminate our ownership of the resource. */
/**/
 'CMECS conversation_id conv_state CMECS_RC'
 If find(CM_SEND_STATE CM_SEND_PENDING_STATE, conv_state) > 0 then
 Do
 'CMDEAL conversation_id CM_RC'
 Call TraceSAA 'CMDEAL CM_RC'
 End

 Say "Terminating resource '"Save_resid"'"
 'XCTRRM SAVE_RESID TRRM_RC'

 Exit TRRM_RC
Display_Partner_Info:
/**/
/* Display everything we can find out about our communications */
/* partner. */
/**/
 'XCECSU conversation_id partner_id partner_id_length CM_RC'
 If partner_id_length = 0 then
 partner_id = 'Someone'
 Else
 partner_id = strip(left(partner_id,partner_id_length))

 'CMEPLN conversation_id plu plu_length cm_rc'
 If cm_rc ¬= 0 then
 Say 'Extract PLU name failed, rc='cm_rc

 plu = left(plu,plu_length)
 If traceit then
 Say 'PLU='plu' Length='plu_length

 parse var plu plu1 plu2
 If plu1 = '' then plu1 = '*IDENT'

 If find('*IDENT *USERID', plu1) > 0 then
 Say 'Request from' partner_id 'in this TSAF collection'
 Else
 Do
 'CMEMN conversation_id modename modename_length cm_rc'
 If cm_rc ¬= 0 then
 Say 'Extract Mode name failed'

 Say 'Request from' partner_id 'at LU' plu2 'via gateway' plu1'.',
 'Mode name is' left(modename,modename_length)'.'
 End
Return

TraceSAA:
/**/
/* Display the results of a CPI-Communications call. */
/**/
 If ¬traceit then return

 Arg SAAroutine plist
 Say '****' SAAroutine '****'

 'CMECS conversation_id conv_state CMECS_RC'
 If CMECS_RC = CM_OK then
 Say 'Conversation state:' CM_CONVERSATION_STATE.conv_state
 else
 say 'Unable to determine conversation state:',
 CM_Return_Code.CMECS_RC

 Do i = 1 to words(plist)
 SAAvar = word(plist,i)

CPI Communications Examples

Appendix H. CPI Communications Examples 567

 If SAAvar = 'CM_RC' then
 Say 'CM_RC:' value('CM_RETURN_CODE.CM_RC')
 Else
 Say SAAvar':' value(SAAvar)
 End
Return

Process_Options:
/**/
/* Check for any options the user specified. We will determine: */
/* - Server scope (Global, Local, or Private) */
/* - Whether to activate tracing */
/**/
 restype = 'Global' /* Set defaults */
 server_scope = XC_GLOBAL
 monitor = ''
 buffering = 1
 traceit = 0
 Select /* Check for special prefixes */
 When find('PRV CNP', left(resid,3)) > 0 then
 options = 'PRIVATE' options

 When resid = 'PRIVATE' then
 options = 'PRIVATE' options

 When find('GLB CNG', left(resid,3)) > 0 then
 options = 'GLOBAL' options
 When find('LCL CNL', left(resid,3)) > 0 then
 options = 'LOCAL' options
 Otherwise nop
 End

 Do i = 1 to words(options) /* Verify all options */
 keyword = word(options,i)

 Select
 when keyword = 'MONITOR' then
 do
 monitor = word(options, i+1)
 i = i + 1
 end
 when keyword = 'NOBUFFER' then
 buffering = 0

 when keyword = 'PRIVATE' then
 parse value XC_PRIVATE 'Private' with server_scope restype .

 when keyword = 'LOCAL' then
 parse value XC_LOCAL 'Local' with server_scope restype .

 when keyword = 'GLOBAL' then
 parse value XC_GLOBAL 'Global' with server_scope restype .

 when keyword = 'TRACE' then /* Activate tracing */
 traceit = 1

 when keyword = 'NOTRACE' then /* Deactivate tracing */
 traceit = 0

 otherwise
 Say 'Unknown option:' keyword
 exit 24
 End
 End
 Save_resid = resid /* Remember resource id */
Return

NOVALUE:
 Say '+++ NOVALUE Condition raised in line' sigl':'
 Say '+++' sourceline(sigl)
 Signal Terminate_Server

ERROR:
 failing_routine = strip(word(sourceline(sigl), 1),'B', "'")
 say '('failing_routine 'routine not available)'
 return

CPI Communications Examples

568 z/VM: 7.2 CMS Application Development Guide

Example 3: Synchronizing Multiple Updates Using CRR and CPI
Communications

This sample consists of the user REXX application and the target REXX application associated with CRR
scenario described in “Scenario 3: Synchronizing Multiple Updates” on page 511.

User Application, CRREXMP1 EXEC
The following is the user REXX application, CRREXMP1 EXEC:

/*--*/
/* CRREXMP1 EXEC -- User application */
/*--*/

/*--*/
/* Main Logic of CRREXMP1: */
/* */
/* Initialize program constants */
/* Verify the required SFS directories exist */
/* Get the toy to be added to the list */
/* Set synchronization point options and transaction tag */
/* Update the first file */
/* If first update fails then exit */
/* Else do */
/* Update the second file */
/* If second update failed then exit */
/* Else request third update */
/* End */
/*--*/

call Initialize
call Verify_SFS
call Get_Toy
call Setup_Syncpoint

call Update_File file1, dir1
call Update_File file2, dir2

call Request_Update

CRREXMP1_Exit:

 call Display ' '
 call Display 'CRREXMP1 complete.'
 call Display ' '

 exit

/*--*/
/* INITIALIZE */
/* */
/* This sub-routine will set up various constants and variables */
/* that will be used throughout this EXEC. */
/* */
/* NOTES: */
/* - Variables dir1 and dir2 must be set to SFS */
/* directories that the userid running this EXEC owns */
/* or has write access to. They cannot be in the same */
/* filepool as the directory the CRREXMP2 EXEC uses. */
/*
/* - Files SRRREXX COPY and CMREXX COPY provide constants */
/* and literals for SAA resource recovery and CPI */
/* Communications. They must exist on an accessed */
/* minidisk or SFS directory. */
/*--*/

Initialize:

 'vmfclear'

 dash = '*' || copies('-', 68) || '*'
 blanks25 = copies(' ', 25)
 conversation_active = 0
 errors_found = 0
 commit_turned_backout = 0

CPI Communications Examples

Appendix H. CPI Communications Examples 569

 call Display dash
 x = 'CRREXMP1: Sample Coordinated Resource Recovery Application'
 call Display x
 call Display dash
 call Display ' '

 file1 = 'CHILDS LIST'
 file2 = 'TOYSTORE ORDERS'
 dir1 = 'SERVER3:HEALDJS.CRRDIR1.'
 dir2 = 'SERVER3:HEALDJS.CRRDIR2.'

 copy_file.1 = 'CMREXX COPY *'
 copy_file.2 = 'SRRREXX COPY *'
 do i = 1 to 2
 address command 'ESTATE' copy_file.i
 if (rc ¬= 0) then call Error copy_file.i 'file not found'
 else do
 'execio * diskr' copy_file.i '(finis stem PSEUDONYM.'
 do j = 1 to pseudonym.0
 interpret pseudonym.j
 end
 end
 end

 return

/*--*/
/* VERIFY_SFS */
/* */
/* This sub-routine will verify that required SFS directories */
/* are available for the EXEC to run. */
/*--*/

Verify_SFS:

 call Display ' '
 x = 'CRREXMP1: Verifying required directories are available.'
 call Display x
 call Display ' '

 len1 = length(dir1)
 call csl('DMSEXIDI exidi_rc exidi_rs dir1 len1 NOCOMMIT 8')
 erc = overlay(exidi_rc, ' ')
 x = ' DMSEXIDI Retcode =' erc 'Reascode =' exidi_rs
 call Display x
 if (exidi_rc ¬= 0) then call Error 'Unexpected result on DMSEXIDI'

 len2 = length(dir2)
 call csl('DMSEXIDI exidi_rc exidi_rs dir2 len2 NOCOMMIT 8')
 erc = overlay(exidi_rc, ' ')
 x = ' DMSEXIDI Retcode =' erc 'Reascode =' exidi_rs
 call Display x
 if (exidi_rc ¬= 0) then call Error 'Unexpected result on DMSEXIDI'
 call Display ' '

 return
/*--*/
/* GET_TOY: */
/* */
/* This sub-routine will prompt the user to enter the name of the */
/* toy to be added to the list. A user and time stamp is then */
/* added to this, and the resulting string is the record that */
/* we will try to add to the CHILDS LIST, TOYSTORE ORDERS, and the */
/* SANTAS SACK files. If the user enters a null response, then */
/* the value "TRAIN" will be used. */
/*--*/

Get_Toy:

 call Display ' '
 x = 'CRREXMP1: Enter the name of the toy you want'
 call Display x
 pull response
 if (response = '') then response = 'TRAIN'
 response = left(response, 10)
 response = 'Toy Request: ' overlay(response, ' ')
 'id (stack'
 pull id_line
 parse var id_line userid 'AT' node .
 time = left(time(), 5)
 date = date(u)

CPI Communications Examples

570 z/VM: 7.2 CMS Application Development Guide

 tran = response '==>' node userid date time
 tran_length = length(tran)

 return

/*--*/
/* SETUP_SYNCPOINT: */
/* */
/* This sub-routine sets some options for synchronization points: */
/* First, DMSSSPTO is called to indicate that if resynchronization */
/* is required, control will be returned to the application if it */
/* is not possible to complete the resynchronization immediately. */
/* */
/* Next, DMSSETAG is called to set the transaction tag for this */
/* transaction. CMS stores this tag on the log to assist an */
/* operator in the event that they need to intervene during */
/* resynchronization. In this case, the actual data record that */
/* we are attempting to add to the SFS files is used as the tag. */
/* */
/* An error from either of these routines is displayed, but */
/* processing will continue. */
/*--*/
Setup_Syncpoint:

 call Display ' '
 call Display ' '
 x = 'CRREXMP1: Setting Synchronization Point Options'
 call Display x
 call Display ' '
 call csl('DMSSSPTO sspto_rc sspto_rs NOWAIT 6')
 src = overlay(sspto_rc, ' ')
 x = ' DMSSSPTO Retcode =' src 'Reascode =' sspto_rs
 call Display x
 call Display ' '
 call Display ' '
 x = 'CRREXMP1: Setting Transaction Tag'
 call Display x
 call Display ' '
 call csl('DMSSETAG setag_rc setag_rs tran tran_length')
 src = overlay(setag_rc, ' ')
 x = ' DMSSETAG Retcode =' src 'Reascode =' setag_rs
 call Display x
 x = ' Tag =' tran
 call Display x

 return

/*--*/
/* UPDATE_FILE: */
/* */
/* This sub_routine updates a file in an SFS directory by adding */
/* one record. The file and SFS directory are input to this */
/* sub-routine. If the file is successfully opened and updated, */
/* it is then closed with the NOCOMMIT option. CSL routines */
/* issued include: */
/* */
/* DMSOPEN ... open the input file in the input directory */
/* DMSWRITE ... write the data record to the open file */
/* DMSCLOSE ... close the input file in the input directory */
/*--*/

Update_File:

 arg file, dir
 call Display ' '
 call Display ' '
 call Display 'CRREXMP1: UPDATING <'file'> in <'dir'>'
 call Display ' '

 file_spec = file dir
 len1 = length(file_spec)

 call csl('DMSOPEN open_rc open_rs file_spec len1 WRITE 5 token')
 orc = overlay(open_rc, ' ')
 x = ' DMSOPEN Retcode =' orc 'Reascode =' open_rs
 call Display x

 if (open_rc = 0) | ((open_rc = 4) & (open_rs = 44030)) then do
 call csl('DMSWRITE write_rc write_rs token 1 tran_length tran 80')
 wrc = overlay(write_rc, ' ')
 x = ' DMSWRITE Retcode =' wrc 'Reascode =' write_rs
 call Display x

CPI Communications Examples

Appendix H. CPI Communications Examples 571

 if (write_rc = 0) then do
 call csl('DMSCLOSE close_rc close_rs token NOCOMMIT 8')
 crc = overlay(close_rc, ' ')
 x = ' DMSCLOSE Retcode =' crc 'Reascode =' close_rs
 call Display x
 if (close_rc ¬= 0) then ,
 call Error 'Unexpected result on DMSCLOSE'
 end

 else call Error 'Unexpected result on DMSWRITE'
 end

 else call Error 'Unexpected result on DMSOPEN'

 return

/*--*/
/* REQUEST_UPDATE: */
/* */
/* This sub_routine uses CPI Communications routines to */
/* communicate with CRREXMP2, which will update a file and */
/* initiate synchronization point processing. The following */
/* routines are used: */
/* */
/* CMINIT ... initialize the protected conversation */
/* CMSSL ... set sync_level to cm_sync_point (protected) */
/* CMALLC ... allocate the protected conversation */
/* CMCFM ... issue confirm to ensure partner is talking to us */
/* CMSEND ... send the transaction data, confirmation request */
/* CMPTR ... request to switch to receive state */
/* CMCFM ... confirm switch to receive state */
/* CMRCV ... receive the synchronization point intention */
/*--*/

Request_Update:

 call Display ' '
 call Display ' '
 x = 'CRREXMP1: Establishing protected conversation to CRREXMP2'
 call Display x
 call Display ' '

 address cpicomm
 'CMINIT conv_1 CRREXMP2 cm_rc'
 x = ' Initialize_Conversation (CMINIT) ..'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMINIT'

 conversation_active = 1

 'CMSSL conv_1 cm_sync_point cm_rc'
 x = ' Set_Sync_Level (CMSSL)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMSSL'

 'CMALLC conv_1 cm_rc'
 x = ' Allocate (CMALLC)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMALLC'

 'CMCFM conv_1 rts_received cm_rc'
 x = ' Confirm (CMCFM)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMCFM'
 'CMSEND conv_1 tran tran_length rts_received cm_rc'
 x = ' Send_Data (CMSEND)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMSEND'

 'CMPTR conv_1 cm_rc'
 x = ' Prepare_To_Receive (CMPTR)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMPTR'

 'CMCFM conv_1 rts_received cm_rc'
 x = ' Confirm (CMCFM)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMCFM'

 call Display ' '
 x = ' Waiting for CRREXMP2 to decide COMMIT or BACKOUT.'
 call Display x

CPI Communications Examples

572 z/VM: 7.2 CMS Application Development Guide

 call Display ' '
 'CMRCV conv_1 buf 10 data_rec rec_len stat_rec rts_rec cm_rc'
 x = ' Receive (CMRCV)'
 call Display x 'return_code =' cm_return_code.cm_rc
 x = ' '
 call Display x 'status_rec =' cm_status_received.stat_rec
 if (cm_rc ¬= cm_ok) & (cm_rc ¬= cm_take_backout) then,
 call Error 'Unexpected return_code on CMRCV'
 if (cm_rc = cm_ok) & (stat_rec ¬= cm_take_commit_deallocate) then,
 call Error 'Unexpected status_received on CMRCV'

 if (cm_rc = cm_take_backout) then do
 call Issue_Backout
 call Receive_Deallocation
 end
 else call Choose_Syncpoint

 return
/*--*/
/* Following are the sub-routines called throughout this EXEC. */
/*--*/

/*--*/
/* CHOOSE_SYNCPOINT: */
/* */
/* For demonstration purposes, the user is allowed to choose */
/* whether to commit or backout the changes once the user has */
/* received the notification that a commit has been requested. */
/*--*/

Choose_Syncpoint:

 call Display ' '
 call Display ' '
 x = 'CRREXMP1: Choosing between COMMIT or BACKOUT:'
 call Display x
 call Display ' '
 resp = ''
 x = ' Enter COMMIT to commit, anything else to backout.'
 call Display x
 pull choice
 if (choice = 'COMMIT') then do
 call Display ' '
 x = ' COMMIT chosen by user.'
 call Display x
 call Display ' '
 call Issue_Commit
 end
 else do
 call Display ' '
 x = ' BACKOUT chosen by user.'
 call Display x
 call Display ' '
 call Issue_Backout
 call Receive_Deallocation
 end

 return

/*--*/
/* ISSUE_COMMIT: */
/* */
/* This sub-routine will process commit by issuing SRRCMIT. */
/* If the SRRCMIT is not successful, error processing is */
/* performed. */
/*--*/

Issue_Commit:

 address cpirr
 'SRRCMIT rr_rc'
 x = ' Commit (SRRCMIT)'
 call Display x 'return_code =' rr_return_code.rr_rc

 if (rr_rc ¬= rr_ok) then do
 if (rr_rc >= 300) then commit_turned_backout = 1
 call Error 'Unexpected return_code on SRRCMIT'
 end

 call Display ' '
 x = ' <<< UPDATES IN PLACE, COMMIT PERFORMED >>>'
 call Display x

CPI Communications Examples

Appendix H. CPI Communications Examples 573

 return

/*--*/
/* ISSUE_BACKOUT: */
/* */
/* This sub-routine will handle backout processing by issuing */
/* SRRBACK. If a previous commit attempt resulted in a backout */
/* return code, then the SRRBACK is not performed because the */
/* changes have already been backed out. */
/*--*/

Issue_Backout:

 if ¬commit_turned_backout then do
 address cpirr
 'SRRBACK rr_rc'
 x = ' Backout (SRRBACK)'
 call Display x 'return_code =' rr_return_code.rr_rc
 if (rr_rc ¬= rr_ok) then ,
 call Error 'Unexpected return_code on SRRBACK'
 end

 if conversation_active then do
 call Display ' '
 x = ' <<< UPDATES NOT MADE, BACKOUT PERFORMED >>>'
 call Display x
 call Display ' '
 end

 return

/*--*/
/* RECEIVE_DEALLOCATION: */
/* */
/* This sub-routine will issue CMRCV to receive the deallocation */
/* issued by the partner. If the return_code ends with '_BO', */
/* then we need to issue a backout. */
/*--*/

Receive_Deallocation:

 address cpicomm
 'CMRCV conv_1 buf 10 data_rec rec_len stat_rec rts_rec cm_rc'
 x = ' Receive (CMRCV)'
 call Display x 'return_code =' cm_return_code.cm_rc
 conversation_active = 0

 if (right(cm_return_code.cm_rc, 3) = '_BO') then call Issue_Backout

 return

/*--*/
/* ISSUE_DEALLOCATE_ABEND: */
/* */
/* This sub-routine will issue CMSDT to set the cm_deallocate_type */
/* to cm_deallocate_abend, then issue CMDEAL to deallocate the */
/* conversation. */
/*--*/

Issue_Deallocate_Abend:

 address cpicomm
 'CMSDT conv_1 cm_deallocate_abend cm_rc'
 x = ' Set_Deallocate_Type (CMSDT)'
 call Display x 'return_code =' cm_return_code.cm_rc

 'CMDEAL conv_1 cm_rc'
 x = ' Deallocate (CMDEAL)'
 call Display x 'return_code =' cm_return_code.cm_rc
 conversation_active = 0

 return

/*--*/
/* ERROR: */
/* */
/* This sub-routine will display an error message and exit. A */
/* backout is performed to roll back any outstanding work that has */

CPI Communications Examples

574 z/VM: 7.2 CMS Application Development Guide

/* not been committed. If a CPI Communications conversation is */
/* active, a deallocate is done on that conversation with */
/* cm_deallocate_type of cm_deallocate_abend. */
/*--*/

Error:

 parse arg err_msg

 errors_found = errors_found + 1
 call Display ''
 err_msg = 'CRREXMP1 Error: ' err_msg
 call Display ''
 call Display err_msg
 call Display ''

 if (errors_found = 1) then do
 call Issue_Backout
 if conversation_active then call Issue_Deallocate_Abend
 signal CRREXMP1_Exit
 end

 return

/*--*/
/* DISPLAY: */
/* */
/* This routine will display an input message to the virtual */
/* machine console, and use EXECIO to write the message to a file. */
/*--*/
Display:

 parse arg disp_msg
 say disp_msg
 address cms 'execio 1 diskw CRREXMP1 CONSOLE A (STRING' disp_msg

 return

Target Application, CRREXMP2 EXEC
The following is the target REXX application, CRREXMP2 EXEC:

/*--*/
/* CRREXMP2 EXEC -- Target application */
/*--*/

/*--*/
/* Main Logic of CRREXMP2: */
/* */
/* Initialize program constants */
/* Verify the required SFS directory exists */
/* Receive a request to update a file */
/* Set synchronization point options and transaction tag */
/* Update the file */
/* Perform synchronization point processing */
/*--*/

call Initialize
call Verify_SFS
call Get_Request
call Setup_Syncpoint
call Update_File file3, dir3

call Choose_Syncpoint

CRREXMP2_Exit:

 call Display ' '
 call Display 'CRREXMP2 Complete.'
 call Display ' '

 exit
/*--*/
/* INITIALIZE: */
/* */
/* This sub-routine will set up various constants and variables */
/* that will be used throughout this EXEC. */

CPI Communications Examples

Appendix H. CPI Communications Examples 575

/* */
/* NOTES: */
/* - Variable dir3 must be set to an SFS directory that */
/* the userid running this EXEC owns or has write */
/* access to. It cannot be in the same filepool as */
/* the directories the CRREXMP1 EXEC uses. */
/* */
/* - Files SRRREXX COPY and CMREXX COPY provide constants */
/* and literals for SAA resource recovery and CPI */
/* Communications. They must exist on an accessed */
/* minidisk or SFS directory. */
/*--*/

Initialize:

 'vmfclear'

 dash = '*' || copies('-', 68) || '*'
 blanks25 = copies(' ', 25)
 conversation_active = 0
 error_found = 0

 call Display dash
 x = 'CRREXMP2: Sample Coordinated Resource Recovery Application'
 call Display x
 call Display dash
 call Display ' '

 file3 = 'SANTAS SACK'
 dir3 = 'SERVER5:HEALDJS.CRRDIR3.'

 copy_file.1 = 'CMREXX COPY *'
 copy_file.2 = 'SRRREXX COPY *'
 do i = 1 to 2
 address command 'ESTATE' copy_file.i
 if (rc ¬=0) then call Error copy_file.i 'file not found'
 else do
 'execio * diskr' copy_file.i '(finis stem PSEUDONYM.'
 do j = 1 to pseudonym.0
 interpret pseudonym.j
 end
 end
 end

 return

/*--*/
/* VERIFY_SFS */
/* */
/* This sub-routine will verify that required SFS directories */
/* are available for the EXEC to run. */
/*--*/

Verify_SFS:

 x = 'CRREXMP2: Verifying required directories are available.'
 call Display x
 call Display ' '

 len1 = length(dir3)
 call csl('DMSEXIDI exidi_rc exidi_rs dir3 len1 NOCOMMIT 8')
 erc = overlay(exidi_rc, ' ')
 x = ' DMSEXIDI Retcode =' erc 'Reascode =' exidi_rs
 call Display x
 if (exidi_rc ¬= 0) then call Error 'Unexpected result on DMSEXIDI'
 call Display ' '

 return

/*--*/
/* GET_REQUEST: */
/* */
/* This sub-routine uses CPI Communications routines to */
/* communicate with CRREXMP1 and receive the transaction data */
/* to be added to the file managed by CRREXMP2. The following */
/* routines are used: */
/* */
/* CMACCP ... accept conversation allocated by CRREXMP1 */
/* CMRCV ... receive confirmation request */
/* CMCFMD ... respond to the confirmation request */
/* CMRCV ... receive transaction data and confirmation request */

CPI Communications Examples

576 z/VM: 7.2 CMS Application Development Guide

/* to change to send state */
/* CMCFMD ... confirm change to send state so we can initiate */
/* syncpoint processing */
/*--*/

Get_Request:

 call Display ' '
 x = 'CRREXMP2: Getting transaction request on protected conversation'
 call Display x
 call Display ' '

 address cpicomm
 'CMACCP conv_1 cm_rc'
 x = ' Accept_Conversation (CMACCP)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMACCP'

 conversation_active = 1

 'CMRCV conv_1 buf 10 data_rec rec_len stat_rec rts_rec cm_rc'
 x = ' Receive (CMRCV)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMRCV'
 x = ' '
 call Display x 'status_rec =' cm_status_received.stat_rec
 if (stat_rec ¬= cm_confirm_received) then ,
 call Error 'Unexpected status_received on CMRCV'

 'CMCFMD conv_1 cm_rc'
 x = ' Confirmed (CMCFMD)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMCFMD'

 'CMRCV conv_1 buf 90 data_rec rec_len stat_rec rts_rec cm_rc'
 x = ' Receive (CMRCV)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then call Error 'Unexpected return_code on CMRCV'
 x = ' '
 call Display x 'data_rec =' cm_data_received.data_rec
 if (data_rec ¬= cm_complete_data_received) then ,
 call Error 'Unexpected data_received on CMRCV'
 tran = strip(buf)
 tran_length = length(tran)

 if (stat_rec = cm_no_status_received) then do
 'CMRCV conv_1 buf 10 data_rec rec_len stat_rec rts_rec cm_rc'
 x = ' Receive (CMRCV)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then ,
 call Error 'Unexpected return_code on CMRCV'
 end

 call Display x 'status_rec =' cm_status_received.stat_rec
 if (stat_rec ¬= cm_confirm_send_received) then ,
 call Error 'Unexpected status_received on CMRCV'
 'CMCFMD conv_1 cm_rc'
 x = ' Confirmed (CMCFMD)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then
 call Error 'Unexpected return_code on CMCFMD'

 return

/*--*/
/* SETUP_SYNCPOINT: */
/* */
/* This sub-routine sets some options for synchronization points: */
/* First, DMSSSPTO is called to indicate that if resynchronization */
/* is required, control will be returned to the application if it */
/* is not possible to complete the resynchronization immediately. */
/* */
/* Next, DMSSETAG is called to set the transaction tag for this */
/* transaction. CMS stores this tag on the log to assist an */
/* operator in the event that they need to intervene during */
/* resynchronization. In this case, the actual data record that */
/* we are attempting to add to the SFS files is used as the tag. */
/* */
/* An error from either of these routines is displayed, but */
/* processing will continue. */
/*--*/

CPI Communications Examples

Appendix H. CPI Communications Examples 577

Setup_Syncpoint:

 call Display ' '
 call Display ' '
 x = 'CRREXMP2: Setting Synchronization Point Options'
 call Display x
 call Display ' '
 call csl('DMSSSPTO sspto_rc sspto_rs NOWAIT 6')
 src = overlay(sspto_rc, ' ')
 x = ' DMSSSPTO Retcode =' src 'Reascode =' sspto_rs
 call Display x

 call Display ' '
 call Display ' '
 x = 'CRREXMP2: Setting Transaction Tag'
 call Display x
 call Display ' '
 call csl('DMSSETAG setag_rc setag_rs tran tran_length')
 src = overlay(setag_rc, ' ')
 x = ' DMSSETAG Retcode =' src 'Reascode =' setag_rs
 call Display x
 x = ' Tag =' tran
 call Display x

 return

/*--*/
/* UPDATE_FILE: */
/* */
/* This sub_routine updates a file in an SFS directory by adding */
/* one record. The file and SFS directory are input to this */
/* sub-routine. If the file is successfully opened and updated, */
/* it is then closed with the NOCOMMIT option. CSL routines */
/* issued include: */
/* */
/* DMSOPEN ... open the input file in the input directory */
/* DMSWRITE ... write the input data record to the open file */
/* DMSCLOSE ... close the input file in the input directory */
/*--*/

Update_File:

 arg file, dir

 call Display ' '
 call Display ' '
 call Display 'CRREXMP2: UPDATING <'file'> in <'dir'>'
 call Display ' '

 file_spec = file dir
 len1 = length(file_spec)

 call csl('DMSOPEN open_rc open_rs file_spec len1 WRITE 5 token')
 orc = overlay(open_rc, ' ')
 x = ' DMSOPEN Retcode =' orc 'Reascode =' open_rs
 call Display x

 if (open_rc = 0) | ((open_rc = 4) & (open_rs = 44030)) then do
 call csl('DMSWRITE write_rc write_rs token 1 tran_length tran 80')
 wrc = overlay(write_rc, ' ')
 x = ' DMSWRITE Retcode =' wrc 'Reascode =' write_rs
 call Display x
 if (write_rc = 0) then do
 call csl('DMSCLOSE close_rc close_rs token NOCOMMIT 8')
 crc = overlay(close_rc, ' ')
 x = ' DMSCLOSE Retcode =' crc 'Reascode =' close_rs
 call Display x
 if (close_rc ¬= 0) then ,
 call Error 'Unexpected result on DMSCLOSE'
 end

 else call Error 'Unexpected result on DMSWRITE'
 end

 else call Error 'Unexpected result on DMSOPEN'

 return

/*--*/

CPI Communications Examples

578 z/VM: 7.2 CMS Application Development Guide

/* CHOOSE_SYNCPOINT: */
/* */
/* This sub_routine asks the user to choose whether to commit or */
/* backout all changes for the current workunit. Our current */
/* workunitid is associated with CRREXMP1's current workunitid */
/* because they have the same logical unit of work identifier */
/* (LUWID). The work involved in this syncpoint then includes: */
/* */
/* - CRREXMP1 updates to file CHILDS LIST in .CRRDIR1 */
/* - CRREXMP1 updates to file TOYSTORE ORDERS in .CRRDIR2 */
/* - CRREXMP2 updates to file SANTAS SACT in .CRRDIR3 */
/* */
/* The protected conversation established between CRREXMP1 and */
/* CRREXMP2 will permit syncpoint requests for the common LUWID */
/* to be processed. */
/* */
/* By performing a commit, a request will be sent to CRREXMP1 on */
/* the protected conversation to commit the updates to CHILDS LIST */
/* and TOYSTORE ORDERS. If CRREXMP1 responds by issuing commit, */
/* updates to its files as well as those made to SANTAS SACK by */
/* CRREXMP will be committed. If CRREXMP1 responds by issuing */
/* backout, then updates to all the files are rolled back. */
/* */
/* By performing a backout, a request will be sent to CRREXMP1 on */
/* the protected conversation to roll back the updates to CHILDS */
/* LIST and TOYSTORE ORDERS. CRREXMP1 will issue SRRBACK to do */
/* this backout, and the updates to SANTAS SACK made by CRREXMP2 */
/* will then be rolled back as well. */
/*--*/
Choose_Syncpoint:

 call Display ' '
 call Display ' '
 x = 'CRREXMP2: Choosing between COMMIT or BACKOUT:'
 call Display x
 call Display ' '

 x = ' Enter COMMIT to commit, anything else to backout.'
 call Display x
 pull choice
 if (choice = 'COMMIT') then do
 call Display ' '
 x = ' COMMIT chosen by user.'
 call Display x
 call Display ' '
 call Issue_Commit
 end

 else do
 call Display ' '
 x = ' BACKOUT chosen by user.'
 call Display x
 call Display ' '
 call Issue_Backout
 call Issue_Deallocate_Abend
 end

 return
/*--*/
/* Following are the sub-routines called throughout this EXEC. */
/*--*/

/*--*/
/* ISSUE_COMMIT: */
/* */
/* This sub-routine will process commit by issuing SRRCMIT. If */
/* the commit fails, then backout processing will be called. */
/*--*/

Issue_Commit:

 call Deallocate_Sync_Level
 address cpirr
 'SRRCMIT rr_rc'
 x = ' Commit (SRRCMIT)'
 call Display x 'return_code =' rr_return_code.rr_rc

 if (rr_rc >= 300) then do
 x = ' <<< UPDATES NOT MADE, COMMIT TURNED TO BACKOUT >>>'
 call Display ' '
 call Display x
 call Display ' '

CPI Communications Examples

Appendix H. CPI Communications Examples 579

 call Issue_Deallocate_Abend
 end
 else do
 x = ' <<< UPDATES IN PLACE, COMMIT PERFORMED >>>'
 call Display ' '
 call Display x
 call Display ' '
 end

 return

/*--*/
/* ISSUE_BACKOUT: */
/* */
/* This sub-routine will initiate backout processing by issuing */
/* SRRBACK. */
/*--*/

Issue_Backout:

 address cpirr
 'SRRBACK rr_rc'
 x = ' Backout (SRRBACK)'
 call Display x 'return_code =' rr_return_code.rr_rc
 if (rr_rc ¬= rr_ok) then ,
 call Error 'Unexpected return code on SRRBACK'
 if conversation_active then do
 call Display ' '
 x = ' <<< UPDATE NOT MADE, BACKOUT PERFORMED >>>'
 call Display x
 call Display ' '
 end

 return

/*--*/
/* DEALLOCATE_SYNC_LEVEL: */
/* */
/* This sub_routine issues CMDEAL to deallocate the protected */
/* conversation. The default cm_deallocate_type of */
/* cm_deallocate_sync_level is used, which means the conversation */
/* will not be deallocated until after the next successful */
/* synchronization point. */
/*--*/

Deallocate_Sync_Level:

 address cpicomm
 'CMDEAL conv_1 cm_rc'
 x = ' Deallocate (CMDEAL)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then
 call Error 'Unexpected return_code on CMDEAL'

 return

/*--*/
/* ISSUE_DEALLOCATE_ABEND: */
/* */
/* This sub_routine issues CMSDT to set the cm_deallocate_type to */
/* cm_deallocate_abend, then issues CMDEAL to deallocate the */
/* protected conversation. */
/*--*/

Issue_Deallocate_Abend:

 address cpicomm
 'CMSDT conv_1 cm_deallocate_abend cm_rc'
 x = ' Set_Deallocate_Type (CMSDT)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then
 call Error 'Unexpected return_code on CMSDT'
 'CMDEAL conv_1 cm_rc'
 x = ' Deallocate (CMDEAL)'
 call Display x 'return_code =' cm_return_code.cm_rc
 if (cm_rc ¬= cm_ok) then
 call Error 'Unexpected return_code on CMDEAL'

 return

CPI Communications Examples

580 z/VM: 7.2 CMS Application Development Guide

/*--*/
/* DISPLAY: */
/* */
/* This routine will display an input message to the virtual */
/* machine console, and use EXECIO to write the message to a file. */
/*--*/

Display:

 parse arg disp_msg
 say disp_msg
 address cms 'execio 1 diskw CRREXMP2 CONSOLE A (STRING' disp_msg

 return

/*--*/
/* ERROR: */
/* */
/* This sub_routine will display an error message and exit. A */
/* backout is performed to roll back any outstanding work that has */
/* not been committed. If a CPI Communications conversation is */
/* active, a deallocate is done on that conversation with */
/* cm_deallocate_type of cm_deallocate_abend. */
/*--*/
Error:

 parse arg err_msg

 errors_found = 1

 err_msg = 'CRREXMP2 Error: ' err_msg
 call Display ''
 call Display err_msg
 call Display ''

 if (errors_found = 1) then do
 call Issue_Backout
 if conversation_active then call Issue_Deallocate_Abend
 signal CRREXMP2_Exit
 end

 return

CPI Communications Examples

Appendix H. CPI Communications Examples 581

CPI Communications Examples

582 z/VM: 7.2 CMS Application Development Guide

Appendix I. CRR Communications Examples

These CRR Communications examples follow:

• “Single Processor Case” on page 583
• “TSAF Collection Case” on page 588
• “SNA Network Case” on page 593

These are examples of CRR processing for resource managers participating in CRR. This information is
provided for programmers with product development responsibilities.

Note: The scenarios describe the communication between the resource adapter and the resource
manager and the communication between the resource manager and the CRR recovery server. The
examples in the scenarios use APPC/VM assembler macros. The scenarios do not provide examples of
protected conversations.

Single Processor Case

Figure 111. CRR Communications on a Single Processor

1. User virtual machine APPL1 is running a CMS application that uses the resource managed by resource
manager RM1.

CRR in a Single Processor

© Copyright IBM Corp. 1990, 2022 583

Resource adapter RA1, RM1's adapter in the APPL1 virtual machine, calls the CSL routine DMSGETRS
to get the CRR recovery server's current log name and TPN from the CRR sync point manager (SPM).
In this example the values are CRR25 and .RS1, respectively.

2. Because CMS communications directory (COMDIR) resolved information is needed to register the
resource for CRR, the resource adapter should issue an explicit resolve for the resource manager. In
this example, assume that the resource manager's COMDIR name resolves to locally known LU name
*IDENT 0, TPN J, and mode name 0.

The resource adapter then establishes a conversation with (connects to) the resource manager at
locally known LU name *IDENT 0, TPN J, mode name 0 and sends the CRR recovery server's log
name and TPN in a data buffer. (The resource adapter sends this information in a data buffer each
time it connects to the resource manager.)

When the resource adapter initiates the connection, the resource manager receives connection
pending extended data (allocate data). Before the resource manager accepts the connection, it must
get certain information from this data. (The connection pending extended data is not saved after the
resource manager accepts the connection.)

Among the parameters in the connection pending extended data are the sender's (resource
adapter's) locally known LU name (*USERID APPL1 in this example), the mode name (0), and the
local (resource manager's) fully qualified LU name (0). The locally known LU name in the connection
pending extended data is sometimes called the "connect back" locally known LU name because it is
used for connecting back to that LU. The mode name and local fully qualified LU name are both 0
because these parameters are not used when the partners are on the same processor.

To connect to the CRR recovery server, the resource manager needs to determine the CRR recovery
server's locally known LU name. Because the resource adapter and the CRR recovery server are
always on the same processor, the resource manager can use the "connect back" locally known LU
name from the connection pending extended data. The resource manager interprets the LU name
qualifier *USERID to mean that the resource manager must use *IDENT 0 as the locally known LU
name for connecting to that LU.

The resource manager stores the locally known LU name, mode name, and local fully qualified LU
name to use later. However, at this point the resource manager does not record any data in its log
name log.

After the resource manager accepts the connection, the resource adapter receives connection
complete extended data. From this data, the resource adapter must save the local (resource
adapter's) fully qualified LU name (0) and the remote (resource manager's) fully qualified name (0) to
use in the CRR registration.

3. The resource manager receives the CRR recovery server's log name (CRR25) and TPN (.RS1) in the
data buffer from the resource adapter and determines if an exchange of log names with the CRR
recovery server is required. The resource manager looks for:

a. A record in its log name log.

The resource manager uses locally known LU name *IDENT 0, TPN .RS1, and log name CRR25 as
search arguments. In this example, we are assuming that there is no matching record.

The resource manager also uses the CRR recovery server's locally known LU name and TPN to
determine the status of the resource manager's log if an initial Exchange Log Names message is
sent. If both names match the log, the log is warm. If either name does not match the log or is
missing, the log is cold.

b. A local indication that log names were exchanged.

This indication can be a local flag associated with each log name record, a local caching of the log
name record, or some other method. Whatever technique is chosen, its purpose is to determine if
the resource manager has exchanged log names with the CRR recovery server during the resource
manager's current activation.

In cases where a resource manager could accidentally use the wrong log (as opposed to
intentionally cold-logging), such as when logs are mounted or archived, it is important to force

CRR in a Single Processor

584 z/VM: 7.2 CMS Application Development Guide

an exchange of log names with the CRR recovery server at least once for each activation of the
resource manager to:

• Catch a warm/warm log mismatch, where it is possible that either the CRR recovery server's log
or the resource manager's log is the wrong one.

• Avoid having to check for this warm/warm mismatch on every connect—just once each time the
resource manager is activated.

• Accomplish an exchange of log names in case the CRR recovery server has erased log entries for
the resource without cold-logging.

In our example, because there is no matching record in the resource manager's log and no local
indication of a previous exchange, an exchange is required. The resource manager formulates an
Exchange Log Names request that includes the following data:

Parameter Value Meaning

log status flag X'00' COLD—the CRR recovery server's locally known
LU name and TPN were not known to the
resource manager (not found in its log).

local fully qualified LU name 0 The resource manager has no local fully qualified
LU name.

TPN J This is the resource manager's TPN.

log name 1 RESLOG5 This is the resource manager's log name.

The resource manager then connects to the CRR recovery server at locally known LU name *IDENT 0,
TPN .RS1, mode name 0 and sends the Exchange Log Names message.

4. The CRR recovery server recognizes TPN .RS1 on the incoming connection as the special case of an
Exchange Log Names request from a participating resource manager.

In the connection from the resource manager, the CRR recovery server receives connection pending
extended data (allocate data). This data includes the sender's (resource manager's) locally known LU
name (*USERID RM1), the local (CRR recovery server's) fully qualified LU name (0), and the remote
(resource manager's) fully qualified LU name (0). The CRR recovery server interprets the qualifier
*USERID in the locally known LU name to mean that the CRR recovery server must use locally known
LU name *IDENT 0 for connecting back to the resource manager. The fully qualified LU names are
both 0 because these parameters are not used when the partners are on a single processor.

The CRR recovery server receives the Exchange Log Names message, which contains the resource
manager's TPN (J) and log name (RESLOG5). The CRR recovery server then looks for locally known
LU name *IDENT 0, remote fully qualified LU name 0, TPN J, and log name (RESLOG5) in its log name
table. In our example, the CRR recovery server finds no match for this combination, so it adds a
record, as follows:

Table 72. Example of a Log Name Table Record in the CRR Recovery Server's Log, Single Processor
Case

LNLU TPN LOC FQLU REM FQLU LOGNAME

*IDENT 0 J 0 0 RESLOG5

5. The CRR recovery server formulates an Exchange Log Names reply that includes the following data
and sends it to the resource manager:

Parameter Value Meaning

log status flag X'00' COLD—the resource manager's locally known LU
name and TPN were not known to the CRR
recovery server (not found in the log name table).

CRR in a Single Processor

Appendix I. CRR Communications Examples 585

Parameter Value Meaning

local fully qualified LU name 0 The CRR recovery server has no local fully
qualified LU name.

TPN .RS1 This is the CRR recovery server's TPN.

log name 1 CRR25 This is the CRR recovery server's log name.

6. The resource manager receives the Exchange Log Names reply. Taking the CRR recovery server's log
name and TPN from the message, together with the CRR recovery server's locally known LU name
and the local (resource manager's) fully qualified LU name captured previously (Step 2), the resource
manager adds a record to its log name log, as follows:

Table 73. Example of a Log Name Record in the Resource Manager's Log, Single Processor Case

LNLU TPN LOC FQLU LOGNAME

*IDENT 0 .RS1 0 CRR25

Note: Both LU names are important for a possible "shoulder tap", if the resource manager needs
to notify the CRR recovery server of the resource manager's presence and readiness to accept
resynchronization communications. The resource manager uses the locally known LU name and the
TPN to connect to the CRR recovery server. The resource manager then sends its own fully qualified
LU name and log name in an Exchange Log Names request.

7. The resource adapter calls the CSL routine DMSREG to register with the SPM. Using this routine, the
resource adapter provides the resource TPN (J), the resource recovery TPN (K), a recovery token, the
mode name (0), the local fully qualified LU name (0), and the remote fully qualified LU name (0), along
with other parameters.

Note: The resource recovery TPN (K) is optional, and is assigned by the resource manager. In case
of a failure during a sync point, the CRR recovery server uses the resource recovery TPN, if defined,
to reach the resource manager. This lets the resource manager know that the connection is for
resynchronization and not a normal data request. If a resource recovery TPN is not provided, the
resource adapter must specify PIP data (also defined by the resource manager) in the registration.
In that case, the CRR recovery server uses the resource TPN (J in this example) to reach the
resource manager, but includes the PIP data on the connect to indicate that the connection is for
resynchronization.

8. The SPM stores (for subsequent logging) the following information to represent the resource:

• Resource TPN (J)
• Local fully qualified LU name (0)
• Remote fully qualified LU name (0)
• Mode name (0)
• Resource recovery TPN (K)
• Recovery token
• Other parameters not covered in this example.

9. At the start of a commit, the CRR recovery server receives a write log request from the SPM and
writes an SPM Pending log record in the CRR recovery server's log. This log record contains the
resource information listed in the previous step.

10. Assume that a failure occurs during a sync point for this application and that resynchronization
recovery is started to recover this resource. The SPM Pending record for this resource in the CRR
recovery server's log contains the following information:

CRR in a Single Processor

586 z/VM: 7.2 CMS Application Development Guide

Table 74. Example of an SPM Pending Record in the CRR Recovery Server's Log, Single Processor Case

LOC FQLU REM FQLU LUWID TPN REC TPN REC TOKEN MODENAME

0 0 J K 0

Note: The LUWID and recovery token values are not shown only because they are not critical in this
example, which is concentrating on LUs, TPNs, log names, and so on.

The CRR recovery server uses local fully qualified LU name 0, remote fully qualified LU name 0, and
TPN J to search the log name table in its log for a matching record (see Table 72 on page 585). From
that entry, the CRR recovery server gets the resource manager's locally known LU name, *IDENT 0.

Using information from the SPM Pending record and the log name table, the CRR recovery server
connects to the resource manager at locally known LU name *IDENT 0, TPN K, mode name 0.

The CRR recovery server formulates an Exchange Log Names request message that includes the
following data and sends it to the resource manager:

Parameter Value Meaning

log status flag X'01' WARM—the CRR recovery server has a record in
its log name table that contains the combination
of local fully qualified LU name 0, remote fully
qualified LU name 0, and TPN J. Note that the
CRR recovery server's log is always warm in a
resynchronization recovery Exchange Log Names
request.

local fully qualified LU name 0 The CRR recovery server has no local fully
qualified LU name.

TPN .RS1 This is the CRR recovery server's TPN.

log name 1 CRR25 This is the CRR recovery server's log name.

log name 2 RESLOG5 This is the resource manager's log name that the
CRR recovery server has saved in its log.

In the same buffer as the Exchange Log Names request, the CRR recovery server sends a Compare
States request that identifies the LUWID and the current state of the logical unit of work.

11. The resource manager recognizes TPN K on the incoming connection as a special case, a
resynchronization request from the CRR recovery server.

The connection pending extended data (allocate data) that the resource manager receives contains
the CRR recovery server's locally known LU name, *USERID RS1. The resource manager interprets
this to mean that the resource manager must use locally known LU name *IDENT 0 when searching
its log for a record for the CRR recovery server.

After accepting the connection, the resource manager receives the Exchange Log Names message,
which contains the CRR recovery server's TPN (.RS1) and log name (CRR25). The resource manager
then uses locally known LU name *IDENT 0 and TPN .RS1 to search for a matching log name record
in its log. In our example, the resource manager finds such a record (see Table 73 on page 586) and
verifies that the associated log name saved in the log (CRR25) matches the log name sent in the
message. The resource manager can also verify that its own log name sent in the message (RESLOG5)
is correct.

The resource manager formulates an Exchange Log Names reply to confirm that everything matches.
The reply includes the following data:

CRR in a Single Processor

Appendix I. CRR Communications Examples 587

Parameter Value Meaning

log status flag X'01' WARM—the resource manager has previously
communicated with the CRR recovery server.

local fully qualified LU name 0 The resource manager has no local fully qualified
LU name.

TPN K This is the resource manager's recovery TPN.

log name 1 RESLOG5 This is the resource manager's log name.

The resource manager holds the Exchange Log Names reply and sends it to the CRR recovery server
in the same buffer as the Compare States reply.

Note: The resolution of the Compare States request is not covered in this example.
12. The CRR recovery server processes the Exchange Log Names and Compare States replies and severs

the connection to (deallocates the conversation with) the resource manager.

TSAF Collection Case

Figure 112. CRR Communications in a TSAF Collection

1. User virtual machine APPL1 is running a CMS application that uses the resource managed by resource
manager RM1.

CRR in a TSAF Collection

588 z/VM: 7.2 CMS Application Development Guide

Resource adapter RA1, RM1's adapter in the APPL1 virtual machine, calls the CSL routine DMSGETRS
to get the CRR recovery server's current log name and TPN from the CRR sync point manager (SPM).
In this example the values are CRR25 and .RS1, respectively.

2. Because CMS communications directory (COMDIR) resolved information is needed to register the
resource for CRR, the resource adapter should issue an explicit resolve for the resource manager. In
this example, assume that the resource manager's COMDIR name resolves to locally known LU name
*IDENT 0, TPN J, and mode name 0.

The resource adapter then establishes a conversation with (connects to) the resource manager at
locally known LU name *IDENT 0, TPN J, mode name 0 and sends the CRR recovery server's log
name and TPN in a data buffer. (The resource adapter sends this information in a data buffer each
time it connects to the resource manager.)

When the resource adapter initiates the connection, the resource manager receives connection
pending extended data (allocate data). Before the resource manager accepts the connection, it must
get certain information from this data. (The connection pending extended data is not saved after the
resource manager accepts the connection.)

Among the parameters in the connection pending extended data are the sender's (resource
adapter's) locally known LU name (*USERID APPL1 in this example), the mode name (0), and the
local (resource manager's) fully qualified LU name (0). The locally known LU name in the connection
pending extended data is sometimes called the "connect back" locally known LU name because it is
used for connecting back to that LU. The mode name and local fully qualified LU name are both 0
because these parameters are not used when the partners are on the same processor.

To connect to the CRR recovery server, the resource manager needs to determine the CRR recovery
server's locally known LU name. Because the resource adapter and the CRR recovery server are
always on the same processor, the resource manager can use the "connect back" locally known LU
name from the connection pending extended data. The resource manager interprets the LU name
qualifier *USERID to mean that the resource manager must use *IDENT 0 as the locally known LU
name for connecting to that LU.

The resource manager stores the locally known LU name, mode name, and local fully qualified LU
name to use later. However, at this point the resource manager does not record any data in its log
name log.

After the resource manager accepts the connection, the resource adapter receives connection
complete extended data. From this data, the resource adapter must save the local (resource
adapter's) fully qualified LU name (0) and the remote (resource manager's) fully qualified name (0) to
use in the CRR registration.

3. The resource manager receives the CRR recovery server's log name (CRR25) and TPN (.RS1) in the
data buffer from the resource adapter and determines if an exchange of log names with the CRR
recovery server is required. The resource manager looks for:

a. A record in its log name log.

The resource manager uses locally known LU name *IDENT 0, TPN .RS1, and log name CRR25 as
search arguments. In this example, we are assuming that there is no matching record.

Note: The resource manager must use the TPN as well as the locally known LU name to search the
log. Several CRR recovery servers can exist in a TSAF collection and share a common LU out of the
collection to the resource manager (through AVS).

The CRR recovery server's locally known LU name and TPN are also used to determine the status
of the resource manager's log if an initial Exchange-Log-Names message is sent. If both names
match the log, the log is warm. If either name does not match the log or is missing, the log is cold.

b. A local indication that log names were exchanged.

This indication can be a local flag associated with each log name record, a local caching of the log
name record, or some other method. Whatever technique is chosen, its purpose is to determine if
the resource manager has exchanged log names with the CRR recovery server during the resource
manager's current activation.

CRR in a TSAF Collection

Appendix I. CRR Communications Examples 589

In cases where a resource manager could accidentally use the wrong log (as opposed to
intentionally cold-logging), such as where logs are mounted or archived, it is important to force
an exchange of log names with the CRR recovery server at least once for each activation of the
resource manager to:

• Catch a warm/warm log mismatch, where it is possible that either the CRR recovery server's log
or the resource manager's log is the wrong one.

• Avoid having to check for this warm/warm mismatch on every connect—just once each time the
resource manager is activated.

• Accomplish an exchange of log names in case the CRR recovery server has erased log entries for
the resource without cold-logging.

In our example, because there is no matching record in the resource manager's log and no local
indication of a previous exchange, an exchange is required. The resource manager formulates an
Exchange Log Names request that includes the following data:

Parameter Value Meaning

log status flag X'00' COLD—the CRR recovery server's locally known
LU name and TPN were not known to the
resource manager (not found in its log).

local fully qualified LU name 0 The resource manager has no local fully qualified
LU name.

TPN J This is the resource manager's TPN.

log name 1 RESLOG5 This is the resource manager's log name.

The resource manager then connects to the CRR recovery server at locally known LU name *IDENT 0,
TPN .RS1, mode name 0 and sends the Exchange Log Names message.

4. The CRR recovery server recognizes TPN .RS1 on the incoming connection as the special case of an
Exchange Log Names request from a participating resource manager.

In the connection from the resource manager, the CRR recovery server receives connection pending
extended data (allocate data). This data includes the sender's (resource manager's) locally known LU
name (*USERID RM1), the local (CRR recovery server's) fully qualified LU name (0), and the remote
(resource manager's) fully qualified LU name (0). The CRR recovery server interprets the qualifier
*USERID in the locally known LU name to mean that the CRR recovery server must use locally known
LU name *IDENT 0 for connecting back to the resource manager. The fully qualified LU names are
both 0 because these parameters are not used in a TSAF collection.

The CRR recovery server receives the Exchange Log Names message, which contains the resource
manager's TPN (J) and log name (RESLOG5). The CRR recovery server then looks for locally known
LU name *IDENT 0, remote fully qualified LU name 0, TPN J, and log name RESLOG5 in its log. In our
example, the CRR recovery server finds no match for this combination, so it adds a record, as follows:

Table 75. Example of a Log Name Table Record in the CRR Recovery Server's Log, TSAF Collection
Case

LNLU TPN LOC FQLU REM FQLU LOGNAME

*IDENT 0 J 0 0 RESLOG5

5. The CRR recovery server formulates an Exchange Log Names reply that includes the following data
and sends it to the resource manager:

Parameter Value Meaning

log status flag X'00' COLD—the resource manager's locally known LU name and
TPN were not known to the CRR recovery server (not found
in the log name table).

CRR in a TSAF Collection

590 z/VM: 7.2 CMS Application Development Guide

Parameter Value Meaning

local fully qualified LU
name

0 The CRR recovery server has no local fully qualified LU
name.

TPN .RS1 This is the CRR recovery server's TPN.

log name 1 CRR25 This is the CRR recovery server's log name.

6. The resource manager receives the Exchange Log Names reply. Taking the CRR recovery server's log
name and TPN from the message, together with the CRR recovery server's locally known LU name
and the local (resource manager's) fully qualified LU name captured previously (Step 2), the resource
manager adds a record to its log name log, as follows:

Table 76. Example of a Log Name Record in the Resource Manager's Log, TSAF Collection Case

LNLU TPN LOC FQLU LOGNAME

*IDENT 0 .RS1 0 CRR25

Note:

a. Both LU names are important for a possible "shoulder tap", if the resource manager needs to
notify the CRR recovery server of the resource manager's presence and readiness to accept
resynchronization communications. The resource manager uses the locally known LU name and
the TPN to connect to the CRR recovery server. The resource manager then sends its own fully
qualified LU name and log name in an Exchange Log Names request.

b. There are cases where the local fully qualified LU name can change, such as moving from TSAF to
AVS.

7. The resource adapter calls the CSL routine DMSREG to register with the SPM. Using this routine, the
resource adapter provides the resource TPN (J), the resource recovery TPN (K), a recovery token, the
mode name (0), the local fully qualified LU name (0), and the remote fully qualified LU name (0), along
with other parameters.

Note: The resource recovery TPN (K) is optional, and is assigned by the resource manager. In case
of a failure during a sync point, the CRR recovery server uses the resource recovery TPN, if defined,
to reach the resource manager. This lets the resource manager know that the connection is for
resynchronization and not a normal data request. If a resource recovery TPN is not provided, the
resource adapter must specify PIP data (also defined by the resource manager) in the registration.
In that case, the CRR recovery server uses the resource TPN (J in this example) to reach the
resource manager, but includes the PIP data on the connect to indicate that the connection is for
resynchronization.

8. The SPM stores (for subsequent logging) the following information to represent the resource:

• Resource TPN (J)
• Local fully qualified LU name (0)
• Remote fully qualified LU name (0)
• Mode name (0)
• Resource recovery TPN (K)
• Recovery token
• Other parameters not covered in this example.

9. At the start of a commit, the CRR recovery server receives a write log request from the SPM and
writes an SPM Pending log record in the CRR recovery server's log. This log record contains the
resource information listed in the previous step.

10. Assume that a failure occurs during a sync point for this application and that resynchronization
recovery is started to recover this resource. The SPM Pending record for this resource in the CRR
recovery server's log contains the following information:

CRR in a TSAF Collection

Appendix I. CRR Communications Examples 591

Table 77. Example of an SPM Pending Record in the CRR Recovery Server's Log, TSAF Collection Case

LOC FQLU REM FQLU LUWID TPN REC TPN REC TOKEN MODENAME

0 0 J K 0

Note: The LUWID and recovery token values are not shown only because they are not critical in this
example, which is concentrating on LUs, TPNs, log names, and so on.

The CRR recovery server uses local fully qualified LU name 0, remote fully qualified LU name 0, and
TPN J to search the log name table in its log for a matching record (see Table 75 on page 590). From
that entry, the CRR recovery server gets the resource manager's locally known LU name, *IDENT 0.

Using information from the SPM Pending record and the log name table, the CRR recovery server
connects to the resource manager at locally known LU name *IDENT 0, TPN K, mode name 0.

The CRR recovery server formulates an Exchange Log Names request that includes the following data
and sends it to the resource manager:

Parameter Value Meaning

log status flag X'01' WARM—the CRR recovery server has a record in
its log name table that contains the combination
of local fully qualified LU name 0, remote fully
qualified LU name 0, and TPN J. Note that the
CRR recovery server's log is always warm in a
resynchronization recovery Exchange Log Names
request.

local fully qualified LU name 0 The CRR recovery server has no local fully
qualified LU name.

TPN .RS1 This is the CRR recovery server's TPN.

log name 1 CRR25 This is the CRR recovery server's log name.

log name 2 RESLOG5 This is the resource manager's log name that the
CRR recovery server has saved in its log.

In the same buffer as the Exchange Log Names request, the CRR recovery server sends a Compare
States request that identifies the LUWID and the current state of the logical unit of work.

11. The resource manager recognizes TPN K on the incoming connection as a special case, a
resynchronization request from the CRR recovery server.

The connection pending extended data (allocate data) that the resource manager receives contains
the CRR recovery server's locally known LU name, *USERID RS1. The resource manager interprets
this to mean that the resource manager must use locally known LU name *IDENT 0 when searching
its log for a record for the CRR recovery server.

After accepting the connection, the resource manager receives the Exchange Log Names message,
which contains the CRR recovery server's TPN (.RS1) and log name (CRR25). Then the resource
manager uses locally known LU name *IDENT 0 and TPN .RS1 to search for a matching log name
record in its log. In our example, the resource manager finds such a record (see Table 76 on page
591) and verifies that the associated log name saved in the log (CRR25) matches the log name sent
in the message. The resource manager can also verify that its own log name sent in the message
(RESLOG5) is correct.

The resource manager formulates an Exchange Log Names reply to confirm that everything matches.
The reply includes the following data:

CRR in a TSAF Collection

592 z/VM: 7.2 CMS Application Development Guide

Parameter Value Meaning

log status flag X'01' WARM—the resource manager has previously
communicated with the CRR recovery server.

local fully qualified LU name 0 The resource manager has no local fully qualified
LU name.

TPN K This is the resource manager's recovery TPN.

log name 1 RESLOG5 This is the resource manager's log name.

The resource manager holds the Exchange Log Names reply and sends it to the CRR recovery server
in the same buffer as the Compare States reply.

Note: The resolution of the Compare States request is not covered in this example.
12. The CRR recovery server processes the Exchange Log Names and Compare States replies and severs

the connection to (deallocates the conversation with) the resource manager.

SNA Network Case

Figure 113. CRR Communications in an SNA Network

1. User virtual machine APPL1 is running a CMS application that uses the resource managed by resource
manager RM1.

Resource adapter RA1, RM1's adapter in the APPL1 virtual machine, calls the CSL routine DMSGETRS
to get the CRR recovery server's current log name and TPN from the CRR sync point manager (SPM).
In this example the values are CRR25 and .RS1, respectively.

2. Because CMS communications directory (COMDIR) resolved information is needed to register the
resource for CRR, the resource adapter should issue an explicit resolve for the resource manager. In
this example, assume that the resource manager's COMDIR name resolves to locally known LU name
A B, TPN J, and mode name G.

CRR in an SNA Network

Appendix I. CRR Communications Examples 593

The resource adapter then establishes a conversation with (connects to) the resource manager at
locally known LU name A B, TPN J, mode name G and sends the CRR recovery server's log name
and TPN in a data buffer. (The resource adapter sends this information in a data buffer each time it
connects to the resource manager.)

When the resource adapter initiates the connection, the resource manager receives connection
pending extended data (allocate data). Before the resource manager accepts the connection, it must
get certain information from this data. (The connection pending extended data is not saved after the
resource manager accepts the connection.)

Among the parameters in the connection pending extended data are the sender's (resource
adapter's) locally known LU name (X Y in this example), the mode name (G), and the local (resource
manager's) fully qualified LU name (N.X). The locally known LU name in the connection pending
extended data is sometimes called the "connect back" locally known LU name because it is used for
connecting back to that LU. Note that this locally known LU name is different from that used at the
resource adapter's end of the link.

To connect to the CRR recovery server, the resource manager needs to determine the CRR recovery
server's locally known LU name. Because the resource adapter and the CRR recovery server are
always on the same processor, the resource manager uses the resource adapter's "connect back"
locally known LU name from the connection pending extended data as the locally known LU name for
connecting to the CRR recovery server.

The resource manager stores the locally known LU name (X Y), mode name (G), and local fully
qualified LU name (N.X) to use later. However, at this point the resource manager does not record any
data in its log name log.

After the resource manager accepts the connection, the resource adapter receives connection
complete extended data. From this data, the resource adapter must save the local (resource
adapter's) fully qualified LU name (M.A) and the remote (resource manager's) fully qualified LU name
(N.X) to use in the CRR registration.

3. The resource manager receives the CRR recovery server's log name (CRR25) and TPN (.RS1) in the
data buffer from the resource adapter and determines if an exchange of log names with the CRR
recovery server is required. The resource manager looks for:

a. A record in its log name log.

The resource manager uses locally known LU name X Y, TPN .RS1, and log name CRR25 as search
arguments. In this example, we are assuming that there is no matching record.

Note: Because a resource manager could be accessed by various resource adapters on a
particular processor through more than one LU, the resource manager's log could have multiple
records containing the same CRR recovery server log name, but each with a different LU name.

The resource manager also uses the CRR recovery server's locally known LU name and TPN to
determine the status of the resource manager's log if an initial Exchange Log Names message is
sent. If both names match the log, the log is warm. If either name does not match the log or is
missing, the log is cold.

b. A local indication that log names were exchanged.

This indication can be a local flag associated with each log name record, a local caching of the log
name record, or some other method. Whatever technique is chosen, its purpose is to determine if
the resource manager has exchanged log names with the CRR recovery server during the resource
manager's current activation.

In cases where a resource manager could accidentally use the wrong log (as opposed to
intentionally cold-logging), such as where logs are mounted or archived, it is important to force
an exchange of log names with the CRR recovery server at least once for each activation of the
resource manager to:

• Catch a warm/warm log mismatch, where it is possible that either the CRR recovery server's log
or the resource manager's log is the wrong one.

CRR in an SNA Network

594 z/VM: 7.2 CMS Application Development Guide

• Avoid having to check for this warm/warm mismatch on every connect—just once each time the
resource manager is activated.

• Accomplish an exchange of log names in case the CRR recovery server has erased log entries for
the resource without cold-logging.

In our example, because there is no matching record in the resource manager's log and no local
indication of a previous exchange, an exchange is required. The resource manager formulates an
Exchange Log Names request that includes the following data:

Parameter Value Meaning

log status flag X'00' COLD—the CRR recovery server's locally known
LU name and TPN were not known to the
resource manager (not found in its log).

local fully qualified LU name N.X This is the resource manager's local fully
qualified LU name.

TPN J This is the resource manager's TPN.

log name 1 RESLOG5 This is the resource manager's log name.

The resource manager then connects to the CRR recovery server at locally known LU name X Y,
TPN .RS1, mode name G and sends the Exchange Log Names message.

Note: The . prefix on the TPN signals the receiving AVS that the connection is to a global resource,
even if a private gateway was used.

4. The CRR recovery server recognizes TPN .RS1 on the incoming connection as the special case of an
Exchange Log Names request from a participating resource manager.

In the connection from the resource manager, the CRR recovery server receives connection pending
extended data (allocate data). From this data, the CRR recovery server gets the sender's (resource
manager's) locally known LU name (A B), the local (CRR recovery server's) fully qualified LU name
(M.A), and the remote (resource manager's) fully qualified LU name (N.X).

The CRR recovery server receives the Exchange Log Names message, which contains the resource
manager's TPN (J) and log name (RESLOG5). The CRR recovery server then looks for locally known LU
name A B, remote fully qualified LU name N.X, TPN J, and log name RESLOG5 in its log name table.
In our example, the CRR recovery server finds no match for this combination, so it adds a record, as
follows:

Table 78. Example of a Log Name Table Record in the CRR Recovery Server's Log, SNA Network Case

LNLU TPN LOC FQLU REM FQLU LOGNAME

A B J M.A N.X RESLOG5

5. The CRR recovery server formulates an Exchange Log Names reply that includes the following data
and sends it to the resource manager:

Parameter Value Meaning

log status flag X'00' COLD—the resource manager's locally known LU
name and TPN were not known to the CRR
recovery server (not found in the log name table).

local fully qualified LU name M.A This is the CRR recovery server's local fully
qualified LU name.

TPN .RS1 This is the CRR recovery server's TPN.

log name 1 CRR25 This is the CRR recovery server's log name.

6. The resource manager receives the Exchange Log Names reply. Taking the CRR recovery server's log
name and TPN from the message, together with the CRR recovery server's locally known LU name

CRR in an SNA Network

Appendix I. CRR Communications Examples 595

and the local (resource manager's) fully qualified LU name captured previously (Step 2), the resource
manager adds a record to its log name log, as follows:

Table 79. Example of a Log Name Record in the Resource Manager's Log, SNA Network Case

LNLU RS TPN LOC FQLU LOGNAME

X Y .RS1 N.X CRR25

Note:

a. Both LU names are important for a possible "shoulder tap", if the resource manager needs to
notify the CRR recovery server of the resource manager's presence and readiness to accept
resynchronization communications. The resource manager uses the locally known LU name and
the TPN to connect to the CRR recovery server. The resource manager then sends its own fully
qualified LU name and log name in an Exchange Log Names request.

b. There are cases where the local fully qualified LU name can change, such as moving from TSAF to
AVS. In the case where there are multiple paths to a target CRR recovery server from the resource
manager, there can be more than one local fully qualified LU name.

7. The resource adapter calls the CSL routine DMSREG to register with the SPM. Using this routine, the
resource adapter provides the resource TPN (J), the resource recovery TPN (K), a recovery token, the
mode name (G), the local fully qualified LU name (M.A), and the remote fully qualified LU name (N.X),
along with other parameters.

Note: The resource recovery TPN (K) is optional, and is assigned by the resource manager. In case
of a failure during a sync point, the CRR recovery server uses the resource recovery TPN, if defined,
to reach the resource manager. This lets the resource manager know that the connection is for
resynchronization and not a normal data request. If a resource recovery TPN is not provided, the
resource adapter must specify PIP data (also defined by the resource manager) in the registration.
In that case, the CRR recovery server uses the resource TPN (J in this example) to reach the
resource manager, but includes the PIP data on the connect to indicate that the connection is for
resynchronization.

8. The SPM stores (for subsequent logging) the following information to represent the resource:

• Resource TPN (J)
• Local fully qualified LU name (M.A)
• Remote fully qualified LU name (N.X)
• Mode name (G)
• Resource recovery TPN (K)
• Recovery token
• Other parameters not covered in this example.

9. At the start of a commit, the CRR recovery server receives a write log request from the SPM and
writes an SPM Pending log record in the CRR recovery server's log. This log record contains the
resource information listed in the previous step.

10. Assume that a failure occurs during a sync point for this application and that resynchronization
recovery is started to recover this resource. The SPM Pending record for this resource in the CRR
recovery server's log contains the following information:

Table 80. Example of an SPM Pending Record in the CRR Recovery Server's Log, SNA Network Case

LOC FQLU REM FQLU LUWID TPN REC TPN REC TOKEN MODENAME

M.A N.X J K G

Note: The LUWID and recovery token values are not shown only because they are not critical in this
example, which is concentrating on LUs, TPNs, log names, and so on.

CRR in an SNA Network

596 z/VM: 7.2 CMS Application Development Guide

The CRR recovery server uses local fully qualified LU name M.A, remote fully qualified LU name N.X,
and TPN J to search the log name table in its log for a matching record (see Table 78 on page 595).
From that entry, the CRR recovery server gets the resource manager's locally known LU name, A B.

Using information from the SPM Pending record and the log name table, the CRR recovery server
connects to the resource manager at locally known LU name A B, TPN K, mode name G.

The CRR recovery server formulates an Exchange Log Names request that includes the following data
and sends it to the resource manager:

Parameter Value Meaning

log status flag X'01' WARM—the CRR recovery server has a record in
its log name table that contains the combination
of local fully qualified LU name M.A, remote fully
qualified LU name N.X, and TPN J. Note that the
CRR recovery server's log is always warm in a
resynchronization recovery Exchange Log Names
request.

local fully qualified LU name M.A This is the CRR recovery server's local fully
qualified LU name.

TPN .RS1 This is the CRR recovery server's TPN.

log name 1 CRR25 This is the CRR recovery server's log name.

log name 2 RESLOG5 This is the resource manager's log name that the
CRR recovery server has saved in its log.

In the same buffer as the Exchange Log Names request, the CRR recovery server sends a Compare
States request that identifies the LUWID and the current state of the logical unit of work.

11. The resource manager recognizes TPN K on the incoming connect as a special case, a
resynchronization request from the CRR recovery server.

From the connection pending extended data, the resource manager gets the CRR recovery server's
locally known LU name (X Y).

After accepting the connection, the resource manager receives the Exchange Log Names message,
which contains the CRR recovery server's TPN (.RS1) and log name (CRR25). The resource manager
then uses locally known LU name X Y and TPN .RS1 to search for a matching log name record in
its log. In our example, the resource manager finds such a record (see Table 78 on page 595) and
verifies that the associated log name saved in the log (CRR25) matches the log name sent in the
message. The resource manager can also verify that its own log name sent in the message (RESLOG5)
is correct.

The resource manager formulates an Exchange Log Names reply to confirm that everything matches.
The reply includes the following data:

Parameter Value Meaning

log status flag X'01' WARM—the resource manager has previously
communicated with the CRR recovery server.

local fully qualified LU name N.X This is the resource manager's local fully
qualified LU name.

TPN K This is the resource manager's recovery TPN.

log name 1 RESLOG5 This is the resource manager's log name.

The resource manager holds the Exchange Log Names reply and sends it to the CRR recovery server
in the same buffer as the Compare States reply.

CRR in an SNA Network

Appendix I. CRR Communications Examples 597

Note: The resolution of the Compare States request is not covered in this example.
12. The CRR recovery server processes the Exchange Log Names and Compare States replies and severs

the connection to (deallocates the conversation with) the resource manager.

CRR in an SNA Network

598 z/VM: 7.2 CMS Application Development Guide

Appendix J. ISPF Example

Using ISPF, the following FORTRAN program, FORT2, lets the user add, change, delete, or display records
in a file of peoples' names, by serial number. Records must be added before they can be changed, deleted
or displayed. (This application does the same things as the program in “Example 2: Complete FORTRAN
Application” on page 537.)

 IMPLICIT INTEGER (A-Z)
 CHARACTER*1 FNTYPE,FBLNK
 CHARACTER*6 EMPSER,EMPBLK
 CHARACTER*16 FNAME,LNAME,NAMEBL
 DATA NAMEBL /' '/
 DATA EMPBLK /' '/
 DATA FBLNK /' '/
 LASTRC = ISPLNK ('VDEFINE','(FNAME)',FNAME,'CHAR',16)
 LASTRC = ISPLNK ('VDEFINE','(LNAME)',LNAME,'CHAR',16)
 LASTRC = ISPLNK ('VDEFINE','(EMPSER)',EMPSER,'CHAR',6)
 LASTRC = ISPLNK ('VDEFINE','(F)',FNTYPE,'CHAR',1)
 LASTRC = ISPLNK ('TBOPEN','EMPLTBL ')
 IF (LASTRC.EQ.0) GO TO 10
 LASTRC = ISPLNK ('TBCREATE','EMPLTBL ','(EMPSER)',
 * '(LNAME FNAME)')
10 FNTYPE = FBLNK
 EMPSER = EMPBLK
 LASTRC = ISPLNK ('DISPLAY','MENUPAN ')
 IF (LASTRC.EQ.8) GO TO 70
 IF (FNTYPE.GT.'4') GO TO 70
 LASTRC = ISPLNK ('TBGET','EMPLTBL ')
 IF (FNTYPE.EQ.'1'.AND.LASTRC.NE.0) GO TO 20
 IF (FNTYPE.GT.'1'.AND.LASTRC.EQ.0) GO TO 30
 LASTRC = ISPLNK ('SETMSG','MSG002 ')
 GO TO 10
20 FNAME = NAMEBL
 LNAME = NAMEBL
30 LASTRC = ISPLNK ('SETMSG','MSG001 ')
 IF (FNTYPE.EQ.'3') GO TO 40
 LASTRC = ISPLNK ('DISPLAY','NAMEPAN ')
 IF (FNTYPE.EQ.'1') GO TO 50
 IF (FNTYPE.EQ.'2') GO TO 60
 GO TO 10
40 LASTRC = ISPLNK ('TBDELETE','EMPLTBL ')
 GO TO 10
50 LASTRC = ISPLNK ('TBADD','EMPLTBL ')
 GO TO 10
60 LASTRC = ISPLNK ('TBPUT','EMPLTBL ')
 GO TO 10
70 CONTINUE
 LASTRC = ISPLNK ('TBCLOSE','EMPLTBL ')
 LASTRC = ISPLNK ('VRESET ')
 STOP
 END

Figure 114. ISPF Example

The ISPF specification for the MENUPAN panel is:

)BODY
%------------------------------SELECTION------------------------
%COMMAND ===>_ZCMD +
+
+
%SELECT REQUIRED FUNCTION AND ENTER SERIAL NUMBER BELOW
+
+
+ 1 - ADD, 2 - CHANGE, 3 - ERASE, 4 - DISPLAY, 5 - END
+
+
+ FUNCTION NUMBER%===>_FNTYPE+
+
+
+ SERIAL NUMBER%===>_EMPSER+ (MUST BE 6 NUMERIC DIGITS)
+
+

ISPF Example

© Copyright IBM Corp. 1990, 2022 599

+
)INIT
 .CURSOR = F
)PROC
 VER (&F, NONBLANK)
 VER (&F, PICT,N)
 IF (&F ¬sym.=5)
 VER (&EMPSER, NONBLANK)
 VER (&EMPSER, PICT,NNNNNN)
)END

This is the way it is displayed on the screen:

------------------------------SELECTION------------------------
COMMAND ===>

SELECT REQUIRED FUNCTION AND ENTER SERIAL NUMBER BELOW

 1 - ADD, 2 - CHANGE, 3 - ERASE, 4 - DISPLAY, 5 - END

 FUNCTION NUMBER ===>

 SERIAL NUMBER ===> (MUST BE 6 NUMERIC DIGITS)

The ISPF specification for the NAMEPAN panel is:

)BODY
%----------------------------NAME PANEL--------------------------
+
+
+
+ SERIAL NUMBER%===>_EMPSER+
+
+
+ FIRST NAME%===>_FNAME +
+
+
+ LAST NAME%===>_LNAME +
+
+
+
)PROC
 .CURSOR = FNAME
 VER (&FNAME,ALPHA)
 VER (&LNAME,ALPHA)
)END

This is the way it is displayed on the screen:

ISPF Example

600 z/VM: 7.2 CMS Application Development Guide

-----------------------------NAME PANEL--------------------------

 SERIAL NUMBER ===>

 FIRST NAME ===>

 LAST NAME ===>

The ISPF specifications of the two messages issued by FORT2 are:

MSG001 'OPERATION COMPLETED' .ALARM=NO
'THE OPERATION SPECIFIED HAS BEEN COMPLETED.'
MSG002 'INVALID OPERATION' .ALARM=YES
'ENTER A NUMBER FROM 1 TO 5 IN THE SPACE PROVIDED.'

You should issue the following FILEDEF commands before running the example program, FORT2:

FILEDEF ISPPROF DISK ISPPROF MACLIB A (PERM
FILEDEF ISPPLIB DISK USERPAN MACLIB * (PERM CONCAT
FILEDEF ISPPLIB DISK ISRPLIB MACLIB * (PERM CONCAT
FILEDEF ISPPLIB DISK ISPPLIB MACLIB * (PERM CONCAT
FILEDEF ISPMLIB DISK EXAMMSG MACLIB * (PERM CONCAT
FILEDEF ISPMLIB DISK ISRMLIB MACLIB * (PERM CONCAT
FILEDEF ISPMLIB DISK ISPMLIB MACLIB * (PERM CONCAT
FILEDEF ISPSLIB DISK ISRSLIB MACLIB * (PERM CONCAT
FILEDEF ISPTABL DISK MYTABLE MACLIB A (PERM
FILEDEF ISPTLIB DISK MYTABLE MACLIB * (PERM CONCAT
FILEDEF ISPTLIB DISK ISRTLIB MACLIB * (PERM CONCAT
FILEDEF ISPTLIB DISK ISPTLIB MACLIB * (PERM CONCAT
FILEDEF ISPXLIB DISK VFORTLIB TXTLIB * (PERM CONCAT
FILEDEF ISPXLIB DISK MYLIB TXTLIB * (PERM CONCAT

ISPF Example

Appendix J. ISPF Example 601

ISPF Example

602 z/VM: 7.2 CMS Application Development Guide

Appendix K. MQ Series Applications

The following material shows the steps and files needed to create MQ Series applications. The
information is divided according to the language used in the application.

The MQ Client code is shipped with z/VM and is part of the CMS libraries.

For information on loading TXTLIBs, LOADLIBs, and MACLIBs, see Chapter 6, “Loading and Running Your
Program,” on page 47. For information on CMS libraries see Chapter 19, “Creating and Manipulating the
CMS Libraries,” on page 305.

Other TXTLIBs and MACLIBs may be required depending on the compiler and transaction protocols being
used.

See MQSeries Application Programming Guide, SC33–0807, for more information on MQ Series sample
files.

C Applications
Use the information below to compile, install, and test MQ Series applications written in C.

The following MQ Series Client code libraries are required for C:

AMQTEXT TXTLIB
AMQTEXTC TXTLIB
CMQC H

C Sample Files
Sample files:

• AMQSPUT0 C: Sample program to test MQPUT
• AMQSGET0 C: Sample program to test MQGET
• AMQSBCG0 C: Sample program to read and output both the message descriptor fields and the message

content of all the messages on a queue
• AMSQSGBR0 C: Sample C program that displays messages on a message queue (example using Browse

option of MQGET)
• AMQSECHA C: Sample C program — echo messages to reply to queue
• AMQSINQ2 C: Sample program to test MQINQ
• AMQSSET2 C: Sample program to test MQSET

C Sample
Use the following steps to create a sample MQ Series application with the AMQSPUT0 sample file:

Access the libraries:

MQSeries client code
LE/370 libraries
C libraries
TCP/IP or APPC libraries

Identify the libraries to be searched:
The MQ VM Client code is in the AMQTEXT TXTLIB. The C programming language interface is in the
AMQTEXTC TXTLIB. The LE/370 code is in the SCEELKED TXTLIB and SCEERUN LOADLIB. CMQC H

MQ Series Applications

© Copyright IBM Corp. 1990, 2022 603

contains the MQI call and structure prototypes needed to compile C programs using MQSeries MQI
calls.

global txtlib sceelked amqtext amqtextc commtxt cmssaa
global loadlib sceerun

Compile the C Application:
The TEXT deck will be generated on your A-disk.

Build the Application:

1. Link the TEXT file:

CPLINK AMQSPUT0

This generates a fi le named CPOBJ TEXT on your A-disk.
2. Load the object:

LOAD CPOBJ
3. Generate the module:

GENMOD AMQSPUT0 (from CEESTART on A-disk)
AMQSPUT0 module (the load module)
Load map

Execute the application
Access the libraries.

Define the MQSERVER variable in LASTING GLOBALV.

globalv select cenv setlp mqserver system.def.svrconn/tcp/xx.xx.xx.x

Then execute:

AMQSPUT0 QUEUE1 qmgr

where qmgr is queue manager on the server

The following message is displayed:

Sample AMQSPUT0 start
target name is QUEUE1

Type some message and press Enter twice. The following message is displayed:

Sample AMQSPUT0 end

Message is on the queue.

COBOL and PL/I Applications
The following libraries are required:

AMQTEXT TXTLIB
AMQTEXTL TXTLIB
AMQOM MACLIB

COBOL Sample Files
AMQ0PUT0 COBOL

Sample program to test MQPUT

MQ Series Applications

604 z/VM: 7.2 CMS Application Development Guide

AMQ0GET0 COBOL
Sample program to test MQGET

PL/I Sample Files
AMQPBRW PLI

Sample program to browse message on a queue.
AMQPGET PLI

Sample program to test MQGET.
AMQPPUT PLI

Sample program to test MQPUT.

COBOL and PL/I Samples
Use the following steps to create a sample MQ Series application with the AMQ0PUT0 file:

Access the libraries:

MQSeries client code
LE/370 libraries
TCP/IP or APPC libraries

Identify the libraries to be searched:
The MQ VM Client code is in the AMQTEXT TXTLIB. The COBOL and PL/I programming interfaces are
in the AMQTEXTL TXTLIB. The LE/370 code is in the SCEELKED TXTLIB and SCEERUN LOADLIB. The
AMQOM MACLIB contains the COPY files required to build and execute COBOL and PL/I applications
using MQ Series MQI calls.

global txtlib sceelked amqtext amqtextl commtxt cmssaa
global loadlib sceerun
global maclib amqom ...

Compile the COBOL application:
The TEXT deck will be generated on your A-disk.

Build the application:

1. Link the TEXT file:

CPLINK AMQ0SPUT0

This generates a file CPOBJ TEXT on your A-disk.
2. Load the object.

LOAD CPOBJ
3. Generate the module:

For COBOL:

GENMOD AMQ0PUT0

For PL/I:

GENMOD AMQPPUT (from PLISTART)

Execute the application
Access the libraries.

Define the MQSERVER variable in LASTING GLOBALV:

MQ Series Applications

Appendix K. MQ Series Applications 605

globalv select cenv setlp mqserver system.def.svrconn/tcp/xx.xx.xx.x
AMQ0PUT0 QUEUE1 qmgr
where qmgr is queue manager on the server

The following message is displayed:

Sample AMQSPUT0 start
target name is QUEUE1

Type some message and press Enter twice. The following message is displayed:

Sample AMQSPUT0 end

Message is on the queue.

Assembler Applications
This section describes how to build an MQ Series Assembler routine. Assembler sample files are not
shipped with z/VM. See MQSeries Application Programming Guide, SC33–0807, for information on MQ
Series Assembler sample files.

Use the information below to compile, install, and test MQSeries applications written in Assembler.

The following libraries are required:

AMQTEXT TXTLIB
AMQTEXTA TXTLIB
AMQOM MACLIB

Assembler Sample
Use the following steps to create your sample MQ Series application using AMQASPUT as your sample
file:

Access the libraries:

MQSeries Client code
LE/370 libraries
TCP/IP or APPC libraries

Identify the libraries to be searched:
The MQ VM Client code is in the AMQTEXT TXTLIB. The Assembler programming language interface is
in the AMQTEXTA TXTLIB. The LE/370 code is in the SCEELKED TXTLIB and SCEERUN LOADLIB. The
AMQOM MACLIB contains the COPY files required to build and execute Assembler applications using
MQ Series MQI calls.

global txtlib sceelked amqtext amqtexta commtxt cmssaa
global loadlib sceerun
global maclib amqom ...

Compile the application:
The TEXT deck will be generated on your A-disk.

Build the application

1. Link the TEXT file:

CPLINK AMQASPUT

This generates a file CPOBJ TEXT on your A-disk.
2. Load the object.

LOAD CPOBJ
3. Generate the module:

MQ Series Applications

606 z/VM: 7.2 CMS Application Development Guide

GENMOD AMQASPUT
on A-disk.
 AMQASPUT module (the LOAD module)
 LOAD MAP

Execute the application
Access the libraries.

Define the MQSERVER variable in LASTING GLOBALV:

globalv select cenv setlp mqserver system.def.svrconn/tcp/xx.xx.xx.x
AMQASPUT QUEUE1 qmgr
where qmgr is queue manager on the server

REXX Applications
Use the information below to compile, install, and test MQ Series applications written in REXX.

The following library is required:

AMQLLIB LOADLIB

The RXMQV module is the REXX interface module that maps the REXX MQI calls into the MQSeries for
Client libraries. You must NUCXLOAD this module.

REXX Sample Files
RXMQVPUT EXEC

Sample EXEC to put messages to a queue
RXMQVGET EXEC

Sample EXEC to get messages from a queue

REXX Sample
Use the following steps to create a sample MQ Series application with the RXMQVPUT EXEC:
Access the libraries:

MQ Series Client code
LE/370 libraries
TCP/IP or APPC libraries

Identify the libraries to be searched:
The MQ VM Client code is on in the AMQLLIB LOADLIB. The LE/370 code is in the SCEELKED TXTLIB
and SCEERUN LOADLIB. The RXMQV module is the REXX interface module that maps the REXX MQI
calls into the MQSeries for Client libraries. You must NUCXLOAD this module.

global loadlib sceerun amqllib

Execute the application
Issue the following CMS command (this will keep C malloc storage around):

SET STORECLR ENDCMD

Access the libraries.

Define the MQSERVER variable in LASTING GLOBALV:

globalv select cenv setlp mqserver system.def.svrconn/tcp/xx.xx.xx.x

MQ Series Applications

Appendix K. MQ Series Applications 607

1. NUCXLOAD RXMQV (SYSTEM
2. RXMQVPUT QUEUE1 qmgr

where qmgr is queue manager on the server.

MQ Series Applications

608 z/VM: 7.2 CMS Application Development Guide

Appendix L. Data Compression Services

This appendix contains the following to assist you in compressing and expanding your data:

• Example of a dictionary build
• Using CSRCMPEV to test compression and expansion.

A Dictionary Build Using CSRBDICV
The following is an example of the message output of CSRBDICV that is written on your screen when the
msglevel specification is 3. The spec file is TEXT SPECFILE, except with maxnodes changed from 40000
to 22000 in order to have approximately the same number of nodes built in each of the three program
passes. Comments that explain the messages and some elements of the operation of the exec are placed
after the corresponding messages. They are indented and highlighted.

CSRBDICV was invoked by entering: bdict 4 1 eb ch5 script(text

15 May 1993 17:58:19
BDICT dsize=4 sdfmt=1 erase=EB scanfile=CH5 SCRIPT A specfile=TEXT SPECFILE A
 Shows how the input command was parsed.
BDICT (C) Copyright IBM Corporation 1993
CH5 CEDICT41 A erased
CH5 ACDICT41 A erased
CH5 AEDICT41 A erased
CH5 BDICT41 A erased
 The files existed from a previous run.
Contents of specfile (TEXT SPECFILE A) are:

**The following is with a 4K-entry dictionary.
**Provides 30.88% compression (output/input) for the source of
**Chapter 5 of the ESA/390 Principles of Operation (30.32% if all output
**bits are concatenated together).
**Optimization (change x under opt to opt) improves compression by 0.7%.
**results maxnodes maxlevels msglevel stepping prperiod dicts
 r 22000 60 3 f 7 2 7 1000 af asm
**colaps opt treedisp treehex treenode dupccs
 aam x x h n x
**FLD col type dcenmen INT intspec
 FLD 1 sa dce 4 INT aeis 1 (40)
 INT a12b3s (40)
 FLD end
**Note: Some text will be compressed better if the INT aeis 1 (40) is
**omitted; i.e., try it with and without the INT aeis 1 (40). Also, if
**the text is ASCII instead of EBCDIC, the 40 should be changed to 20.

Starting program pass 1
Starting pass 1 through file in program pass 1. Stepping=F 7 2 7
Process line 1 of every 7 lines in pass 1.1
Line=456 node=1000 tree depth=8
 A progress report is issued after the building of each 1000
 nodes. The report identifies the line currently being processed and
 the number of levels in the tree so far.
Line=1331 node=2000 tree depth=13
Line=2381 node=3000 tree depth=13
Line=3634 node=4000 tree depth=15
Line=5188 node=5000 tree depth=20
Line=7036 node=6000 tree depth=20
Line=8786 node=7000 tree depth=27
Lines in file <8807
 Gives the approximate size of the file (to within seven
 because of the stepping specification).
Starting pass 2 through file in program pass 1. Stepping=F 7 2 7
Process line 3 of every 7 lines in pass 1.2
Line=605 node=7339 tree depth=27 at end of program pass 1
Number of nodes at each level:
256 950 1772 1488 1030 642 414 317 189 114 58 41 26 13 6 4 4 3 1 1 2 2 1 1 1
1 2
Eliminate nodes by collapsing children into parents
Number of nodes eliminated at each level:
0 0 191 409 354 266 156 109 73 43 22 14 7 6 0 1 0 0 0 0 0 0 0 0 0
0 0

Data Compression Services

© Copyright IBM Corp. 1990, 2022 609

Nodes eliminated by collapsing= 1651
Total nodes eliminated= 0 + 1651 = 1651
Remaining nodes= 7339 - 1651 = 5688
Sort siblings by node values
 The value of a node is the number of times it has been
 encountered during scanning. The children of a parent are placed
 in the order of their frequency of use.
Nodes counted during sorting= 5688
 The equality of this number to the previous 5688 evidences
 correct operation.
Eliminate nodes designated by duplicate CCs and SCs
 except for nodes designated by consecutive CCs beginning with first CC.
 Duplicate CCs and SCs can have resulted in this program
 pass from the building of double-character nodes. They can be
 formed in the next pass because of the collapsing of children into
 parents in this pass. For example, if parent A has a child with
 extension characters BC when the string ABD is to be matched,
 parent A must acquire a second child whose first extension
 character is B (since there cannot be a match on the first child).
 Then parent A will contain two CCs both of value B.
 Eliminate duplicate duplicate-CC nodes.
 These can result from moving an extension character from
 a parent to its child.
 For a duplicate-CC node whose initial extension characters equal all
 extension characters of a preceding node, interchange the nodes if the
 second is of equal or greater value, or else delete the second node.
 A subsequent node cannot be of greater value.
Total nodes eliminated because of duplicate CCs = 4, dup CCs= 32
 Dup. nodes eliminated= 0 (dup. nodes caused by use of colaps=AM or AAM)
 Nodes interchanged to avoid architecture violation= 0
 A duplicate character found in higher level nodes.
 Nodes eliminated to avoid architecture violation= 1
 This is the same violation.
Total nodes eliminated= 1651 + 4 = 1655
Remaining nodes= 7339 - 1655 = 5684
Nodes= 5684 Dict size= 4K Average value= 5.81
Trim tree to no more than 8K entries
 Only nodes with the cutoff value or more are kept. Cutoff
 is explained later. Trimming the tree causes new paths (strings)
 in the tree to result from interruptions (last possible match)
 after frequently used existing paths instead of infrequently used
 ones. A smaller tree also provides faster scanning (matching).
Nodes remaining after program pass 1 = 5684
Total nodes eliminated after program pass 1 = 7339 - 5684 = 1655
Starting program pass 2
 The deletion of duplicate-CC and SC nodes at the end of
 pass 1 will cause new paths to be formed during this pass.
Line=1928 node=8000 tree depth=30
Line=4567 node=9000 tree depth=30
Line=7570 node=10000 tree depth=31
Starting pass 3 through file in program pass 2. Stepping=F 7 2 7
Process line 5 of every 7 lines in pass 2.3
Line=1272 node=11000 tree depth=38
Line=4373 node=12000 tree depth=38
Line=8153 node=13000 tree depth=38
Starting pass 4 through file in program pass 2. Stepping=F 7 2 7
Process line 7 of every 7 lines in pass 2.4
Line=2198 node=14000 tree depth=39
Line=4977 node=14668 tree depth=39 at end of program pass 2
Number of nodes at each level:
256 1320 2935 2897 2131 1412 866 489 286 169 84 48 29 16 10
10 9 5 5 6 5 4 3 2 1
1 2 1 1 2 2 1 1 1 2 1 2 1 1
Eliminate nodes by collapsing children into parents
Number of nodes eliminated at each level:
0 0 179 429 478 369 265 131 100 50 31 22 7 7 1 3 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nodes eliminated by collapsing= 2073
Total nodes eliminated= 1655 + 2073 = 3728
Remaining nodes= 14668 - 3728 = 10940
Sort siblings by node values
Nodes counted during sorting= 10940
Eliminate nodes designated by duplicate CCs and SCs
 The explanatory messages are not repeated.
Total nodes eliminated because of duplicate CCs = 542, dup CCs= 247
 Dup. nodes eliminated= 0 (dup. nodes caused by use of colaps=AM or AAM)
 Nodes interchanged to avoid architecture violation= 0
 Nodes eliminated to avoid architecture violation= 21
Total nodes eliminated= 3728 + 542 = 4270
Remaining nodes= 14668 - 4270 = 10398
Nodes= 10398 Dict size= 4K Average value= 9.39
Trim tree to no more than 8K entries

Data Compression Services

610 z/VM: 7.2 CMS Application Development Guide

Nodes remaining after program pass 2 = 8154
Total nodes eliminated after program pass 2 = 14668 - 8154 = 6514
Starting program pass 3
Line=6335 node=15000 tree depth=39
Starting pass 5 through file in program pass 3. Stepping=F 7 2 7
Process line 2 of every 7 lines in pass 3.5
Line=1157 node=16000 tree depth=43
Line=4965 node=17000 tree depth=43
Starting pass 6 through file in program pass 3. Stepping=F 7 2 7
Process line 4 of every 7 lines in pass 3.6
Line=375 node=18000 tree depth=43
Line=5597 node=19000 tree depth=45
Starting pass 7 through file in program pass 3. Stepping=F 7 2 7
Process line 6 of every 7 lines in pass 3.7
Line=1315 node=20000 tree depth=47
Line=6768 node=21000 tree depth=47
Line=8805 node=21477 tree depth=47 at end of program pass 3
Number of nodes at each level:
256 1688 3888 3959 2919 1990 1312 724 419 225 106 60 41 28 23
16 13 10 5 8 8 6 4 4 5
3 3 2 1 2 2 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1
Eliminate nodes by collapsing children into parents
 and possibly move extension chars from parent to child
Number of nodes eliminated at each level:
0 0 275 782 842 679 433 303 180 104 53 27 25 16 10 6 3 6 0 0 2 2 2 0 1
0 1 2 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1
Nodes eliminated by collapsing= 3761
Total nodes eliminated= 6514 + 3761 = 10275
Remaining nodes= 21477 - 10275 = 11202
Sort siblings by node values
Nodes counted during sorting= 11202
Eliminate nodes designated by duplicate CCs and SCs
Total nodes eliminated because of duplicate CCs = 765, dup CCs= 455
 Dup. nodes eliminated= 7 (dup. nodes caused by use of colaps=AM or AAM)
 Nodes interchanged to avoid architecture violation= 0
 Nodes eliminated to avoid architecture violation= 26
Total nodes eliminated= 10275 + 765 = 11040
Remaining nodes= 21477 - 11040 = 10437
Nodes= 10437 Dict size= 4K Average value= 11.72
Cutoff value=2 Spares=?
 Cutoff is calculated by means of a formula.
Cutoff increment=7
 The increment is arbitrarily set to 7.
Cutoff value=2 Spares=-3637
 Spares is the number of entries that would be left in the
 dictionary if all nodes having the cutoff value or more were placed in
 the dictionary. Because spares is negative, cutoff 2 is too low.
Cutoff value=9 Spares=718
Cutoff increment=1
 Because spares became positive, the increment is reduced to 1,
 and cutoff is set to the midpoint between the one that failed and the
 one that succeeded.
Cutoff value=5 Spares=-754
Cutoff value=6 Spares=-266
Cutoff value=7 Spares=156
101 sibling descriptors required
 The number of sibling descriptors required by the nodes with
 value 7 or more is determined. If this exceeded spares, cutoff would
 be incremented by one.
Oldcutoff=6
 Spares is now 156 - 101 = 55. This number of nodes with value
 6 will be placed in the dictionary. This may require additional
 sibling descriptors.
Place child counts in nodes
 For each entry to be placed in the dictionary, it is determined
 how many children of the entry will be placed in the dictionary.
Nodes remaining after program pass 3 = 3995
 This is the number of character entries to be placed in the
 dictionary.
Total nodes eliminated after program pass 3 = 21477 - 3995 = 17482
Old cutoff nodes rejected because parent is also an old cutoff node= 9
 The node is rejected because there might be no spares left when
 the parent of the node was to be placed in the dictionary. A parent
 and its child can have the same value only as a result of moving an
 extension character from the parent to the child or when
 optimization is used.
Old cutoff nodes rejected because only one node would go in a new SD= 1
 The node is rejected because to place it in the dictionary would
 consume two entries (one for a new sibling descriptor).
Total oldcutoff nodes rejected or ignored= 367
Oldcutoff-1 nodes selected= 0
 In rare cases, the number of oldcutoff nodes is less than spares,

Data Compression Services

Appendix L. Data Compression Services 611

 in which case nodes with value oldcutoff-1 are placed in the dictionary.
Prune the tree.
 All the work has already been done.
Numbers of unpruned nodes at each level were:
256 1354 2771 2501 1808 1080 674 338 164 87 40 24 15 9 9 7 8 5 8 6 5 3 4 3 2
2 2 1 2 2 1 2 2 1 2 1 1 1 1
Numbers of pruned nodes at each level are:
256 595 878 796 585 395 204 107 66 31 15 7 6 4 4 5 5 4 6 3 2 3 2 1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 0
Pruned nodes divided by unpruned nodes as percentages are:
100% 43% 31% 31% 32% 36% 30% 31% 40% 35% 37% 29% 40% 44% 44% 71% 62% 80%
75% 50% 40% 100% 50% 33% 50%
 Describes only the first 25 levels.
Dictionary entries including sibling descriptors=4096 256 3739 101
 The second number is the number of alphabet entries, the third
 is the number of nonalphabet character entries, and the fourth is the
 number of sibling descriptors.
Test nodes=3739
 A test for correctness.
101 sibling descriptors required
 A test for correctness.
Write dictionary file CH5 CEDICT41 A
Entry 256 Number of SDs with counts 0-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Entry 256 is written first because the children of a parent must
 be written before the parent so a pointer to the children can be
 placed in the parent. Except for the alphabet entries, there is no
 resemblance between the entry numbers in the dictionary and the node
 numbers in the tree.
Entry 512 Number of SDs with counts 0-15 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
 Describes the sibling descriptors that have been written so far.
Entry 768 Number of SDs with counts 0-15 0 1 2 0 2 0 2 0 1 0 1 0 0 0 1 1
 An SD with a count of 15 contains 14 SCs and indicates another SD.
Entry 1024 Number of SDs with counts 0-15 0 4 2 2 2 0 2 0 1 2 1 0 0 0 1 1
Entry 1280 Number of SDs with counts 0-15 0 6 2 3 3 0 2 0 1 2 1 0 1 0 1 1
Entry 1536 Number of SDs with counts 0-15 0 8 3 4 3 0 2 1 2 2 1 0 1 0 1 1
Entry 1792 Number of SDs with counts 0-15 0 12 3 4 5 0 2 1 2 2 1 0 1 0 1 2
Entry 2048 Number of SDs with counts 0-15 0 16 4 4 6 0 3 1 2 2 1 0 1 0 1 2
Entry 2304 Number of SDs with counts 0-15 0 19 5 4 8 0 4 1 2 2 1 1 1 0 1 2
Entry 2560 Number of SDs with counts 0-15 0 21 8 5 8 0 5 1 3 2 1 1 1 1 1 2
Entry 2816 Number of SDs with counts 0-15 0 22 9 5 8 0 5 1 4 2 2 1 1 1 1 2
Entry 3072 Number of SDs with counts 0-15 0 26 9 5 8 1 5 1 5 2 2 1 1 1 1 2
Entry 3328 Number of SDs with counts 0-15 0 29 10 6 9 1 5 2 5 2 4 1 1 1 1 2
Entry 3584 Number of SDs with counts 0-15 0 31 11 6 10 1 5 2 5 2 4 1 1 1 2 2
Entry 3840 Number of SDs with counts 0-15 0 32 14 8 11 1 5 4 5 2 4 1 1 1 2 2
Entry 4095 Number of SDs with counts 0-15 0 35 14 9 11 1 6 5 6 2 4 1 1 1 2 3
Total characters in dictionary=6897
Characters per entry= 6897/4K = 1.68
0 unused entry(s)
 In rare cases, this might be one. If it is more than one, there
 is an error unless the scan file was too small to fill the dictionary.
Entry 0
 Entries 0-255 are written last.
Reading in dictionary
 The variables used to form the dictionary are dropped (storage is
 released), and a new set of variables is created.
Build ACDICT41
Write ACDICT41 and AEDICT41 but not BDICT41
 The dicts specification is af, not afd.
Done

Using CSRCMPEV to Test Compression and Expansion
The following is an example of the message output of CSRCMPEV that is written on your screen
when using the msglevel argument of 1. Comments that explain the messages are placed after the
corresponding messages. They are indented and highlighted.

CSRCMPEV was invoked by entering csrcmpev 4 1 nhd ch5 script

15 May 1993 17:59:58
CMPEXP dsize=4 sdfmt=1 expnd=NHD scanfile=CH5 SCRIPT A dfn=CH5
clines=100 elines=19 msglevel=1 prperiod=256 lnpr=
 Shows how the input command was parsed.
CMPEXP (C) Copyright IBM Corporation 1993
File CH5 SCRIPT A will be compressed using CH5 CEDICT41 A
Reading in dictionary
Compressing; compression=((concatenated_output_bits/8)/input_characters)*100%.
Value in parentheses is (output_bytes_per_line/input_characters)*100%.
First of last three nmbrs is chars in cur. 256 lines, next is all chars so far,

Data Compression Services

612 z/VM: 7.2 CMS Application Development Guide

next is dict entries used so far (initialized with alphabet entries and SDs)
Line 256 37.72% (38.25%) for 256, 37.72% (38.25%) for all; 12757 12757 1874
Line 512 34.71% (35.60%) for 256, 36.46% (37.15%) for all; 9127 21884 2260
 The 36.46% is calculated from the concatenation of the index
 symbols produced during the compression of the first 512 lines. The
 37.15% is calculated by rounding up to a whole number of bytes the
 concatenation of index symbols produced during the compression of each line.
Line 768 30.43% (31.00%) for 256, 34.29% (34.93%) for all; 12322 34206 2492
Line 1024 34.39% (34.85%) for 256, 34.32% (34.91%) for all; 15913 50119 2851
Line 1280 30.04% (30.66%) for 256, 33.50% (34.09%) for all; 11894 62013 3011
Line 1536 30.04% (30.57%) for 256, 32.90% (33.48%) for all; 13037 75050 3117
Line 1792 30.86% (31.32%) for 256, 32.61% (33.18%) for all; 12229 87279 3264
Line 2048 36.42% (36.88%) for 256, 33.11% (33.66%) for all; 13139 100418 3385
Line 2304 28.83% (29.46%) for 256, 32.70% (33.26%) for all; 10592 111010 3516
Line 2560 27.37% (28.03%) for 256, 32.20% (32.77%) for all; 11625 122635 3569
Line 2816 28.20% (28.70%) for 256, 31.83% (32.39%) for all; 12405 135040 3638
Line 3072 27.57% (28.11%) for 256, 31.44% (32.00%) for all; 13500 148540 3710
Line 3328 31.59% (32.07%) for 256, 31.46% (32.01%) for all; 13471 162011 3768
Line 3584 26.68% (27.27%) for 256, 31.11% (31.66%) for all; 12668 174679 3787
Line 3840 27.79% (28.42%) for 256, 30.91% (31.47%) for all; 10888 185567 3808
Line 4096 31.05% (31.72%) for 256, 30.92% (31.49%) for all; 11086 196653 3820
Line 4352 28.77% (29.23%) for 256, 30.77% (31.33%) for all; 14412 211065 3841
Line 4608 28.64% (29.11%) for 256, 30.63% (31.19%) for all; 14934 225999 3846
Line 4864 30.96% (31.61%) for 256, 30.65% (31.21%) for all; 10386 236385 3858
Line 5120 29.95% (30.53%) for 256, 30.61% (31.17%) for all; 13038 249423 3873
Line 5376 27.93% (28.39%) for 256, 30.46% (31.02%) for all; 14449 263872 3885
Line 5632 28.21% (28.84%) for 256, 30.37% (30.93%) for all; 11255 275127 3898
Line 5888 27.62% (28.17%) for 256, 30.25% (30.81%) for all; 12752 287879 3924
Line 6144 28.81% (29.33%) for 256, 30.19% (30.75%) for all; 11752 299631 3929
Line 6400 27.10% (27.73%) for 256, 30.06% (30.62%) for all; 13303 312934 3936
Line 6656 26.96% (27.48%) for 256, 29.93% (30.48%) for all; 14267 327201 3938
Line 6912 29.33% (29.89%) for 256, 29.90% (30.46%) for all; 13212 340413 3951
Line 7168 30.30% (30.84%) for 256, 29.92% (30.47%) for all; 13100 353513 3961
Line 7424 29.78% (30.33%) for 256, 29.91% (30.47%) for all; 12488 366001 3969
Line 7680 29.36% (29.86%) for 256, 29.89% (30.45%) for all; 12808 378809 3978
Line 7936 31.25% (31.79%) for 256, 29.94% (30.49%) for all; 11739 390548 3980
Line 8192 31.81% (32.15%) for 256, 30.01% (30.56%) for all; 16398 406946 4000
Line 8448 33.90% (34.45%) for 256, 30.12% (30.67%) for all; 12019 418965 4012
Line 8704 35.04% (36.12%) for 256, 30.22% (30.77%) for all; 8411 427376 4020
Line 8801 39.22% (39.94%) for 97, 30.32% (30.88%) for all; 4765 432141 4020
 The following lines are written only when msglevel is 2, but they
 are shown here anyway.
Index symbols of lengths 1-20:
12458 12773 13293 9007 9022 6828 6721 6029 3353 2429 1728 1263 736 557 138 232
95 136 76 60
 For example, there are 9007 index symbols that represent
 a character symbol of length four characters.
Index symbols of lengths 21-40:
45 40 33 52 18 34 8 15 8 8 9 17 15 8 38 24 0 2 2 10
Index symbols of lengths 41-60:
0 8 0 7 0 41 0 7 0 0 0 1 0 7 0 11 0 0 0 4
Index symbols of lengths 61-80:
0 2 0 4 0 4 0 1 4 1 0 0 0 0 24 0 0 0 0 0
 There are 24 index symbols that represent character symbols of
 length 75 characters despite that the dictionary is only 28 levels
 deep. This is due to the additional extension characters in the
 entries. The following lines are written when msglevel is 1.
Input chars=432141; conc. output bits=1048140; bytes in output lines=133427
Bits per index symbol=12
Expanding
Done

Data Compression Services

Appendix L. Data Compression Services 613

Data Compression Services

614 z/VM: 7.2 CMS Application Development Guide

Appendix M. Converting fork() + exec() to spawn()

This appendix contains two sections. The first section provides two conversion examples. “Factors to
Consider When Converting” on page 618 provides a detailed description of using the spawn() function
and identifies factors to consider when doing a conversion from fork().

Conversion Examples
This section provides two examples of programs that use the fork() and exec() functions and shows
how the same operations can be achieved by converting the programs to use spawn().

Example 1
In this code fragment, an application uses the fork() function to create a child process. The child then
becomes the process group leader of a new process group that runs in the foreground and invokes the
exec() function to run another application.

fork() version
 /**/
 /* */
 /* Issue fork to create a child that gets into its */
 /* own process group, puts itself in the foreground, */
 /* then issues exec(). */
 /* */
 /**/
 if ((pid = fork()) == -1) {
 return(-1);
 }
 else {
 if (pid == 0) { /* child */
 if (setpgid((pid_t) 0, (pid_t) 0) == -1) {
 exit(-1);
 }
 else {
 if (tcsetpgrp(cterm_fd, getpgrp()) == -1) {
 exit(-1);
 }
 else {
 execve("/prog", prog_args, my_env);
 exit(-1);
 }
 }
 }
 else { /* parent */
 retpid = waitpid(pid, &status, 0);
 }
 }

spawn() version
 /**/
 /* */
 /* Issue spawn to create a child process that is */
 /* in its own process group and is in the foreground. */
 /* */
 /**/

 inherit.flags = SPAWN_SETGROUP | SPAWN_SETTCPGRP;
 inherit.pgroup = SPAWN_NEWPGROUP;
 inherit.ctlttyfd = cterm_fd;

 if ((pid =
 spawn("/prog", 0, NULL, &inherit, prog_args, my_env)) == -1) {
 return(-1);
 }
 else {

Converting fork() + exec() to spawn()

© Copyright IBM Corp. 1990, 2022 615

 retpid = waitpid(pid, &status, 0);
 }
 }

Example 2
This example demonstrates how to convert an application from using fork() to using spawn() when
the parent's signal environment differs from the child's. In this example, the parent must ignore specific
signals. The child should ignore these signals only if they were being ignored at the time this code
fragment was invoked, otherwise they should be set to the default action. In addition, the parent must
block the SIGCHLD signal, while the child must run with the signal mask that was in place at the time this
code received control.

fork() version
/***/
/* Description: */
/* Execute the command specified by the string pointed to */
/* by 'cmd'. The environment of the executed command shall */
/* be as if a child process were created using the fork() */
/* function, and the child process invoked the 'sh' */
/* utility using the execl() function as follows: */
/* */
/* execl(<shell path>, "sh", "-c", cmd, (char *)0); */
/* */
/* This function shall ignore the SIGINT and */
/* SIGQUIT signals, and block the SIGCHLD signal, while */
/* waiting for the command to terminate. */
/* This function shall not return until the child */
/* process has terminated. */
/***/
 int stat;
 pid_t pid;
 sigset_t saveblock;
 struct sigaction sa;
 struct sigaction savintr;
 struct sigaction savequit;

 sa.sa_handler = SIG_IGN;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sigemptyset(&savintr.sa_mask);
 sigemptyset(&savequit.sa_mask);
 sigaction(SIGINT, &sa, &savintr);
 sigaction(SIGQUIT, &sa, &savequit);
 sigaddset(&sa.sa_mask, SIGCHLD);
 sigprocmask(SIG_BLOCK, &sa.sa_mask, &saveblock);

 if ((pid = fork()) == 0) { /* child */
 sigaction(SIGINT, &savintr, 0);
 sigaction(SIGQUIT, &savequit, 0);
 sigprocmask(SIG_SETMASK,&saveblock, 0);
 execl("/bin/sh", "sh", "-c", cmd, (char *)0);
 _exit(127);
 }
 if (pid == -1) {
 stat = -1;
 }
 else {
 while (waitpid(pid, &stat, 0) == -1) {
 if (errno != EINTR) {
 stat = -1;
 break;
 }
 }
 }
 sigaction(SIGINT, &savintr, 0);
 sigaction(SIGQUIT, &savequit, 0);
 sigprocmask(SIG_SETMASK, &saveblock, 0);
 return(stat);

Converting fork() + exec() to spawn()

616 z/VM: 7.2 CMS Application Development Guide

spawn() version
/***/
/* Description: */
/* Execute the command specified by the string pointed to */
/* by 'cmd'. The environment of the executed command shall */
/* be as if a child process were created using the fork() */
/* function, and the child process invoked the 'sh' */
/* utility using the execl() function as follows: */
/* */
/* execl(<shell path>, "sh", "-c", cmd, (char *)0); */
/* */
/* This function shall ignore the SIGINT and */
/* SIGQUIT signals, and block the SIGCHLD signal, while */
/* waiting for the command to terminate. */
/* This function shall not return until the child */
/* process has terminated. */
/* */
/* This version uses spawn() instead of fork(), exec(). */
/* */
/* Set up the spawn() inheritance structure so that: */
/* 1) SIGQUIT and SIGINT will be set to their default */
/* actions in the child, if the process had not set them */
/* to SIG_IGN prior to calling this function. If either had */
/* been set to SIG_IGN prior to the call, do nothing */
/* because signals set to be ignored in the parent will */
/* also be ignored in the child. */
/* 2) The child will inherit the signal mask of the parent, */
/* before the parent invoked this function. */
/* */
/* Get the pointer to environ and pass it to spawn(), so that */
/* the child inherits the parent's environment variables. */
/* */
/***/
 int stat;
 pid_t pid;
 struct sigaction sa;
 struct sigaction savintr;
 struct sigaction savequit;

 struct inheritance inherit;
 char *args[4] = { "sh", "-c", NULL, NULL };
 extern char **environ;

 args[2] = (char *)cmd;
 inherit.flags = 0;
 sigemptyset(&inherit.sigdefault);

 sa.sa_handler = SIG_IGN;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sigemptyset(&savintr.sa_mask);
 sigemptyset(&savequit.sa_mask);
 sigaction(SIGINT, &sa, &savintr);
 sigaction(SIGQUIT, &sa, &savequit);
/***/
/*| We need to add SIGCHLD to our process signal mask, but we only */
/*| want SIGCHLD to be in the signal mask of the child if it is */
/*| currently in the signal mask. So we need to obtain the current */
/*| signal mask to be passed in the sigmask field of the */
/*| inheritance structure. */
/***/
 sigaddset(&sa.sa_mask, SIGCHLD);
 sigprocmask(SIG_BLOCK, &sa.sa_mask, &inherit.sigmask);
 inherit.flags |= SPAWN_SETSIGMASK;
/***/
/*| If SIGINT and SIGQUIT were not being ignored at the time we */
/*| were invoked, we need to pass them in the sigdefault field */
/*| of the inheritance structure so that they will be set to the */
/*| default action in the child, and not be ignored, like in */
/*| the parent. */
/***/
 if (savintr.sa_handler != SIG_IGN) {
 sigaddset(&inherit.sigdefault, SIGINT);
 inherit.flags |= SPAWN_SETSIGDEF;
 }
 if (savequit.sa_handler != SIG_IGN) {
 sigaddset(&inherit.sigdefault, SIGQUIT);
 inherit.flags |= SPAWN_SETSIGDEF;
 }

Converting fork() + exec() to spawn()

Appendix M. Converting fork() + exec() to spawn() 617

 if ((pid = spawn("/bin/sh", 0, NULL, &inherit,
 (const char **)args,
 (const char **)environ)) == -1) {
 switch (errno) {
 case ENOENT : stat = (127 << 8);
 break;
 default : stat = -1;
 break;
 }
 }
 else {
 while (waitpid(pid, &stat, 0) == -1) {
 if (errno != EINTR) {
 stat = -1;
 break;
 }
 }
 }
 sigaction(SIGINT, &savintr, 0);
 sigaction(SIGQUIT, &savequit, 0);
 sigprocmask(SIG_SETMASK, &inherit.sigmask, 0);
 return(stat);

Factors to Consider When Converting
The spawn() function creates a new process, loads a specified program into the new process, and begins
execution. This creates a process that is nearly an exact duplicate of the process created when fork()
and exec() are used together.

In the fork() plus exec() scenario, fork() creates a new child process that is nearly an exact
duplicate of the original parent process. Both the parent and the child process continue execution at the
return from fork(). The child process calls exec() to replace the program inherited from the parent and
begin execution of the new process image file (program).

A point that must be understood in this scenario is that there may be additional processing performed
by the child process before the exec() is done, or there may be no exec() at all. After the fork(), an
exact copy of the parent process exists in the child process. All memory maps, variables, pointers, and so
on, exist in the child just as they did in the parent. If you examine the buffers in the child, you can see
exactly what was in the parent before the fork(). This allows the child to refer to these as if nothing has
happened. The child can do one of the following:

• Continue processing the program inherited from the parent
• Do some additional processing, possibly in preparation for the exec()
• Immediately do an exec()

In contrast, when spawn() is executed there is no intermediate stage in the process. The program
started by the exec() initiated by the child in the scenario described above is immediately available;
however, all memory maps, variables, and so on, are lost to the child process. If any information in the
parent process is required by the child, that information must be provided by an alternative method.

Inheritance
A program or "process image file" loaded using spawn() inherits certain characteristics of the parent
process. Because spawn() is effectively a functional combination of fork() and exec(), the inherited
attributes are an accumulation of the attributes of the two functions. Table 81 on page 618 illustrates
this relationship. By following across the table from left to right, you will find in nearly every case that
each characteristic of spawn() is shown by either fork() or exec() or both.

Table 81. Comparison of spawn() Attributes to fork() and exec()

Attribute fork() exec() spawn()

Process PID Changed Not Changed Changed

Process Group ID Not Changed Not Changed Not Changed 1

Converting fork() + exec() to spawn()

618 z/VM: 7.2 CMS Application Development Guide

Table 81. Comparison of spawn() Attributes to fork() and exec() (continued)

Attribute fork() exec() spawn()

Parent PID Changed Not Changed Changed

Session Membership Not Changed Not Changed Not Changed

Real UID Not Changed Not Changed Not Changed

Real GID Not Changed Not Changed Not Changed

Effective UID Not Changed May Change 2 May Change 2

Effective GID Not Changed May Change 2 May Change 2

Saved-Set UID Not Changed May Change 3 May Change 3

Saved-Set GID Not Changed May Change 3 May Change 3

Supplemental GIDs Not Changed Not Changed Not Changed

Time Left on Alarms Reset to 0 Not Changed Reset to 0

Process Signal Mask Not Changed Not Changed Not Changed 4

Pending Signals Empty Set Not Changed Empty Set

Signals Set to Be Caught Not Changed Caught set to SIG_DFL Caught set to SIG_DFL

Signals Set to Default
Action

Not Changed Not Changed Not Changed

Signals Set to Ignore Not Changed Not Changed Not Changed 5

Process Times Cleared to 0 Not Changed Cleared to 0

Open File Descriptors Closed if FD_CLOFORK
set 6

Closed if FD_CLOEXEC set
6

Closed if FD_CLOEXEC,
FD_CLOFORK, or
SPAWN_FDCLOSED 6

Open Directory Streams Duplicated Closed Closed

File Locks Not Inherited Not Changed if file still
open

Not Inherited

Current Working Directory Not Changed Not Changed Not Changed

Root Directory Not Changed Not Changed Not Changed

File Creation Mask Not Changed Not Changed Not Changed

Memory Locks Not Changed Released Released

Converting fork() + exec() to spawn()

Appendix M. Converting fork() + exec() to spawn() 619

Table 81. Comparison of spawn() Attributes to fork() and exec() (continued)

Attribute fork() exec() spawn()

Note:

1. The process group ID may be changed with the inherit parameter. See Inheritance Structure.
2. When a new process is created by spawn(), if the set-user-ID mode bit is set in the new process image, the

effective user ID is set to the owner of the new process image file. If the set-group-ID mode bit is set, the
effective group ID of the new process image file is set to the group of the new process image file.

3. The effective user ID and effective group ID of the new process are saved as the saved-set UID and
saved-set GID.

4. The signal mask can be changed using the inherit parameter. See Inheritance Structure.
5. The signals forced to the default action in the child process can be controlled with the inherit parameter.

See Inheritance Structure.
6. FD_CLOEXEC and FD_CLOFORK can be set by fcntl() on an open file. If this flag is set, the flagged file

is closed in the new process after the spawn(). SPAWN_FDCLOSED is a value set in the map[] array of
spawn(). If an array element has this value, that file descriptor is closed in the new process. Every element
of the map[] array must have a valid value. If the array element does not have a mapped array element, it
must contain the constant SPAWN_FDCLOSED.

Parameters
The spawn() function provides several parameters (described below) that allow various types of
information to be passed to the child process.

include <spawn.h>

pid_t spawn(const char *path,
 const char fd_count,
 const char fd_map[],
 const struct inheritance *inherit,
 const char *argv[],
 const char *envp[]);

pid_t spawnp(const char *file,
 const char fd_count,
 const char fd_map[],
 const struct inheritance *inherit,
 const char *argv[],
 const char *envp[]);

The spawn() function comes in two forms, spawn() and spawnp(). The function calls are identical,
with the exception of the method used to locate the process image file (program). The path parameter of
spawn() identifies the new process image file to be executed. The file parameter of spawnp() is used to
construct a path name that identifies the new process image file. The path is determined as follows. If the
file name contains a '/', the file name is the path name of the new process image file. If not, the directories
passed in the PATH environment variable are used as a prefix to the file name until either the file is found
or all directories are searched.

Note: The PATH environment variable can contain several directory paths.

The remaining parameters for both functions are identical and allow considerable flexibility when calling
the new process image file.

The parameters provide four distinct services:

• Remapping file descriptors
• Altering certain attributes of the new process
• Passing a parameter list to the process image file being loaded
• Passing environment variables to the new process image.

Converting fork() + exec() to spawn()

620 z/VM: 7.2 CMS Application Development Guide

These services are described in more detail below.

Remapping of File Descriptors – fd_count, fd_map[]
Remapping of file descriptors provides programmers with a very powerful tool. It allows the program
using spawn() to create the child process to exercise complete control over:

• Which open files (file descriptors) are inherited by the child
• The file descriptor number each inherited file will have.

Remapping is controlled by two parameters, fd_count and fd_map[].

The fd_count parameter specifies the file descriptors that are mapped to the child process. All file
descriptors above the value in fd_count are closed in the child process.

Note:

1. In the C environment, file descriptors 0-2 are typically used for stdin, stdout, and stderror.
2. If the pointer to fd_map is NULL, no mapping takes place and all file descriptors are inherited, except

those with the FD_CLOEXEC or FD_CLOFORK attributes.

In conjunction with fd_count, the fd_map[] array maps parent file descriptors to child file descriptors.

The relationship between fd_count and fd_map[] is one to one; that is, there must be a map entry in
fd_map[] for each file descriptor between zero (0) and fd_count-1. When spawn() is executed, file
descriptors in the child are mapped using the information provided in fd_map[]. No file descriptors
beyond the fd_count limit are inherited by the child process.

The following example illustrates the remapping of open files from Program A to Program B. The column
on the left represents the file descriptors of interest in the parent process, the column on the right
represents the remapped file descriptors in the child, and the center column represents the fd_map[]
array elements 0-6.

 PARENT CHILD
Prog A environment fd_map[] Prog B environment
 fd_count = 7 fd in fd from
 array
 open fd element# content child parent
============= =============== ==================
 0 0 0 0 0
 1 1 1 1 1
 2 2 2 2 2
 3 3 3 3 3
 5 4 S_FC 4 N/A
 . 5 17 5 17
 . 6 22 6 22
 17
 .
 .
 22

 S_FC = the SPAWN_FDCLOSED constant
 N/A = the file descriptor is not open

The objective is to have open file descriptors 0-3, 17, and 22 in the parent mapped to file descriptors 0-3,
5, and 6 respectively in the child. All other file descriptors are closed in the child process.

The fd_count value, 7, ensures that all file descriptors above 6 are closed in the child. The array
represented in the center column guides the remapping. Each array element number represents the
child file descriptor of that number; that is, array element number 5 = child file descriptor 5, and the
contents of the array element represents the parent file descriptor (in this case, 17) to be mapped into the
child. Notice that any element not specifically mapped (such as element 4 in this example) contains the
constant SPAWN_FDCLOSED. This value must be in each array element not mapped to a specific parent
file descriptor or the results of the mapping are unpredictable. Open file descriptors in the parent that are
not mapped (such as descriptor 5 in this example) are not represented in the child. File descriptors in the
parent that are not open (such as descriptor 4 in this example) are not included in the mapping process.

Converting fork() + exec() to spawn()

Appendix M. Converting fork() + exec() to spawn() 621

Inheritance Structure – Used to Alter Attributes in the Child Process
The inheritance information provided to spawn() addresses process group membership, signal actions,
signal masks, and session control.

The default behaviors (inherit.flags = 0) of the child process are:

• The process group ID of the child process is the process group ID of the parent process.
• Any signal set to be caught in the parent is established in the child with the default action (SIG_DFL).

However, if the action in the parent is to ignore (SIG_IGN), the signal is ignored in the child as well.
• Signal mask information is inherited from the parent. Any signal blocked in the parent process is also

blocked in the child process.

If the default actions are not acceptable, they can be changed using the inherit parameter of spawn().
Changing the attributes involves two steps:

1. Indicate which attributes are being changed in the inherit.flags member of the structure.
2. Provide the required information in the appropriate member of the inherit structure for the attributes

being changed.

The primary point to remember when using this spawn() parameter is that everything starts with
inherit.flags. The inherit function uses the contents of this member to determine what else to
process. Only those functions indicated in this member of the inheritance structure are handled. Table 82
on page 622 shows which flags are associated with which members of the inheritance structure. The
column at the left identifies the member of the inheritance structure. The columns to the right of .flags
show the possible contents of that member. For example, if .flags has only SPAWN_SETSIGDEF set, then
by going down the table in the SPAWN_SETSIGDEF column, the only member related is .sigdefault.

The notes associated with some table entries provide additional information that may be helpful.

Table 82. Inheritance Structure Usage

struct inherit flags controlling inheritance

.flags SPAWN_SETGROUP SPAWN_SETSIGDEF SPAWN_SETSIGMASK SPAWN_SETTCPRGP

.pgroup Child's PGID 1

SPAWN_NEWGROUP 2

.sigdefault Signals that will be default 3

.sigmask New signal blocking mask 4

.ctlttyfd Controlling terminal file
descriptor 5

Note:

1. The child process takes the process group ID specified in the .pgroup member of 'struct inheritance'.
2. A new process group is created, with the PID of the child process as it's process group ID. The child process becomes the process

group leader of the new process group.
3. The signals specified in the .sigdefault structure member have the default action (SIG_DEF) in the child process regardless of their

state in the parent process. The state of the signals in the parent is not affected.
4. The signal blocking mask specified in this structure member is inherited by the child process.
5. This member contains the file descriptor of the session's controlling terminal. SPAWN_SETTCPRGP (.ctlttyfd) also puts the child's

process group in the foreground.

Inheritance Conversion Tips
In programs being converted from fork() to spawn(), if any of the functions listed in Table 83 on page
623 are done in preparation for using exec() to execute a process image file, you should probably put
the corresponding information into the inheritance structure.

Converting fork() + exec() to spawn()

622 z/VM: 7.2 CMS Application Development Guide

Table 83. Inheritance Conversion Tips

fork() setup function spawn() setup information

associated struct member associated flag

setpgrp() .pgroup SPAWN_SETGROUP

sigaction() .sigdefault SPAWN_SETSIGDEF

sigprocmask() .sigmask SPAWN_SETSIGMASK

tcsetpgrp() .ctlttyfd SPAWN_SETTCPRGP

Passing the Argument List to the Called Program – argv[]
The argument list is a character array. The first entry should point to the file name associated with the
spawn() and the last entry must be the NULL pointer. The arguments are determined by the needs of the
program being created by spawn().

This array is used to pass information required by the new process. This could include information that
was available to the child process in the fork() scenario but is lost on a call to spawn(), such as
variables, buffer contents, or information needed by the child unrelated to spawn(). Other information
passed in the parameter list is purely dependent on the new process image file.

Passing Environment Variables – envp[]
The environment parameter is a list of character strings in the form name=value, where name is the name
of the environment parameter and value is the value to which you want it set. These strings make up the
environment of the new process image. The last entry in the environment list must be the NULL pointer.

If you want the child to inherit the environment of the parent, you can specify the external variable environ
in the spawn() call.

Converting fork() + exec() to spawn()

Appendix M. Converting fork() + exec() to spawn() 623

Converting fork() + exec() to spawn()

624 z/VM: 7.2 CMS Application Development Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2022 625

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This document contains intended Programming Interfaces that allow the customer to write programs to
obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM trademarks is available on the
web at IBM copyright and trademark information - United States (https://www.ibm.com/legal/us/en/
copytrade.shtml).

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

626 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at https://www.ibm.com/privacy
• https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

Notices 627

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

628 z/VM: 7.2 CMS Application Development Guide

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf), SC34-2670

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260

© Copyright IBM Corp. 1990, 2022 629

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf

• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: System Operation, SC24-6326
• z/VM: TCP/IP User's Guide, SC24-6333
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940
• CPI Communications Reference, SC26-4399
• Common Programming Interface Resource Recovery Reference, SC31-6821
• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sa760169/$file/glpa300_v2r4.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf), SA38-0683

630 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/docs/en/SSB27U_7.2.0/com.ibm.zvm.v720.zvmappl/c2462521.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf), SA23-1393

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: VM Dump Tool, GC24-6335
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf), SC34-2668

z/VM Facilities and Features

Data Facility Storage Management Subsystem for VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277
• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Bibliography 631

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320
• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf), SA32-0988

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350152/$file/ifc2000_v2r4.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf), GC35-0151

632 z/VM: 7.2 CMS Application Development Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf

Index

Special Characters
:* statement, DLCS file 393
:CMD statement, DLCS file 386
:KW.n statement, DLCS file 388
:KWD statement, DLCS file 393
:OPR statement, DLCS file 388
:OPT statement, DLCS file 389
:RTN statement, DLCS file 393
:SYN statement, DLCS file 387
/JOB control card

definition 359
/SET control card

definition 359, 360
&ERROR statement 351
&READ command 351
&STACK FIFO command 350
&STACK LIFO command 350
$SERVER$ NAMES file 486

Numerics
24-bit address

specifying 46
specifying on the INCLUDE command 54
specifying on the LKED command 60
specifying on the LOAD command 54

31-bit address
specifying 46
specifying on the INCLUDE command 54
specifying on the LKED command 60
specifying on the LOAD command 54

31-bit addressing 6
370 accommodation support 5

A
abend (abnormal end)

recovery from
DMSPURWU routine 148
in SFS 148

accept
connections 480

Accept_Conversation (CMACCP) routine 504
access

address spaces 227
global resources 472
local resources 472
messages from a repository 114, 410
multiple file pools 186
private resources 473
resources for transaction program 468
system resources 473

access list
controlled protection 231
data spaces 221, 222
entry (ALE) 222

access list (continued)
entry token (ALET) 222

access register
indicating address space 217
mode 218

access-register mode
when addressing access registers 218

access-security
extracting with CPI Communications 506
fields 469
password 485
setting with CPI Communications 507
user ID 485
with intermediate servers 488
z/VM

conversations 497
ACF/VTAM (Advanced Communications Function for VTAM)

overview 463
provides sessions 475

acquired work unit ID 191
active set of the cursor 431
ADAPTERX TEMPLATE file

resource adapter exit 264
ADAPTRC macro

defining constants 257
add

changes to a source file 75
comments to files 77
library

macro definitions 311
MACLIB members

MACLIB command 310
XEDIT command 311

TXTLIB members
TXTLIB command 318

ADD function
MACLIB command 310
TXTLIB command 318

address
addressing spaces 222
primary space

access list 221
allowing access by other users 227
BASE reserved name 220
copying data from 230
definition 217
establishing addressability 222
permitting access 226
querying information 226, 229
restoring access 228
SAC instruction 234

space
access registers 217
establising addressability 222
identification token (ASIT) 222
operand 235
querying 226, 229

Index 633

address (continued)
space (continued)

releasing pages 223
restoring access 228

addressing-capability exception
detect isolate condition 228

ALE (Access List Entry)
establishing addressability 222

ALET (Access List Entry Token)
establishing addressability 222

algorithim
prototyping 342

alias
creating 174
rules for creating 316

Allocate (CMALLC) routine 504
allocation wrapback in z/VM 500
ALTER TABLE command

DB2 Server for VM 426, 430
alternate format exec

CMS services available 338
description of 337
register contents 338

alternate user ID
used with data spaces 232
worker virtual machine 232

AMODE (Addressing MODE)
specifying 57

AMODE option
on compiler commands 46
on the INCLUDE command 54
on the LOAD command 54
specifying on GENMOD command 57

APPC/VM (Advanced Program-to-Program
Communications/VM)

access security 469
conversation states

confirm 480
deallocate 480
receive 480
reset 480
send 480

data 495
overview 479
paths

definition 471, 479
severed in SFS 191
used by SFS 190
using default work unit ID 191
using with acquired work unit ID 191

sending data 482
services 474

application
information

getting system information 210
interfaces

creating files 126
manipulating files 126
Systems Management 7

planning considerations
communicating 32
designing 23
I/O 33
listing of 29

application (continued)
planning considerations (continued)

panel interfaces 33
storing data 29

preprocessing DB2 Server for VM 435
profile pools

ISPF 378
architecture

CMS file system 119
EDF 119
file system 29
identifying 23
levels of support 219
SFS 119

archive
files 125

ASIT (Address Space Indentification Token)
data space identifying 222

assembler language
calling CSL routines from 326
example program using CSL routines 527

asynchronous request
processing 187

asynchronous requests
detecting completion from multitasking applications
188

atomic request
description of 139
list of administrative commands and routines 140
list of general use commands and routines 139

ATTR statement
ISPF panels 375

attribute
data space 222
extended file

controlling your program files 142
creation date 124
creation time 124
date of last change 125
date of last reference 124
listing of 120
manipulating 143
overwrite 123
recoverability 123
time of last change 125

file
date and time of last update 123
file mode 121
file name 121
file origin pointer 122
file type 121
getting 120
INPLACE 121
listing of 120
logical record length 122
number of data blocks 122
number of records 122
pointer levels 122
record format 122
update-in-place 121

authorization
connector 489
local resource manager 485
private resources 486

634 z/VM: 7.2 CMS Application Development Guide

AUTO option
INCLUDE command 54
LOAD command 54

autolog
a private server 487

automatic
logging 487

auxiliary file
applying multiple updates 79, 81
description of 79
preferred level updating 81

AVS (APPC/VM VTAM Support)
ACF/VTAM session 475
overview 463
virtual machines

scenario 481

B
backout required exit processing, CRR

backout action call 284
deallocate abend action call 285
overview 283
resource failure action call 284

BASE reserved name
primary address space 220

basic communication functions 480
basic conversation

sending data 482
batch facility

clean up 361
commands that control 362
controlled by

/* control card 357
/JOB control card 357, 359
/SET control card 357, 360
CMS commands 357
control cards 357

controlling spool files 362
definition 357
end of job indicator 359
function 361
identifying user ID to batch machine 359
input 357
messages 361
output 363
preparing jobs 361
processing jobs 361
purging jobs 366
reasons for using 357
reordering jobs 366
restriction on command in batch jobs 362
restrictions on commands used in 362
sending jobs 357
setting limits on system's resources 360
SFS considerations

guidelines 358
security exposure 358
specifying user ID 358

submitting jobs
containing input control cards 358
execs to submit jobs 363
real card deck 357
restarting jobs 366

batch facility (continued)
submitting jobs (continued)

virtual card input 358
submitting jobs for non-CMS users 366

BATCH parameter
IPL command 357

BEGIN DECLARE SECTION statement in SQL 427
BETWEEN predicate of SQL 433
BFS (Byte File System)

file and directory manipulation using the CMS record
file interface

application design considerations 194
asynchronous requests 207
authority 194
caching files 199
closing directories 202
closing files 199
CMS programming interface characteristics 193
committing changes 196
data block I/O 200
deleting locks 205
determining if a file exists 198
DFSMS/VM file management 194
directory I/O 200
directory ID considerations 196
erasing directories 202
erasing files 199
error information, collecting 197
file I/O 197
locking files 202
namedefs, using 195
opening directories 200
opening files 198
programming interfaces 193
reading directories 202
reading files 199
rolling back changes 196
unexpected conditions 196
waiting for locks 206
work units, using 196
writing files 199

file attributes maintained by CMS 120
file pool considerations

restart recovery 207
space usage 206
user synchronization 207

MAXCONN considerations 19
overview 12
record file system support 193

binding files, programming language 322
BLOCK option

FILEDEF command 48
BODY statement

ISPF panels 375
BPX1SPN (spawn) routine

inheritance structure
using to alter attributes in the child process 622

break tree processing
CRR 270

breakpoint option
ISPF testing 69

BROWSE service of ISPF 379
buffer

creating with MAKEBUF command 351

Index 635

buffer (continued)
program stack 351

build
message libraries 372
message repository of your own 414

built-in SQL functions 434

C
C language

example program using CSL routines 531
using DB2 Server for VM 425

CACHE parameter
opening BFS files 199
opening SFS and minidisk files 153

CALL macro (MVS) 236
change

DLCS file 385
DLCS file, example of 397
MACLIBs 306
macro libraries 305
rolling back

in applications 141, 146
issuing DMSBACK 141
issuing DMSROLLB 147
issuing SRRBACK 141, 147
methods to 141
OVERWRITE attribute 142
RECOVERABILITY attribute 142
to nonrecoverable files 147
to recoverable files 146
with multiple work units 136

source file 73
source files 75
SQL tables 430
system information 212
work unit ID 135
your system 28

checkout lock 178, 204
CLEAR option

INCLUDE command 54
LOAD command 54

close
assembler files, example 529
cursor 431
directory

BFS 202
SFS 171

file
BFS 199
SFS 161

REXX files, example 545
Close (DMSCLOSE) routine

examples for SFS
assembler 529
REXX 545

using for BFS 199
using for SFS and minidisks 161

Close Directory (DMSCLDIR) routine
using for BFS 202
using for SFS 171

CLOSE statement
DB2 Server for VM 431

CMACCP (Accept_Conversation) routine 504

CMALLC (Allocate) routine 504
CMCFM (Confirm) routine 504
CMCFMD (Confirmed) routine 504
CMD option

ISPSTART command 372
CMDEAL (Deallocate) routine 504
CMECS (Extract_Conversation_State) routine 504
CMECT (Extract_Conversation_Type) routine 504
CMEMN (Extract_Mode_Name) routine 504
CMEPLN (Extract_Partner_LU_Name) routine 504
CMESL (Extract_Sync_Level) routine 504
CMFLUS (Flush) routine 504
CMINIT (Initialize_Conversation) routine 505
CMPTR (Prepare_To_Receive) routine 505
CMRCV (Receive) routine 505
CMRTS (Request_To_Send) routine 505
CMS (Conversational Monitor System)

batch facility
/* control card 357
/JOB control card 357
/SET control card 357
clean up 361
CMS commands 357
control cards 357
CP ID card 357
definition 357
execs to submit jobs 363
function 361
identifying user ID to batch machine 359
input 357
messages 361
output 363
preparing jobs 361
purging jobs 366
real card deck 357
reasons for using 357
reordering 366
restrictions on commands used in 362
sending jobs 357
setting limits on system's resources 360

BFS file and directory manipulation using the CMS
record file interface

application design considerations 194
asynchronous requests 207
authority 194
caching files 199
closing directories 202
closing files 199
CMS programming interface characteristics 193
committing changes 196
data block I/O 200
deleting locks 205
determining if a file exists 198
DFSMS/VM file management 194
directory I/O 200
directory ID considerations 196
erasing directories 202
erasing files 199
error information, collecting 197
file I/O 197
locking files 202
namedefs, using 195
opening directories 200
opening files 198

636 z/VM: 7.2 CMS Application Development Guide

CMS (Conversational Monitor System) (continued)
BFS file and directory manipulation using the CMS record file interface (continued)

programming interfaces 193
reading directories 202
reading files 199
rolling back changes 196
unexpected conditions 196
waiting for locks 206
work units, using 196
writing files 199

CMS EXEC
creating 340
definition 335, 340
differences with EXEC 2 execs 335
example program 336

commands
creating your own 403
restrictions in batch facility 362
search order 8

CRR (Coordinated Resource Recovery)
coordinate work 502

exits
DMSCWAIT routine 251
wait routine for multitasking applications 251

file information maintained 120
file system architecture 119
libraries

contents of 306
creating 305
manipulating 305

loading programs 50
macros

ADAPTRC 257
DMSGPI system MACLIB 307
internal 307
nonsimulated OS/MVS 307
run programs using MVS interfaces 307
simulated OS/MVS 307

multitasking 251
operating characteristics 8
planning considerations

CRR 24
data integrity 24
data recovery 24
debugging 37
determining system resources 24
distributed processing 34
identifying the system architecture 23
language 24
listing of 23
packaging your application 28
portability 28
security 35
storage requirements 24
storing your application 28
support person 29
tailoring the system 28
types of processing 27
VM data spaces 27

preferred file types 9
preferred interface group 6
preferred routines 7
programming environment 3
programming services 111

CMS (Conversational Monitor System) (continued)
recover provided resources 224
searching

for commands 8
services available 338
structure 3
system structure 3
virtual machine

architectures 4
environment 4
environments summary 5
modes 4
server 459, 474

work unit
extension routine 502
intermediate server 501
protected conversation 500

CMS Pipelines
console I/O 115
directory I/O 114
file I/O 113
I/O

unit record device drivers 116
stack I/O 116
tape I/O 117
using in applications 353

CMSCT (Set_Conversation_Type) routine 505
CMSDT (Set_Deallocate_Type) routine 505
CMSED (Set_Error_Direction) routine 505
CMSEND (Send_Data) routine 505
CMSERR (Send_Error) routine 505
CMSF (Set_Fill) routine 505
CMSLD (Set_Log_Data) routine 505
CMSMN (Set_Mode_Name) routine 505
CMSPLN (Set_Partner_LU_Name) routine 505
CMSPTR (Set_Prepare_To_Receive_Type) routine 505
CMSRC (Set_Return_Control) routine 506
CMSRT (Set_Receive_Type) routine 506
CMSSL (Set_Sync_Level) routine 506
CMSST (Set_Send_Type) routine 506
CMSTPN (Set_TP_Name) routine 506
CMTRTS (Test_Request_To_Send_Received) routine 506
CNOS verb 469
COBOL

example program 533
example program using CSL routines 535
interactive debugging 67
using DB2 Server for VM 425

COBTEST tool
debugging programs 67

code
DLCS 386
errors in DLCS 397
messages

in one file 405
SQL executable program 436

coding your program
getting error information 39
using CSL routines 39
using DB2 statements 41
using functions 41
using macros 41
using the CPI Communications routines 41
using the Extract/Replace facility 40

Index 637

coding your program (continued)
z/VM services provided 39

collection
CS 471
TSAF 471

command
compiler 43
controlling the batch virtual machine 362
creating your own using DLCS 403
DB2 Server for VM 426
issuing in a work unit 137
restrictions when used in CMS batch facility 362
search order 8
SET FILEWAIT 181, 206
syntax checking 383
syntax definitions 384

commit
changes

BFS 196
explicitly, using COMMIT parameter 144
implicitly 145
in applications 141, 144
issuing DMSCOMM 141
issuing SRRCMIT 141
methods to 141
seeing 145
uncommitted, seeing 145
with multiple work units 136

immediate 139
implicit 246
issuing DMSCOMM 246
issuing SRRCMIT 246

Commit (DMSCOMM) routine
committing changes 141, 246
starting CRR processing 261

COMMIT WORK command of SQL 429
communication

advanced functions 482
between a z/VM and non-z/VM system 463
between multiple z/VM systems 462
between two collections 464
different z/VM systems 481
ending 482
in an SNA network 481
partner 474
partners

description 479
program to program 457
same z/VM systems 481
server 472
servers

description 479
setting 485

within one z/VM system 461
communication directory

file fields 484
LU name 484
names file 483
setting 485
system level. 484
tags 484
transaction program (TP) 485
used with CPI Communications 494

compare states, CRR

compare states, CRR (continued)
format 289
function 289
parameters 290

compatibility group, CMS
description 7

compile
message repositories 409
OpenExtensions applications 14
programs with execs 341

compiler
commands 43
options 46

compress
LOADLIB 320

compression
of data

description 440
COMSRV directory option 485
CONCAT option

FILEDEF command 371
conditional macro expansion 235
confirm

request 482
requests 496

Confirm (CMCFM) routine 504
Confirmed (CMCFMD) routine 504
connect

programs
in an SNA network 481
on a different z/VM system 481
on the same z/VM system 481
overview 480

CONNECT command
DB2 Server for VM 429

connection
accept 480
reject 480

console
I/O

3270BFRA stage command 115
3270ENC stage command 115
APLDECODE stage command 115
APLENCODE stage command 115
BUILDSCR stage command 115
CONSOLE macro 115
CONSOLE stage command 115
DMS/CMS 115
FULLSCREEN stage command 115
FULLSCRQ stage command 115
FULLSCRS stage command 115
ISPF 115
LINERD macro 115
LINEWRT macro 115
planning considerations 34
XMITMSG command 114

stack
terminal input buffer 347
using 347

CONSOLE macro
console I/O 115

contention
description of 469
loser 469

638 z/VM: 7.2 CMS Application Development Guide

contention (continued)
winner 469

CONTINUE command
DB2 Server for VM 428

control file
applying multiple updates 78, 81
description 78
MACS records 78
naming 79
updating example 79

CONTROL service of ISPF 379
conversation

definition 468
security

setting client user ID 507
targets 469

SNA 468
starting 494
states

governing functions 480
listing of 493

types 495
coordination exit

backout action call 274
break tree processing 270
committed action call 273
committed with new LUWID action call 273
deallocate abend action call 277
extra backout 271
initiator OK backout action call 277
logging 270
new LUWID action call 274
OK backout action 276
overview 269
prepare action call 272
prepare to resynchronize action call 276
registration flags 269
request commit action call 273
second phase backout action call 275

copy
address space data 230

COPY file type
predefined source statements 306

Copy from Address Space (DMSSPCPY) routine
using 230

CP (Control Program)
command restrictions in CMS batch facility 362
macro data space considerations 220

CPEREPXA command
debugging programs 65

CPI (Common Programming Interface) Communications
advanced functions, overview 495
basic functions, overview 494
calling routines 494
errors when invoking routines 494
extension routines summary 506
extensions

VM defined routines 493
introduction 7
overview 493
program example

resource manager program 561
synchronizing multiple updates 569
user program 553

CPI (Common Programming Interface) Communications (continued)
programming scenario

requesting a global resource 507
requesting a private resource 509
signaling a user event 515
synchronizing multiple updates 511

setting and examining values 493
states 493
summary of routines 504

CPI Communications routines
CMACCP (Accept_Conversation) 504
CMALLC (Allocate) 504
CMCFM (Confirm) 504
CMCFMD (Confirmed) 504
CMDEAL (Deallocate) 504
CMECS (Extract_Conversation_State) 504
CMECT (Extract_Conversation_Type) 504
CMEMN (Extract_Mode_Name) 504
CMEPLN (Extract_Partner_LU_Name) 504
CMESL (Extract_Sync_Level) 504
CMFLUS (Flush) 504
CMINIT (Initialize_Conversation) 505
CMPTR (Prepare_To_Receive) 505
CMRCV (Receive) 505
CMRTS (Request_To_Send) 505
CMSCT (Set_Conversation_Type) 505
CMSDT (Set_Deallocate_Type) 505
CMSED (Set_Error_Direction) 505
CMSEND (Send_Data) 505
CMSERR (Send_Error) 505
CMSF (Set_Fill) 505
CMSLD (Set_Log_Data) 505
CMSMN (Set_Mode_Name) 505
CMSPLN (Set_Partner_LU_Name) 505
CMSPTR (Set_Prepare_To_Receive_Type) 505
CMSRC (Set_Return_Control) 506
CMSRT (Set_Receive_Type) 506
CMSSL (Set_Sync_Level) 506
CMSST (Set_Send_Type) 506
CMSTPN (Set_TP_Name) 506
CMTRTS (Test_Request_To_Send_Received) 506
XCECL (Extractus.Conversation_LUWID) 506
XCECSU (Extract_Conversation_Security_User_ID) 506
XCECWU (Extract_Conversation_Workunit_ID) 506
XCELFQ (Extract_Local_Fully_Qualified_LU_Name) 506
XCERFQ (Extract_Remote_Fully_Qualified_LU_Name)
506
XCETPN (Extract_TP_Name) 506
XCIDRM (Identify_Resource_Manager) 507
XCSCSP (Set_Conversation_Security_Password) 507
XCSCST (Set_Conversation_Security_Type) 507
XCSCSU (Set_Conversation_Security_User_ID) 507
XCSCUI (Set_Client_Security_User_ID) 507
XCSUE (Signal_User_Event) 507
XCTRTM (Terminate_Resource_Manager) 507
XCWOE (Wait_On_Event) 507

create
alias 316
buffers 351
CMS commands of your own 403
CMS EXEC 340
data spaces 221, 222, 226
DB2 Server for VM tables 430
directory entries 316

Index 639

create (continued)
directory entry 311
executable program 58
files 126
HELP files of your own 404, 415
libraries

example of 307
LKEDIT files 59
load map 49
LOADLIB 320
LOADLIB files 59
MACLIBs 307
MAP file type 309
member names 308, 316
messages of your own 414
modules 56
nonrelocatable modules 315
SYSLIN data set 60
table views 435
text libraries 315
TXTLIB members directory entry for 316
TXTLIBs 305, 317
UPDATE file 74
XEDIT macros 339

Create Alias (DMSCRALI) routine
using 174

Create Data Space (DMSSPCC) routine
using 222, 226

CREATE INDEX command
DB2 Server for VM 426

Create Lock (DMSCRLOC) routine
using for BFS 203
using for SFS 177

CREATE NAMEDEF command
description of 47
identifying files 49

CREATE TABLE command
SQL 426

CREATE VIEW command
DB2 Server for VM 426, 435

creation date attribute 124
creation time attribute 124
CRR (Coordinated Resource Recovery)

asynchronous processing overview 251
backout indications outside sync point 285
backout required exit processing

backout action call 284
deallocate abend action call 285
overview 283
resource failure action call 284

break tree processing 270
communications examples

single processor 583
SNA network 593
TSAF collection 588

compare states
format of GDS variable 289
function 289
parameters 290

coordination exit processing
backout action call 274
break tree processing 270
committed action call 273
committed with new LUWID action call 273

CRR (Coordinated Resource Recovery) (continued)
coordination exit processing (continued)

deallocate abend action call 277
extra backout 271
initiator OK backout action call 277
logging 270
new LUWID action call 274
OK backout action 276
overview 269
prepare action call 272
prepare to resynchronize action call 276
registration flags 269
request commit action call 273
second phase backout action call 275

data integrity 241
end work unit exit processing

CMS command abend action call 282
end-of-CMS-subset action call 283
end-of-command action call 282
overview 280
purge-work-unit action call 281
return-work-unit action call 281

error passback support 285
example 569
exchange log names

format of GDS variable 287
function 287
parameters 288
reply, resynchronization initialization 294
reply, resynchronization recovery 300
request, resynchronization initialization 293
request, resynchronization recovery 297

exit interface to resource adapter
asynchronous processing 261
synchronous processing 261
when called 261

exit routine processing
backout required 283
coordination 269
end of work unit 280
postcoordination 278
precoordination 267

extra backout 271
implementing 242
maximum resources 242
maximum resources CRR can coordinate 242
multitasking dispatcher exit 263
overview 241
participation

changing registration values 260
CSL template file 264
determining resource 25
error passback support 285
getting information about CRR recovery server 259
getting information about resource manager 258
logging data 256
overview 255
parameters 264
processing 266
protected conversations 301
registering a resource 257
requirements 255
resource adapter interface with SPM 256
return codes 264

640 z/VM: 7.2 CMS Application Development Guide

CRR (Coordinated Resource Recovery) (continued)
participation (continued)

setting registration flags 259
unregistering the resource 260
writing 263
writing resource adapter exit routines 263

planning 24
postcoordination exit processing

abnormal termination action call 280
backout action call 279
commit action call 278
overview 278
state check action call 279

precoordination exit processing
backout action call 268
commit action call 268
overview 267

protected conversations 301
recovery token 291
registration

changing registration values 260
getting information about CRR recovery server 259
getting information about resource manager 258
overview 257
setting registration flags 259
unregistering the resource 260

resource adapter
backout indications outside sync point 285
changing registration values 260
exit routine processing 266
getting information about CRR recovery server 259
getting information about resource manager 258
interface with SPM 256
link to resource manager 255
registering a resource 257
requirements for participation 256
setting registration flags 259
unregistering the resource 260

resource manager
error passback support 285
interface with CRR recovery server 286
link to resource adapter 255
logging data 256
nonprotected conversations 302
not directly maintaining 301
requirements for participation 256
resynchronization facilities 286

resynchronization initialization
data flow 292
exchange log names reply actions 294
exchange log names request actions 293
exchanging log names 287
function 292

resynchronization process 242
resynchronization recovery

compare states actions 298
comparing states 289
data flow 297
exchange log names reply actions 300
exchange log names request actions 297
function 296

session instance ID 291
transaction tag 266
wait routine 251

CRR (Coordinated Resource Recovery) (continued)
writing resource adapter exit routines 263

CRR Change Registration (DMSCHREG) routine
using 260

CRR Get Recovery Server Information (DMSGETRS) routine
using 259

CRR Resource Adapter Registration (DMSREG) routine
using 257

CRR Resource Adapter Unregistration (DMSUNREG) routine
using 260

CRR Wait (DMSCWAIT) routine
ASYNC synchronization point option 245
considerations for multiuser server applications 27
CSL template file 253
function 251
making your exit routine available 254
multitasking scenario 251
when called by CMS 251
writing replacement 253

CS collection 471
CSL (callable services library)

CSLREXX EXEC 545
definition 305
direct call routines 320, 323
Extract/Replace facility 209
identifying using GLOBAL command 321
programming language binding files 322
return codes 130
routines

assembler 527
atomic requests 139
C 531
calling 323
dropping 322
fastpath method 326
format of 323
function of 320
getting immediate results 139
I/O, assembler 529
I/O, REXX 545
linking DMSCSL 129
loading 322
managing SFS files 149
managing work units 134
PL/I 543
preferred interface group 7
record file system routines that support BFS
directory I/O 200
record file system routines that support BFS file I/O
197
return codes 130
verifying the load 322
VS COBOL II 535
VS FORTRAN 539
VS Pascal 549

template files
ADAPTERX 264
DMS2OW 253

using 320
CSL routines

CMACCP (Accept_Conversation) 504
CMALLC (Allocate) 504
CMCFM (Confirm) 504
CMCFMD (Confirmed) 504

Index 641

CSL routines (continued)
CMDEAL (Deallocate) 504
CMECS (Extract_Conversation_State) 504
CMECT (Extract_Conversation_Type) 504
CMEMN (Extract_Mode_Name) 504
CMEPLN (Extract_Partner_LU_Name) 504
CMESL (Extract_Sync_Level) 504
CMFLUS (Flush) 504
CMINIT (Initialize_Conversation) 505
CMPTR (Prepare_To_Receive) 505
CMRCV (Receive) 505
CMRTS (Request_To_Send) 505
CMSCT (Set_Conversation_Type) 505
CMSDT (Set_Deallocate_Type) 505
CMSED (Set_Error_Direction) 505
CMSEND (Send_Data) 505
CMSERR (Send_Error) 505
CMSF (Set_Fill) 505
CMSLD (Set_Log_Data) 505
CMSMN (Set_Mode_Name) 505
CMSPLN (Set_Partner_LU_Name) 505
CMSPTR (Set_Prepare_To_Receive_Type) 505
CMSRC (Set_Return_Control) 506
CMSRT (Set_Receive_Type) 506
CMSSL (Set_Sync_Level) 506
CMSST (Set_Send_Type) 506
CMSTPN (Set_TP_Name) 506
CMTRTS (Test_Request_To_Send_Received) 506
XCECL (Extract_Conversation_LUWID) 506
XCECSU (Extract_Conversation_Security_User_ID) 506
XCECWU (Extract_Conversation_Workunit_ID) 506
XCELFQ (Extract_Local_Fully_Qualified_LU_Name) 506
XCERFQ (Extract_Remote_Fully_Qualified_LU_Name)
506
XCETPN (Extract_TP_Name) 506
XCIDRM (Identify_Resource_Manager) 507
XCSCSP (Set_Conversation_Security_Password) 507
XCSCST (Set_Conversation_Security_Type) 507
XCSCSU (Set_Conversation_Security_User_ID) 507
XCSCUI (Set_Client_Security_User_ID) 507
XCSUE (Signal_User_Event) 507
XCTRTM (Terminate_Resource_Manager) 507
XCWOE (Wait_On_Event) 507

CSLFPI macro
build area 326

CSLLIST command
displaying contents of a CSL 322

CSLMAP command
CSL routines loaded information 322

CSRCMPSC macro 439

D
data

getting 495
getting from a program 482
log 496
manipulating 425
program stack 350
prototyping functions 70
request to send 496
security 35
sending 482, 483
validating 488

data compression services
benefits of 439
compression services 440
CSRCMPSC macro 439
definition of 439
dictionary build example 609
DMSCPR routine 454
examples of compression and expansion 612
expansion services 440
using 439

Data Compression Services (DMSCPR) routine
using 454

data file
requirements 29

data integrity
ensuring 241
in DB2 Server for VM 429
planning for 24

data space
access list 221, 222
APPC/VM considerations 232
attributes 222
considerations 223
copying data from 230
CP macro use considerations 220
creating 221
definition 217
DIAGNOSE code use considerations 220
end-of-command considerations 224
establishing addressability 222
event handler 234
fetch protection (FPROT) attribute 232
I/O error notification 233
instance 222
isolating 228
KEEP attribute 225
managing storage 223
owning 226
permitting access 226
querying information 226, 229
releasing storage 223
restoring access 228
rules for using 229
SAC instruction 234
scope of usage 224
SHARE attribute 226
sharing with other virtual machines 226
storage error notification 233
SYSTEM attribute 225
usage by server applications 228
use with alternate user IDs 232
used by a server 232
using from ESA or XA 230
virtual machine reset considerations 224

database
benefits of 425
DBSPACEs 430
definition of 425
ensuring integrity 429
requirements 29
systems

DB2 32
planning considerations 32

testing

642 z/VM: 7.2 CMS Application Development Guide

database (continued)
testing (continued)

using SQL 70
date of file creation attribute 124
date of last change attribute 125
date of last reference attribute

description of 124
how to use 125
inhibiting the updating of 126
retrieving 126

DB2 Server for VM
accessing data

using indexes 426
BEGIN DECLARE SECTION statement 427
built-in functions 434
CLOSE statement 431
column definition 425
commands

ALTER TABLE 426, 430
coding, procedure to follow 427
COMMIT WORK 429
CONTINUE 428
CREATE INDEX 426
CREATE TABLE 426, 430
CREATE VIEW 426, 435
data definition 426
data manipulation 426
DELETE 426, 435
DROP INDEX 426
DROP TABLE 426
DROP VIEW 426
format of 426
FORTRAN 430
FROM clause 431
GOTO 428
GRANT 426
INCLUDE SQLCA 428
INSERT 426, 430, 434
ORDER BY clause 431
query 426, 431
ROLLBACK WORK 429
SELECT 426, 431
UPDATE 426, 435
WHENEVER 428
WHERE clause 431

CONNECT statement 429
connecting to 429
creating executable applications

illustration 436
procedure 436

creating table views 435
creating tables 430
data definition

columns 425
fields 425
rows 425
tables 425
views 426

DECLARE CURSOR statement 431
declare section 427
declaring host variables 427
description of 425
END DECLARE SECTION statement 427
error handling 428

DB2 Server for VM (continued)
excluding duplicates using DISTINCT keyword 434
FETCH statement 431
field definition 425
handling data 425
indicator variables 427
interactive 438
interactive debugging 70
languages using 425
logical units of work 429
main variables 427
main variables, exceptions 427
manipulating data 434
multiple user operating mode 427
OPEN statement 431
operating modes

multiple user mode 427
single user mode 426

operators
arithmetic 432
comparison 432
logical 433

predicates
BETWEEN 433
definition of 431
IN 433
IS NULL 434
LIKE 434

preprocessing your application 435
prototyping applications 345
query command 431
release connection to 429
row definition 425
search conditions

comparing value with a list of items 433
defining 431, 433
determining if value lies between two values 433
looking for null values 434
partial matches a given string 434

single user operating mode 426
SQLCA (SQL communication area) 428
SQLCODE field 428
SQLWARN field 428
SQLWARNING 428
statements

CLOSE 431
DECLARE CURSOR 431
FETCH 431
OPEN 431
WHERE clause 432

table definition 425
testing 70
using 425
using ISQL 438
using QMF 438
view definitions 426

DBCS (Double-Byte Character Set)
parsing facility 394

DBSPACE in DB2 Server for VM 430
deadlocks 181, 206
Deallocate (CMDEAL) routine 504
deallocate_type characteristic 495
debug

CMS commands

Index 643

debug (continued)
CMS commands (continued)

DEBUG 66
MODMAP 66
PROGMAP 66
STDEBUG 66
STORMAP 66
SUBPMAP 66
SVCTRACE 66

CP commands
CPEREPXA 65
DISPLAY 65
DUMP 65
MONITOR 65
QUERY CPTRACE 65
QUERY RECORDING 65
QUERY TRSAVE 65
QUERY TRSOURCE 65
RECORDING 65
RETRIEVE 65
SET CPTRACE 65
SET MODE 65
SET RECORD 65
STORE 65
TRACE 66
TRSAVE 66
TRSOURCE 66
VMDUMP 66

programs
interactively 66
planning considerations 37

tools
available 65
interactive 66
VS COBOL II 67
VS FORTRAN 67
VS Pascal 67

using ISQL 70
DEBUG command

debugging programs 66
DECLARE CURSOR statement

DB2 Server for VM 431
declaring variables

in SQL 427
default

overriding 493
work unit ID 191

define
command names 386
commands using parsing facility 383
communications programming terminology 467
data

in DB2 Server for VM 425
files for I/O 47
keywords 393
modifier 388
operands 388
options 389, 390
routines 393
search conditions

in SQL 431
synchronization point options 244
synonyms 387
system functions 390

define (continued)
user functions 392

DEL option
TXTLIB command 318

delete
authority for SFS files and directories 176
lock

on BFS file 205
on SFS object 180

records 76
saved segments 421
TXTLIB members

TXTLIB command 318
DELETE command

DB2 Server for VM 435
SQL 426

Delete Lock (DMSDELOC) routine
using for BFS 204, 205
using for SFS 178, 180

DELETE statement
example of 76

department printer 485
departmental files or programs 486
determine

options to use for loading programs 50
program entry points 55
resource's participation in CRR 25
where to load TEXT files 49

device types
DISK 48
for input files 48
for output files 48

DFSMS/VM Removable Media Services (RMS) Tape Library
Dataserver interface routines 117
DIAGNOSE codes

data space considerations 220
dialog

description of 369
developing using ISPF/PDF 370
developing using XEDIT 370
elements of

file tailoring skeletons 369
functions 369
messages 369
panels 369
tables 369

management systems
description of 369
DMS/CMS (Display Management System for CMS)
369
ISPF (Interactive System Productivity Facility) 369

organization diagram 373
organization in ISPF 373
test

option in ISPF testing 67
variables

in ISPF 376
dictionary

entries 441
substitution in message repositories 413

direct call CSL routines
calling formats 323
invoking 323
TXTLIB file 320

644 z/VM: 7.2 CMS Application Development Guide

directory
SFS

accessing 175
closing 171
creating 171
erasing 172
existence of 167
granting authority 173
I/O routines 165
locking 176
manipulating 129
opening 167
reading 170
removing authority 176

directory entry
creating 316

directory, BFS
manipulating using the CMS record file interface

application design considerations 194
asynchronous requests 207
authority 194
closing directories 202
CMS programming interface characteristics 193
committing changes 196
directory I/O 200
directory ID considerations 196
erasing directories 202
error information, collecting 197
namedefs, using 195
opening directories 200
programming interfaces 193
reading directories 202
rolling back changes 196
unexpected conditions 196
work units, using 196

DISCARD command
deleting members of MACLIBs 312

disconnected virtual machine
planning for 28

disk
file information 120
formatting 119
LOAD operand restricted in job for CMS batch facility
363
programming interface characteristics 129
sharing 30

DISK option
LKED command 60

display
contents of MACLIBs 309
CSL contents 322
CSL names 322
library file names 322
loaded CSL routines information 322
LOADLIB members 320
MACLIB members 313
messages 405
panels in ISPF 370
saved segment information 422
TXTLIB members 319

DISPLAY command
debugging programs 65

DISPLAY service
ISPF 377

DISTINCT keyword
SQL 434

distributed application
data integrity concerns 243
definition of 34
example of 35
general considerations 248
transaction tags 243

distributed data
definition of 34

distributed processing
definition of 34
planning considerations for 34

DLBL command
VSAM files 49

DLCS file
command syntax definitions 384
contents of 384
example of creating 395, 396
example of processing 397

DLCS statement
description of 384

DMS/CMS (Display Management Systems for
CMS)

console I/O 115
function parts 379
panel formatter 379
panel manager 379
screens

write full-screen 380
using 379
write full screen 379

DMS2OW TEMPLATE file
identifying I/O parameters
253

DMSCHECK CSL routine
in multitasking applications 188

DMSCHREG (CRR Change Registration) routine
using 260

DMSCLDIR (Close Directory) routine
using for BFS 202
using for SFS 171

DMSCLOSE (Close) routine
examples for SFS

assembler 529
REXX 545

using for BFS 199
using for SFS and minidisks 161

DMSCOMM (Commit) routine
committing changes 141, 246
starting CRR processing 261

DMSCPR (Data Compression Services) routine
using 454

DMSCRALI (Create Alias) routine
using 174

DMSCRLOC (Create Lock) routine
using for BFS 203
using for SFS 177

DMSCSL routine
example of 325
linking to your program 129
parameters 325

DMSCWAIT (CRR Wait) routine
ASYNC synchronization point option 245

Index 645

DMSCWAIT (CRR Wait) routine (continued)
considerations for multiuser server applications 27
CSL template file 253
function 251
making your exit routine available 254
multitasking scenario 251
when called by CMS 251
writing replacement 253

DMSDELOC (Delete Lock) routine
using for BFS 204, 205
using for SFS 178, 180

DMSERASE (Erase) routine
using for BFS 199
using for SFS or minidisks 162

DMSERP (Extract/Replace) routine
calling from a REXX program 214
examples

assembler 527
C 531
PL/I 543
REXX 210, 211, 213, 545
VS COBOL II 535
VS FORTRAN 539
VS Pascal 549

protected environments 209
using 209

DMSEXIDI (Exist - Directory) routine
using for BFS 200
using for SFS 167

DMSEXIFI (Exist - File) routine
retrieving the date of last reference 126
using for BFS 198
using for SFS or minidisks 151

DMSEXIST (Exist) routine
using for BFS 198
using for SFS or minidisks 151

DMSGETDI (Get Directory) routine
reading the record into a buffer 171
retrieving the date of last reference 126

DMSGETRS (CRR Get Recovery Server Information) routine
using 259

DMSGETSP (Get Synchronization Point Errors) routine
using 40

DMSGETWU (Get Work Unit ID) routine
ensuring data integrity 243
obtaining work unit IDs 135
using transaction tags to aid problem determination 25

DMSGRANT (Grant Authority) routine
using 173

DMSOM system MACLIB
CMS internal 307

DMSOPDIR (Open Directory) routine
using for BFS 200
using for SFS 167

DMSOPEN (Open) routine
examples for SFS

assembler 529
REXX 154, 545

using for BFS 198
using for SFS and minidisks 152

DMSPCAER (Protected Conversation Adapter Errors)
routine

using 40
DMSPOPWU (Pop Default Work Unit ID) routine

DMSPOPWU (Pop Default Work Unit ID) routine (continued)
using 135, 246

DMSPUSWU (Push Default Work Unit ID) routine
using 135

DMSQWUID (Query Work Unit ID) routine
using 135

DMSREAD (Read) routine
examples for SFS

assembler 529
reading records sequentially 158
reading specific records 159
reading variable-length records 159
REXX 545

using for BFS 199
using for SFS and minidisks 154

DMSREG (CRR Resource Adapter Registration) routine
using 257

DMSRETWU (Return Work Unit ID) routine
using 135, 246

DMSREVOK (Revoke Authority) routine
using 176

DMSROLLB (Rollback) routine
rolling back changes 246
starting CRR processing 261

DMSSETAG (Set Transaction Tag) routine
using transaction tags to aid problem determination 25

DMSSPCC (Create Data Space) routine
using 222, 226

DMSSPCI (Isolate Address Space) routine
using 228

DMSSPCP (Permit Address Space Access) routine
using 226

DMSSPCPY (Copy from Address Space) routine
using 230

DMSSPCQ (Query Address Space) routine
using 226, 229

DMSSPCR (Restore Address Space Access) routine
using 228

DMSSPCRP (Release Address Space Pages) routine
using 223

DMSSPLA (Establish Address Space Addressability) routine
using 222

DMSSSPTO (Set Synchronization Point Options) routine
example, REXX 571
using 244

DMSSTATE macro 235
DMSUNREG (CRR Resource Adapter Unregistration) routine

using 260
DMSWRITE (Write) routine

examples for SFS
REXX 545
writing records sequentially 158
writing specific records 159
writing variable-length records 159

using for BFS 199
using for SFS and minidisks 155

DMSWUERR (Work Unit Error Data Deblocker) routine
using 39

domain
communications server 472
controller 472
definition 472

DOS (Disk Operating System)
macros

646 z/VM: 7.2 CMS Application Development Guide

DOS (Disk Operating System) (continued)
macros (continued)

file I/O 113
drop

buffers 351
CSL routines 322

DROP INDEX command
DB2 Server for VM 426

DROP TABLE command
DB2 Server for VM 426

DROP VIEW command
SQL 426

DROPBUF command
dropping buffers 351

dump
files from disk to tape 117

DUMP command
debugging programs 65

DUP option
INCLUDE command 54
LOAD command 54

duplicate
excluding in DB2 Server for VM 434

Dynamic Link Libraries
building and using DLLs 87

E
EDF (Enhanced Disk Format)

description of 119
planning considerations 29
sharing disks 30

edit
MACLIB members 313

EDIT service of ISPF 379
end

command 183
communications 482
conversations 495

END DECLARE SECTION statement in SQL 427
END statement

ISPF panels 375
ensure

data integrity 241
entry point

determining 55
displaying 62
ENTRY statement 316

environment
protected, for Extract/Replace 209

environments, virtual machine
CMS 4

erase
BFS files 199
files 162
SFS directories 172

Erase (DMSERASE) routine
using for BFS 199
using for SFS or minidisks 162

error
blocks

retrieving 247
calling CPI Communications routines 494
DLCS coding 397

error (continued)
extended information

using routines 39
workunit 148, 197

handling
in ISPF 68
SQL communication area 428

I/O related to data spaces 233
messages

batch facility 366
passback support in CRR 285
reporting 483, 496
retrieving for BFS 197
retrieving for SFS 147
sending 496
sending information 483
signaling 496
source of 39
storage notification for AR-specified references 233

ESA virtual machine 5
ESA/390 architecture 5
ESA/XC architecture 5, 217
ESD (External Symbol Dictionary)

TEXT file 316
Establish Address Space Addressability (DMSSPLA) routine

using 222
event handler

data spaces 234
examine

contents of MACLIBs
using MACLIB command 308
using MACLIST command 309

contents of TXTLIBs
TXTLIB command 317

values in CPI Communications 493
example of

call to DMSGETSP by REXX exec 247
closing assembler files 529
closing REXX files 545
CMS EXEC program 336
create table in SQL 430
create view in SQL 435
creating macro libraries 307
DLCS file creation 395
DLCS file processing 397
DMSCLS routine 325
DMSGETW routine 135
Extract/Replace facility 210
FILEDEF command 47, 341
INSERT statement 76
local stack 349
message repository 408, 411
parsing facility 395
program stack 347
resource manager programs

CPI Communications 561
REXX program 333
server virtual machine 474
SYSLIN data set 60
TSAF collection 481
update program, FORTRAN 84
user programs

CPI Communications 553
XEDIT macro 339

Index 647

exchange log names, CRR
format 287
function 287
parameters 288

exec
alternate format 337
CMS EXEC 335, 340
contents of 333
definition 333
EXEC 2 335
FILEDEF command 341
GLOBAL command in 341
ISQL commands in 345
MACLIB command in 341
PROFILE EXEC 340
prototyping ISQL applications 345
REXX 333
specifying characteristics 340
TXTLIB command in 341
updating using EXECUPDT 83
XEDIT macros 339

EXEC 2
calling ISPF services 343
description of 335
differences with CMS EXEC execs 335
example program 335
prototyping interactive applications 343

EXEC option
LISTFILE command 340

EXECIO command
file I/O 113

Exist - Directory (DMSEXIDI) routine
using for BFS 200
using for SFS 167

Exist - File (DMSEXIFI) routine
retrieving the date of last reference 126
using for BFS 198
using for SFS or minidisks 151

Exist (DMSEXIST) routine
using for BFS 198
using for SFS or minidisks 151

exit
CMS

DMSCWAIT routine 251
wait routine for multitasking applications 251

DMSCWAIT (CRR Wait) routine
CSL template file 253
function 251
making your exit routine available 254
multitasking scenario 251
reason code 254
return codes 253
when called by CMS 251
writing replacement 253

expansion
of data

description 441
explicit lock

description of 177, 203
determining existence of an explicit lock 182
exclusive type 178, 204
share type 178
types of 178, 204
update type 178, 204

external object 174
external reference

resolving 52
extra backout, CRR 271
EXTRACT function

example of 210
getting system information for applications 210

Extract_Conversation_LUWID (XCECL) routine 506
Extract_Conversation_Security_User_ID (XCECSU) routine
506
Extract_Conversation_State (CMECS) routine 504
Extract_Conversation_Type (CMECT) routine 504
Extract_Conversation_Workunit_ID (XCECWU) routine 506
Extract_Local_Fully_Qualified_LU_Name (XCELFQ) routine
506
Extract_Mode_Name (CMEMN) routine 504
Extract_Partner_LU_Name (CMEPLN) routine 504
Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) routine
506
Extract_Sync_Level (CMESL) routine 504
Extract_TP_Name (XCETPN) routine 506
Extract/Replace (DMSERP) routine

calling from a REXX program 214
examples

assembler 527
C 531
PL/I 543
REXX 210, 211, 213, 545
VS COBOL II 535
VS FORTRAN 539
VS Pascal 549

protected environments 209
using 209

Extract/Replace facility
changing system information 212
converting data when using REXX 214
description of 209
protected environments 209
searching for information

using continued searches 212
using search arguments 211
using tokens 212
without using search arguments 210

F
fastpath method

calling CSL routines 326
implementing 326
using in AR mode 237

fetch protection (FPROT)
data space 222, 230

FETCH statement
DB2 Server for VM 431

FIFO (first in/first out)
description of 347
terminal entries 347
using REXX CHAROUT statement 350
using the &STACK FIFO command 350
using the REXX LINEOUT statement 350
using the REXX QUEUE statement 350

file
adding comments 77
archiving 125

648 z/VM: 7.2 CMS Application Development Guide

file (continued)
attributes

date and time of last update 123
file mode 121
file name 121
file origin pointer 122
file type 121
logical record length 122
number of data blocks 122
number of records 122
pointer levels 122
record format 122

auxiliary 79, 81
consistency when viewing 143
control 78, 81
creating using FS macros 126
creating using SFS routines 126
definition of 119
deleting records 76
directory 120
dump files from disk to tape 117
existence of 151, 198
extended attributes

controlling 142
creation date 124
creation time 124
date of last change 125
date of last reference 124
listing of 120
manipulating 143
overwrite 123
recoverability 123
time of last change 125

granting authority for SFS 173
I/O

< (Read a CMS File) stage command 113
> (Replace or Create a CMS File) stage command
113
>> (Append to or Create a CMS File) stage 113
closing SFS files 161
DOS macros 113
erasing BFS files 199
erasing SFS files 162
example using CSL routines 529, 545
EXECIO command 113
FILEBACK stage command 113
FILEFAST stage command 113
FILERAND stage command 113
FILESLOW stage command 113
FS macros 113
language statements 113
opening BFS files 198
opening SFS files 152
OS macros 113
planning considerations 33
reading SFS files 154
writing SFS files 155

identifying 44
identifying using CREATE NAMEDEF 49
identifying using FILEDEF 48
identifying using namedefs 131, 195
identifying VSAM using DLBL 49
information CMS maintains 120
INPLACE 123

file (continued)
inserting records 76
located in your virtual reader 45
located on tape 45
locking

BFS 202
SFS 176

managing
I/O routines 149
I/O routines for BFS 197
in BFS with CSL routines 197
in SFS with CSL routines 149

managing with CSL routines 149, 197
manipulating BFS files 193
manipulating shared files 129
message repository 405
nonrecoverable 123
produced by job running in batch virtual machine 363
record format attribute 122
recoverable 123
removing SFS authority 176
replacing records 77
sequence numbers in source files 74
sequencing records 77
SFS file programming interface 129
SFS file space 185, 206
shadowing 123, 143
sharing SFS files 172
spaces 185, 206
system architecture 119
tailoring services in ISPF 379
updating 73
write from disk to tape 117

file control directory
NOTINPLACE files 186

file mode
attribute 121
INPLACE 121
listing of 121
number, description 121
update-in-place 121

file name
valid characters for 121

file pool
accessing multiple 186
definition 120
multiple, accessing 186

file type
EXEC 333
LKEDIT 320
LOADLIB 320
TEXT 315
TXTLIB 315
valid characters for 121
XEDIT 339

file, BFS
manipulating using the CMS record file interface

application design considerations 194
asynchronous requests 207
authority 194
caching files 199
closing files 199
CMS programming interface characteristics 193
committing changes 196

Index 649

file, BFS (continued)
manipulating using the CMS record file interface (continued)

data block I/O 200
deleting locks 205
determining if a file exists 198
DFSMS/VM file management 194
directory ID considerations 196
erasing files 199
error information, collecting 197
file I/O 197
locking files 202
namedefs, using 195
opening files 198
programming interfaces 193
reading files 199
rolling back changes 196
unexpected conditions 196
waiting for locks 206
work units, using 196
writing files 199

FILEDEF command
defining I/O files 47
example of 47, 341
getting MACLIB members 314
identifying source files 45
options 48
specifying device types 48
using 47
using in an exec 341
using with the LKED command 59

first level system
relationship with second level system 71

fixed-length record
definition 122
ISPF/PDF requirement 330
parameter 153

Flush (CMFLUS) routine 504
fork() function, converting to spawn()

examples 615
factors to consider 618
inheritance 618, 622
overview 18
remapping of file descriptors 621

format
disks 119
file 122, 153
ISPF/PDF library requirement 330
reports 438

FORTRAN
example program 537
example program using CSL routines 539
example program using ISPF 599
files 44
interactive debugging tool 67
update program example 84
using DB2 Server for VM 425

forward recovery
capability 301

FROM clause of DB2 Server for VM 431
FS macro

creating files 126
file I/O 113
manipulating files 126

FTCLOSE file tailoring service in ISPF 379

FTERASE file tailoring service in ISPF 379
FTINCL file tailoring service in ISPF 379
FTOPEN file tailoring service in ISPF 379
function

flags
CRR registration 260
sync point 260

pools 378
FUNCTION TRACES option

ISPF testing 69
FUNCTIONS option

ISPF testing 68

G
gateway

description of 475
global 475
private

definition 475
description 476

system 476
types 475

GCS (Group Control System)
overview 463

GDS (General Data Stream)
compare states

format 289
function 289
parameters 290

exchange log names
format 287
function 287
parameters 288

GEN function
MACLIB command 307
TXTLIB command 317

GENCMD command
checking DLCS syntax descriptions 385
converting your DLCS file 385

GENMOD command
creating a MODULE file 56
creating nonrelocatable modules 56
creating relocatable modules 56
creating transient modules 57
generating modules 56
passing parameters 56
saving history 58
specifying XC mode 57

GENMSG command
message repository files 409

get
access-security with CPI Communications 506
data 495
data from a program 482
data from SQL table 431
date of last file reference 126
file attributes 120
MACLIB members 314, 315
number of program stack records 351
SQL table data, FETCH statement 431
system information for applications 210
TXTLIB members 319
work units 135

650 z/VM: 7.2 CMS Application Development Guide

Get Directory (DMSGETDI) routine
reading the record into a buffer 171
retrieving the date of last reference 126

Get Synchronization Point Errors (DMSGETSP) routine
using 40

Get Work Unit ID (DMSGETWU) routine
ensuring data integrity 243
obtaining work unit IDs 135
using transaction tags to aid problem determination 25

GLOBAL command
using in an exec 341

global resource
definition 474, 475
description of 472
same as local 472

GOTO command
DB2 Server for VM 428

grant
authority for files and directories 173
views to tables 426

Grant Authority (DMSGRANT) routine
using 173

GRANT command
DB2 Server for VM 426

H
half-duplex communication

protocols 479
HCPGPI system MACLIB 307
HCPPSI system MACLIB 307
HELP file

creating your own 404, 415
HELP panel

ISPF 370
high-level language

connecting to DMSCSL 129
supported in z/VM 10
using CPI Communications routines 493
using CSL routines 129

HIST option
INCLUDE command 54
LOAD command 54

history
saving 54
saving for module 58

HNDEXT SET, defining X'2603' handler 234
host variable

SQL 427

I
I/O (Input/Output)

console 114
defining files for 47
directory

BFS in CMS 200
SFS 165

errors related to data spaces 233
example using CSL routines 529, 545
file

BFS in CMS 197
SFS 149

I/O (Input/Output) (continued)
FS macros 113
general tape I/O services 117
identifying using CREATE NAMEDEF 49
identifying using FILEDEF 48
list of 113
planning considerations 33
planning programs 33
tape 117
unit record 116
using execs to identify 341
VSAM files 49

identify
ISPF/PDF libraries 328
ISPF/PDF library members 329
MACLIBs using an exec 341
partners 483
system architecture 23
TXTLIBs using an exec 341

Identify_Resource_Manager (XCIDRM) routine 507
implicit lock

description of 177, 203
determining existence of 182
exclusive 177, 203
share 177, 203
types of 177, 203

IN predicate of SQL 433
INCLUDE command

definition 49
resolving external references 52

INCLUDE SQLCA command
DB2 Server for VM 428

indicator variable 427
inheritance structure for the spawn (BPX1SPN) callable

service
using to alter attributes in the child process 622

INIT statement
ISPF panels 375

Initialize_Conversation (CMINIT) routine 505
INPLACE files

description of 123
synchronization for 187

INPLACE overwrite attribute 143
input

table libraries ISPTLIB 370
to the CMS batch facility 357, 363

INSERT command
DB2 Server for VM 426, 434

INSERT statement
example 76

integrity
data 24
ensuring in DB2 Server for VM 429

interactive
applications

prototyping 343
debugging

COBOL applications 67
tools 66
using ISQL 70
VS FORTRAN applications 67
VS Pascal 67

intermediate communications server 470
intermediate server

Index 651

intermediate server (continued)
communications 485
description 479
TP-model applications 501
writing 488

interrupt handling
external

X'2603' 234
IS NULL predicate of SQL 434
ISFC (Inter-System Facility for

Communications)
communications 472

isolate
address space 228
detect 228

Isolate Address Space (DMSSPCI) routine
using 228

ISPEXEC command
display panels in ISPF 370
example of 344
format of 343

ISPF (Interactive System Productivity Facility)
and REXX 369
application profile pools 378
BROWSE service 379
calling 372
calling using ISPLNK 370
console I/O 115
CONTROL service 379
dialog variables 376
dialogs, organizing 373
EDIT service 379
error handling 68
example using FORTRAN 599
file tailoring services 379
file tailoring skeletons 369
function pools 378
functions 369
HELP panels 370
ISPEXEC 343
libraries

concatenating 330
ddnames 372
definition 305
file record format and length 330
forms of 329
identifying 328
location of 330
member statistics 331
message libraries ISPMLIB 370
panel libraries ISPPLIB 370
specifications 329
specifying members 329
table input libraries ISPTLIB 370
using 328

LOG service 379
message definition 376
message library, building 372
messages 369, 370
panel definition statements 375
panel definitions 374
panel library, building 372
panel services 343, 377
panels 369, 370

ISPF (Interactive System Productivity Facility) (continued)
prototyping applications 343
read password 371
requirements using 370
sample panel 375
SELECT service 373
shared pools 378
storing in libraries

message definitions 370
panel definitions 370
skeletons 370

table services 379
tables 369
testing

breakpoint option 69
dialog test option 67
function traces option 69
functions option 68
log option 68
panel option 68
tables option 68
traces option 69
variable traces option 69
variables option 68

user-defined libraries
file tailoring output libraries ISPFILE 371
profile libraries ISPPROF 371
skeleton libraries ISPSLIB 371
table output libraries ISPTABL 371

using 369
variable pools 377
variable services 343, 377, 378

ISPF/PDF (Interactive System Productivity Facility/Program
Development Facility)

developing dialogs 370
ISPFILE library

file tailoring output libraries 371
ISPLLIB ddname

when using LOADLIBs 372
ISPLNK ISPF service interface routine

call ISPF services 370
ISPMLIB library

message libraries 370
ISPPLIB library

panel libraries ISPPLIB 370
ISPPROF library

profile libraries ISPPROF 371
ISPSLIB library

ISPSLIB library 371
ISPSTART

calling ISPF 372
ISPTABL library

table output libraries 371
ISPTLIB library

table input libraries 370
ISPXLIB ddname

when using TXTLIBs 372
ISQL (Interactive Structured Query Language)

example of 345
overview description 438
using 70, 71
using with execs 345

IUCV (Inter-User Communications Vehicle) 459

652 z/VM: 7.2 CMS Application Development Guide

J
JOB file type

identifying spool files 363

K
KEEP attribute

data space 225

L
language

I/O statements 113
planning considerations for 24
supported licensed programs 10
translation example 396

last change date attribute 125
last change time attribute 125
lasting lock 178, 204
LDT record

TEXT file 316
LIBE option

INCLUDE command 54
LOAD command 54
on the LKED command 60

library
CMS 305
creating 305
CSL 320
definition 305
file tailoring output ISPFILE 371
ISPF 370
ISPF/PDF 328
listing of 305
LOADLIBs

compressing 320
creating 320
merging 320

MACLIBs
adding members 310
adding new definitions 311
compressing 312
creating 307
deleting members 311, 318
displaying members 313
editing members 313
examining the contents 308
extracting members 314
printing members 313
replacing members 311

messages ISPPLIB 370
panels ISPPLIB 370
profile ISPPROF 371
searching 330
skeleton ISPSLIB 371
table input ISPTLIB 370
table output ISPTABL 371
TXTLIBs

adding members 318
creating 317
creating members 318
displaying members 319

library (continued)
TXTLIBs (continued)

examining the contents 317
extracting members 319
printing members 319
replacing members 318

updating 305
using 305

LIFO (last in/first out)
description of 347
using REXX CHAROUT statement 350
using the &STACK LIFO command 350
using the REXX LINEOUT statement 350
using the REXX PUSH statement 350

LIKE predicate of SQL 434
LINERD macro

console I/O 115
LINEWRT macro

console I/O 115
link-editing

description of 58
example of 60

linkage editor
control statements 316
creating an executable program 58
creating LKEDIT files 59
creating LOADLIB files 59

LIOCS (logical I/O control statements) 47
LISTFILE command

creating a CMS EXEC 340
EXEC option 340
placing its output into EXEC file 340

LKED command
creating LOADLIBs 320

load
creating nonrelocatable modules 56
creating relocatable modules 56
CSL routines

RTNLOAD command 322
files from disk to tape 117
MODULE files 58
programs using an exec 341
saved segments 420
TEXT files

determining program entry points 55
determining where files get loaded 49
LOAD command 49
resolving external references 52

transient modules 57
VMLIB 322

LOAD command
definition 49
determining where files get loaded 49

load map
producing 49

loader control statement
function 54

LOADLIB file type
creation 59

LOADLIB library
compressing 320
creating 320
definition 305, 319
displaying members 320

Index 653

LOADLIB library (continued)
ISPLLIB ddname 372
manipulating 320
manipulating LOADLIBs 320
merging 320

local resource
accessing 472
description of 472
manager programs 485
same as global 472

local stack
example of 349

LOCALID tag 190
lock

characteristics of 177, 203
check-out 178, 204
collisions 187, 207
deadlocks 181, 206
deleting 180, 205
duration of

definition 177, 203
lasting 178, 204
session 178, 204

explicit 177, 203
files and directories

canceling a command 183
description of 177, 203
determining existence of an explicit lock 182
explicit 177, 203
implicit 177, 203
lock duration 177, 203
lock type 177, 203
SFS routines 176

implicit 171, 177, 203
relationships 179, 204
type 177, 203
waiting for 180, 206

log
data

CRR participation 256
file 77

log option in ISPF testing 68
LOG service of ISPF 379
logical saved segment

advantages of using 419
assigning 422
content handling 421
contents of

application language information 421
CSLs 421
execs 421
MODULE files 421
TEXT files 421
user object load routines 421

description of 419
releasing reserved storage for 421

logical unit
definition 467
gateway 475

logical unit of work
in CRR 241
in SFS 133
in SQL 429
transactions 241

LOWCASE option
FILEDEF command 48

LRECL (logical record length)
attribute 122

LU 6.2
interface to 498
protocol 467

LU name
communications directory entry 484
locally 484
locally known 488
qualifier 484
target 484

LUWID (logical unit of work ID) 242, 248

M
maclib (macro library)

adding members 310
compressing MACLIBs 312
contents of 306
creating 307
definition 305
deleting members 311
displaying members 313
examining the contents 308
extracting members 314
identifying using an exec 341
printing members 313
replacing members 311

MACLIB command
adding members to MACLIBs 310
compressing MACLIBs 312
creating MACLIBs using the GEN function 307
deleting members to MACLIBs 312
examining contents of MACLIBs 308
replacing members to MACLIBs 311
using in an exec 341

MACLIST command
editing members to MACLIBs 313
examining contents of MACLIBs 309

macro
CMS

ADAPTRC 257
updating 83

MACRO file type
macro libraries 306

MAKEBUF command
making buffers 351

manage
data space storage 223
files

I/O routines 149
I/O routines for BFS 197
in BFS with CSL routines 197
in SFS with CSL routines 149

work units 250
MAP file type

creating 309
MAP function

MACLIB command 308
TXTLIB command 317

mapped conversation
sending data 482

654 z/VM: 7.2 CMS Application Development Guide

maximum
resources CRR coordinates 242

member
deleting 318
names

creating 308, 316
searching 319

replacing 318
saved segments 419

MEMBER option
FILEDEF command 48
XEDIT command 311

merge
LOADLIB 320

message
accessing from a repository 114
creating your own 414
definitions using ISPF

description of 376
libraries

ISPF 370
repositories

accessing messages 410
advantages of 405
availability to others 415
building your own 414
checking for incorrect entries 409
comment records 406
compiling 409
control line 406
creating 405
creating HELP files 415
creating your own messages 414
dictionary substitution 413
example of 408
files availability 410
GENMSG command 409
loading into logical saved segment 415
message record 406
substitution example 411
substitution rules 411
using 405

minidisk
files 486
system 29

minidisk system 30
mode name 468
MODEL statement

ISPF panels 375
MODMAP command

debugging programs 66
module

calling in a work unit 138
creating 56
creating nonrelocatable 56
creating relocatable 56
loading 58
restricting 57
running in the transient program area 57
saving history 58
transient 57

MODULE file
generating 56
loading 58

MODULE file (continued)
specify XC mode 57

MONITOR command
debugging programs 65

MOVEFILE command
MACLIBs 314

MQ Series Applications 603
multiple

file pools, accessing 186
system communications 462
updates

to files 77
using auxiliary control file 79, 81
using control file 78, 81
using CTL option of XEDIT 81

user
DB2 Server for VM 427

work units 136, 196
multitask

applications 523
applications writing wait routine 251
dispatcher exit CRR 263

multitasking
detecting completion of asynchronous SFS requests 188

multiuser server application 27
MVS (Multiple Virtual Storage)

OSMACRO system MACLIB 307
MVS/ESA CALL macro 236
MVS/XA (Multiple Virtual Storage/Extended Architecture)

linkage editor 58
MVSXA system MACLIB 307
SETSSI card 317

MVSXA system MACLIB
simulated versions of OS/MVS macros 307

N
NAME option

on the LKED command 60
NAME statement

creating directory entries 316
namedef

creating 132
creating for BFS 195
deleting 132
deleting for BFS 195
example, REXX 545
using 131
using for BFS object 195

NAMES file
for communications directory 484
for private servers 486

NCHIST option
INCLUDE command 54
LOAD command 54

negotiation 470
NetView

supporting your application 29
NOCACHE parameter

opening BFS files 199
opening SFS and minidisk files 153

NOCOVER state
description of 142

node

Index 655

node (continued)
physical processors 467

nonrelocatable modules
creating 56, 315

NOPRINT option
LKED command 60

NOSEQ8 option 74
NOSPROF parameter

IPL command 357
NOTERM option

LKED command 60
NOTINPLACE files

description of 123
synchronization for 186

NOTINPLACE overwrite attribute 143
nucleus extensions

displaying 63
number of

data blocks attribute 122
program stack records 351
records in a file 122

O
object module

definition 49
loading 49

online
process planning 27

open
cursor 431
directories

BFS 200
implicit lock considerations 171
reflecting changes to 171
SFS 167

files
BFS 198
SFS 152
SFS example 154

Open (DMSOPEN) routine
examples for SFS

assembler 529
REXX 154, 545

using for BFS 198
using for SFS and minidisks 152

Open Directory (DMSOPDIR) routine
using for BFS 200
using for SFS 167

OPEN statement
DB2 Server for VM 431

OpenExtensions
applications

compiling and building 14
running 17

byte file system 12
MAXCONN considerations 19
overview 11
POSIX processes 18
POSIX terminal interactions 19
setting up 12

OpenExtensions application
compiling and building 14
running 17

operand
address space 235
defining 388

option
defining 389
synchronization point 244

order
batch facility jobs 366

ORDER BY clause of DB2 Server for VM 431
ORIGIN option

LOAD command 50
OS macro

file I/O 113
OS/MVS and DOS/VSE group

description 7
OS/QSAM files and CRR 141
OSMACRO system MACLIB

run programs using MVS interfaces 307
OSVSAM system MACLIB

OSVSAM 307
output

from CMS batch facility 363
libraries ISPTABL 371
records, sequencing 77
tailoring libraries ISPFILE 371

override
defaults 493

overwrite attribute
changing 143
creating 143
description of 123
INPLACE state 143
list of CSL routines

DMSCATTR routine 143
DMSCRFIL routine 143
DMSEXIST routine 143
DMSGETDI routine 143
DMSGETDX routine 143
DMSOPEN routine 144
DMSPOPA routine 144
DMSPUSHA routine 144

NOTINPLACE state 143
querying 143
states 143

P
package

applications 28
page-fault notification for AR-specified references 234
panel

an ISPF dialog element 369
ATTR statement 375
BODY statement 375
definitions

attribute section 374
body section 374
end section 375
HELP panels in ISPF 370
initialization section 374
ISPF 370
model section 374
processing section 374
reinitialization section 374

656 z/VM: 7.2 CMS Application Development Guide

panel (continued)
definitions (continued)

sample 375
statements 375

displaying in ISPF 370
END statement 375
formatter in DMS/CMS

description of 379
INIT statement 375
interfaces 33
libraries 372
libraries ISPPLIB 370
manager in DMS/CMS

description of 380
MODEL statement 375
PROC statement 375
REINIT statement 375
sample 375
services in ISPF 377

PANEL option
ISPF testing 68
ISPSTART command 372

parallel sessions 468
parsing facility

advantages of 383
calling

PARSECMD command 385
PARSECMD macro 385

calling from assembler program 397, 399
CMS commands, creating your own 403
command definitions 386
command syntax definitions 384
DBCS 394
defining command names 386
defining keywords 393
defining modifier 388
defining operands 388
defining options 389
defining routines 393
defining synonyms 387
description of 383
DLCS file, coding 386
DLCS statements

:* 393
:CMD 386
:KW.n 388
:KWD 393
:OPR 388
:OPT 389
:RTN 393
:SYN 387

example of 395
example with language translation 396
fcndef expression 390
kwdef expression 390
situations not flagged 394
steps for using

calling parsing facility 385
check for DLCS coding errors 385
check for DLCS coding errors, example of 397
converting your DLCS file 385
converting your DLCS file, example of 397
creating a DLCS file 384
creating a DLCS file, example of 395

parsing facility (continued)
steps for using (continued)

setting command name synonyms and translations
385
setting command name synonyms and translations,
example of 397

system functions 390
user functions 392
writing comments 393

partner
communications 474

Pascal
example program using CSL routines 549
interactive debugging tool 67

pass
data using the program stack 347

password
access security 485

performance
data space considerations 223
improving with data spaces 27
tips for SFS 184

PERM option
FILEDEF command 48, 371

permit
access to address spaces 227
address space access 226
authority for files and directories 173
table creation in SQL 430

Permit Address Space Access (DMSSPCP) routine
using 226

PGM option
ISPSTART command 372

phone directory 485
physical saved segment

assigning 422
description of 419
releasing reserved storage for 421

PIOCS (physical I/O control statements) 47
PIPE command

console I/O 115
directory I/O 114
file I/O 113
I/O

unit record device drivers 116
stack I/O 116
tape I/O 117
using in applications 353

Pipelines
console I/O 115
directory I/O 114
file I/O 113
I/O

unit record device drivers 116
stack I/O 116
tape I/O 117
using in applications 353

PL/I
example programs

using CSL routines 543
using DB2 Server for VM 425

plan
programs

application processing considerations 29

Index 657

plan (continued)
programs (continued)

CMS environment considerations 23
communicating 32
CRR 24
data file requirements 29
data integrity 24
data recovery 24
debugging 37
determining system resources 24
distributed processing 34
I/O 33
identifying the system architecture 23
language 24
objectives 23
packaging your application 28
portability 28
prerequisites 23
security considerations 35
storage requirements 24
storing data 29
storing your application 28
support person 29
tailoring the system 28
types of processing 27
using VM data spaces 27

plotter 486
pointer level

attribute 122
pool

application profile 378
function 378
shared 378

Pop Default Work Unit ID (DMSPOPWU) routine
using 135, 246

portable application
planning for 28

position
tape at a specified point 117

POSIX
processes 18
terminal interactions 19

postcoordination exit processing, CRR
abnormal termination action call 280
backout action call 279
commit action call 278
overview 278
state check action call 279

precoordination exit processing, CRR
backout action call 268
commit action call 268
overview 267

preferred auxiliary files 81
preferred file types

in CMS search order 9
list of 9

preferred interface group, CMS
description 6
routines 7

preferred level updating 81
prepare

jobs for CMS batch facility 361
Prepare_To_Receive (CMPTR) routine 505
preprocess

preprocess (continued)
SQL applications 435

print
linkage editor output 60
MACLIB members 313
PRINT command 313
TXTLIB members 319

PRINT command
MACLIB members 313
print MACLIB members 313
printing TXTLIB members 319

PRINTL macro
unit record I/O
116

private resource
definition 475
description of 473

private resource manager program
used in CPI Communications scenario 509

privileged instruction 486
PROC statement

ISPF panels 375
process

batch 28
disconnected virtual machine 28
planning, online 27
tape labels 117

profile
execs 340
libraries ISPPROF 371

PROGMAP command
debugging programs 66

program
CMS 457
connections 480
CPI Communications

resource manager program, example of 561
synchronizing multiple updates, example of 569
user program, example of 553

security 35, 36
signaling a user event 515
stack

&ERROR statement 351
&READ command 351
&READ command in CMS EXEC 351
&STACK FIFO command 350
&STACK LIFO command 350
buffers 347
CHARIN statement 351
CHAROUT statement 350
CMSSTACK 116
DESBUF 116
description of 347
DROPBUF 116
DROPBUF command 351
example of 347
getting number of records in 351
LINEIN statement 351
LINEOUT statement 350
LINERD 116
MAKEBUF 116
MAKEBUF command 351
PULL command 350
PUSH command 350

658 z/VM: 7.2 CMS Application Development Guide

program (continued)
stack (continued)

QUEUE command 350
QUEUED() function 351
reading data from 350
SENTRIES 115
SENTRIES command 351
StackBufferCreate 116
StackBufferDelete 116
StackQuery 116
StackRead 116
StackWrite 116
used globally 347
using 351

updating 73
using the VMCPIC event 523

program life in storage
using the CMSCALL macro 52
using the GENMOD command 52
using the LOAD and INCLUDE commands 51
using the LOADMOD command 52
using the NUCXLOAD command 52
using the OS/MVS LOAD macro 52

Programmable Operator Facility
supporting your application 29

programming environment, CMS 3
programming interface

characteristics for BFS 193
characteristics for minidisk 129
characteristics for SFS 129
compatibility group 7
description of 6
for BFS files 193
for SFS files 129
OS/MVS and DOS/VSE group 7
preferred interface group 6

programming interfaces 626
programming language binding files 322
programming scenario

CPI Communications
request for a global resource 507
request for a private resource 509
signaling a user event 515
synchronizing multiple updates 511

protect
data spaces

shared within a virtual machine 231
shared within other virtual machines 231

protected conversation
coordination of work 248
required to use 302
resource manager not directly maintaining 301
using in CRR 301

Protected Conversation Adapter Errors (DMSPCAER)
routine

using 40
protected environments

Extract/Replace 209
protected resource

definition of 24
protocol

half-duplex 479
LU 6.2 467

prototype

prototype (continued)
algorithms 342
interactive applications 343
ISQL applications 345
using SQL 70

pseudonym 493
PULL command

program stack 350
punch

getting MACLIB members 315
getting TXTLIB members 319

PUNCH command
extracting TXTLIB members 319
getting MACLIB members 315
punching jobs to batch virtual machine 359

PUNCHC macro
unit record I/O
116

purge
batch jobs 366

PUSH command
program stack 350

Push Default Work Unit ID (DMSPUSWU) routine
using 135

Q
QMF (Query Management Facility)

definition 438
Query Address Space (DMSSPCQ) routine

using 226, 229
QUERY CPTRACE command

debugging programs 65
QUERY CSLLIB command

displaying CSL names 322
QUERY LIBRARY command

displaying names of library files 322
QUERY RECORDING command

debugging programs 65
QUERY SEGMENT command

saved segment information 422
QUERY TRANSLATE command

system synonyms 385
QUERY TRSAVE command

debugging programs 65
QUERY TRSOURCE command

debugging programs 65
Query Work Unit ID (DMSQWUID) routine

using 135
QUEUE command

program stack 350
QUEUED() function

number of program stack records 351

R
RCARD macro

unit record I/O
116

RDTAPE macro
tape I/O 117

read
BFS directory using CMS record file interface 202

Index 659

read (continued)
BFS file using CMS record file interface 199
block from a tape drive 117
information from a virtual reader 116
lines from the console 115
program stack data 350
SFS directory 170
SFS file

overview 154
sequentially 158
specific records 159
specific records using DMSPOINT 160
variable-length records 159

Read (DMSREAD) routine
examples for SFS

assembler 529
reading records sequentially 158
reading specific records 159
reading variable-length records 159
REXX 545

using for BFS 199
using for SFS and minidisks 154

read password
ISPF 371

reason code
providing error information 148, 197

Receive (CMRCV) routine 505
RECEIVE state 482
record format

description of 122
F-format 122
messages 406
V-format 122

RECORDING command
debugging programs 65

recover
CMS-provided resources 224
data 24
file changes 146

RECOVER state
description of 142

recoverability attribute
changing 143
creating 143
description of 123
list of CSL routines

DMSCATTR routine 143
DMSCRFIL routine 143
DMSEXIST routine 143
DMSGETDI routine 143
DMSGETDX routine 143
DMSOPEN routine 144
DMSPOPA routine 144
DMSPUSHA routine 144

NORECOVER state 142
querying 143
RECOVER state 142
states 142

recovery token
used in CRR 291

refresh
data spaces 228

register
alternate format exec 338

REINIT statement
ISPF panels 375

reject
connections 480

release
address space pages 223
DB2 Server for VMconnection 429
reserved storage 421
storage 223

Release Address Space Pages (DMSSPCRP) routine
using 223

relocatable modules
creating 56

relocation attributes
displaying 62

reorder
batch facility jobs 366

replace
example of 213
members 311
records 77
system information 214
TXTLIB members 318
XCWOE 523

REPLACE statement
example of 77

request
confirmation 496
send data 496
to send data 483

Request_To_Send (CMRTS) routine 505
requester virtual machine 459, 475
requestid parameter 187
reserving space for saved segments 420
RESET option

INCLUDE command 54
LOAD command 54

reset, virtual machine data space considerations 224
resolve

external references 52
resource

accessing multiple 26
description 472
global 472
global and local with same name 472
interrelationships 474
introduction 459
local 472
name 472
participation in CRR, determining 25
private 472
system 472
transaction program name 472

resource adapter
exit routine processing

backout required 283
coordination 269
end of work unit 280
postcoordination 278
precoordination 267

interface to resource manager
using APPC/VM assembler programming interface
258

660 z/VM: 7.2 CMS Application Development Guide

resource adapter (continued)
interface to resource manager (continued)

using CPI Communications (SAA communications
interface) 258

interface with SPM 256
registering for CRR participation

changing registration values 260
getting information about CRR recovery server 259
getting information about resource manager 258
overview 257
setting registration flags 259
unregistering the resource 260

requirements for CRR participation 256
response codes, exit processing

backout-required backout 284
backout-required deallocate abend 285
backout-required resource failure 284
coordination backout 275
coordination committed 273
coordination committed with new LUWID 273
coordination deallocate abend 277
coordination initiator OK backout 278
coordination new LUWID 274
coordination OK backout 276
coordination prepare 272
coordination prepare to resynchronize 277
coordination request commit 273
coordination second phase backout 275
end-of-work-unit CMS command abend 282
end-of-work-unit end of CMS subset 283
end-of-work-unit end of command 282
end-of-work-unit purge work unit 281
end-of-work-unit return work unit 281
postcoordination abnormal termination 280
postcoordination backout 279
postcoordination commit 279
postcoordination state check 280
precoordination backout 268
precoordination commit 268

RESOURCE authority
DB2 Server for VM table creation authority 430

resource manager
CRR participation

error passback support 285
interface with CRR recovery server 286
resynchronization facilities 286

interface to resource adapter
using APPC/VM assembler programming interface
258
using CPI Communications (SAA communications
interface) 258

programs 497
resource manager program

CPI Communications
example 561
request for a global resource 507
request for a private resource 509

definition 459
description 474

resource recovery interface
committing changes 141
rolling back changes 141
SRRBACK routine 141, 246
SRRCMIT routine 141, 246

resource recovery interface (continued)
support for

data integrity facility 502
restart

batch jobs 366
restart recovery 186, 207
restore

address space access 228
Restore Address Space Access (DMSSPCR) routine

using 228
restrict

modules 57
restriction on

commands used in CMS batch facility 362
table views 435

resynchronization
CRR function 242
identifying resources involved 247
initialization CRR

data flow 292
exchange log names reply actions 294
exchange log names request actions 293
exchanging log names 287
function 292

recovery CRR
compare states actions 298
comparing states 289
data flow 297
exchange log names reply actions 300
exchange log names request actions 297
function 296

RETRIEVE command
debugging programs 65

return
work unit ID 135
work units 246

return codes
CSL routines 130
providing error information 147, 197

Return Work Unit ID (DMSRETWU) routine
using 135, 246

Revoke Authority (DMSREVOK) routine
using 176

REXX Sockets API 40
REXX/VM (REstructured eXtended eXecutor/Virtual

Machine)
definition 333
entering commands 334
example program 333
examples

calling DMSGETSP routine 247
CPI Communications 569
CRR 569
sample CPI Communications resource manager
561
sample CPI Communications user program 553
using CSL Extract/Replace routine 545
using namedefs 545

FILEDEF command 341
prototyping 342
prototyping ISQL applications 345

RMODE (Residency MODE)
for MODULE files 57
specifying 57

Index 661

RMODE option
INCLUDE command 54
LOAD command 50, 54
on compiler commands 46
specifying on GENMOD command 57

RMS Tape Library Dataserver interface routines 117
rollback

changes
in applications 141, 146
issuing DMSBACK 141
issuing DMSROLLB 147
issuing SRRBACK 141, 147
methods to 141
OVERWRITE attribute 142
RECOVERABILITY attribute 142
to nonrecoverable files 147
to recoverable files 146
with multiple work units 136

issuing DMSROLLB 246
issuing SRRBACK 246

Rollback (DMSROLLB) routine
rolling back changes 246
starting CRR processing 261

ROLLBACK WORK command
DB2 Server for VM 429

routines
CMACCP (Accept_Conversation) 504
CMALLC (Allocate) 504
CMCFM (Confirm) 504
CMCFMD (Confirmed) 504
CMDEAL (Deallocate) 504
CMECS (Extract_Conversation_State) 504
CMECT (Extract_Conversation_Type) 504
CMEMN (Extract_Mode_Name) 504
CMEPLN (Extract_Partner_LU_Name) 504
CMESL (Extract_Sync_Level) 504
CMFLUS (Flush) 504
CMINIT (Initialize_Conversation) 505
CMPTR (Prepare_To_Receive) 505
CMRCV (Receive) 505
CMRTS (Request_To_Send) 505
CMSCT (Set_Conversation_Type) 505
CMSDT (Set_Deallocate_Type) 505
CMSED (Set_Error_Direction) 505
CMSEND (Send_Data) 505
CMSERR (Send_Error) 505
CMSF (Set_Fill) 505
CMSLD (Set_Log_Data) 505
CMSMN (Set_Mode_Name) 505
CMSPLN (Set_Partner_LU_Name) 505
CMSPTR (Set_Prepare_To_Receive_Type) 505
CMSRC (Set_Return_Control) 506
CMSRT (Set_Receive_Type) 506
CMSSL (Set_Sync_Level) 506
CMSST (Set_Send_Type) 506
CMSTPN (Set_TP_Name) 506
CMTRTS (Test_Request_To_Send_Received) 506
XCECL (Extract_Conversation_LUWID) 506
XCECSU (Extract_Conversation_Security_User_ID) 506
XCECWU (Extract_Conversation_Workunit_ID) 506
XCELFQ (Extract_Local_Fully_Qualified_LU_Name) 506
XCERFQ (Extract_Remote_Fully_Qualified_LU_Name)
506
XCETPN (Extract_TP_Name) 506

routines (continued)
XCIDRM (Identify_Resource_Manager) 507
XCSCSP (Set_Conversation_Security_Password) 507
XCSCST (Set_Conversation_Security_Type) 507
XCSCSU (Set_Conversation_Security_User_ID) 507
XCSCUI (Set_Client_Security_User_ID) 507
XCSUE (Signal_User_Event) 507
XCTRTM (Terminal_Resource_Manager) 507
XCWOE (Wait_On_Event) 507

RPG
using DB2 Server for VM 425

RTNDROP command
dropping a CSL routine 322

RTNLOAD command
loading a CSL routine 321, 322
loading VMLIB 322

RTNSTATE command
checking that CSL routine is loaded 322

run
GENMOD command 56
how to 55
programs using MVS interfaces 307
programs with execs 341
saving history for modules 58
specifying XC mode 57
START command 55
TEXT files 55
using the LKED and OSRUN commands 58

S
SAA (Systems Application Architecture)

CPI Communications routine summary 504
manipulating work units 250
overview 493
relationship to CPI Communications 459
resource recovery routines

committing changes 141
listing of 261
rolling back changes 141
SRRBACK routine 141, 246
SRRCMIT routine 141, 246

REXX 494
SAC (Set Address Space Control) instruction 234
same system, communications within 481
sample programs

CPI Communications
resource manager 561
signaling a user event 515
user 553
using the VMCPIC event 523

save
history information modules 58

saved segment
advantages of using 419
assigning logical to physical 422
description of 419
displaying information about 422
loading 420
locating 420
releasing reserved storage 421
SEGMENT command 419
using 419

SCIF (Single Console Image Facility)

662 z/VM: 7.2 CMS Application Development Guide

SCIF (Single Console Image Facility) (continued)
supporting your application 29

screen
I/O

3270BFRA stage command 115
3270ENC stage command 115
APLDECODE stage command 115
APLENCODE stage command 115
BUILDSCR stage command 115
CONSOLE macro 115
CONSOLE stage command 115
DMS/CMS 115
FULLSCREEN stage command 115
FULLSCRQ stage command 115
FULLSCRS stage command 115
ISPF 115
LINERD macro 115
LINEWRT macro 115
planning considerations 34
XMITMSG command 114

search
entry point 319
Extract/Replace facility 210
for CMS commands 8
for DLCS syntax errors 385
for routines 323
for saved segments 420
libraries 306, 321
member names 319
specify sequence 330
using CMS preferred file types 9
VMLIB and VMMTLIB 321

second level system
relationship with first level system 71
testing 71

security
conversation 469
data 35
field access 469
planning considerations for 35
program 35
session 469
system 35

SECURITY(NONE) 470
SECURITY(PGM) 470
SECURITY(SAME) 470
segment

page boundary limit for spaces 419
releasing storage 421
saved 419
spaces 419

SEGMENT command
assigning logical to physical saved segments 422
loading saved segments 420
locating saved segments 420
purging saved segments 421
releasing storage 421
reserving space for saved segments 420
using 419

SELECT command
DB2 Server for VM 426, 431

SELECT service 373, 377
send

APPC data 482

send (continued)
data 482, 483
error information 483
errors 496
request to 496

SEND state 482
Send_Data (CMSEND) routine 505
Send_Error (CMSERR) routine 505
SENTRIES command

number of entries in program stack 351
sequence

SEQUENCE statement 77
using the XEDIT UPDATE and NOSEQ8 option 74
using XEDIT SERIAL subcommand 74

SEQUENCE statement
example of 77

server
applications using data spaces 228
applications, multiuser 27
autologging private 487
communications,in a domain 472
data spaces 232
description 479
examples of 459, 474
intermediate 479, 488
virtual machine 459, 474

service pool
virtual machines 501

session
limit 468
security 469
SNA 467

session instance ID
used in CRR 291

session lock 178, 204
SET 370ACCOM command 5
Set Address Space Control (SAC) instruction 234
SET AUTOREAD command 487
SET CMS370AC 5
SET CPTRACE command

debugging programs 65
SET FILEWAIT command

lock collisions 187, 207
waiting for a object to unlock 181, 206

SET FULLSCREEN command 487
SET GEN370 5
SET LANGUAGE command

message repository files 410
SET LOADAREA command

determining where files get loaded 49
SET MODE command

debugging programs 65
SET RECORD command

debugging programs 65
SET SERVER command 487
Set Synchronization Point Options (DMSSSPTO) routine

example, REXX 571
using 244

Set Transaction Tag (DMSSETAG) routine
using transaction tags to aid problem determination 25

SET TRANSLATE command
setting user synonyms and translations 385

Set_Client_Security_User_ID (XCSCUI) routine 507
Set_Conversation_Security_Password (XCSCSP) routine 507

Index 663

Set_Conversation_Security_Type (XCSCST) routine 507
Set_Conversation_Security_User_ID (XCSCSU) routine 507
Set_Conversation_Type (CMSCT) routine 505
Set_Deallocate_Type (CMSDT) routine 505
Set_Error_Direction (CMSED) routine 505
Set_Fill (CMSF) routine 505
Set_Log_Data (CMSLD) routine 505
Set_Mode_Name (CMSMN) routine 505
Set_Partner_LU_Name (CMSPLN) routine 505
Set_Prepare_To_Receive_Type (CMSPTR) routine 505
Set_Receive_Type (CMSRT) routine 506
Set_Return_Control (CMSRC) routine 506
Set_Send_Type (CMSST) routine 506
Set_Sync_Level (CMSSL) routine 506
Set_TP_Name (CMSTPN) routine 506
SETSSI card

TXTLIB command 317
SFS (Shared File System)

abnormal end recovery 148
accessing multiple file pools 186
atomic requests 139
batch considerations 358
batch facility 358
caching files 153
closing files 161
closing SFS directories 171
committing changes 141, 144
comparing to EDF 119
creating aliases 174
creating directories 171
description of 119
design considerations 131
directory I/O 165
erasing directories 172
erasing files 162
figure 30
file attributes 120
file pools, accessing 186
file sharing 172
file space, using 185
file space, using for BFS 206
file system architecture 119
granting authority for files and directories 173
handling unexpected conditions 147
locking files and directories 176
maintaining the date of last reference 125
managing files with CSL routines 149
managing work units 134
manipulating directories 129
manipulating files 129
namedefs, using 131
opening SFS directories 167
opening SFS files 152
performance tips 184
planning considerations 30
programming interface characteristics 129
reading SFS directories 170
reading SFS files 154
removing authority for files and directories 176
rolling back changes 146
rolling back SFS file changes 141
routines

creating files 126
directory I/O 114

SFS (Shared File System) (continued)
routines (continued)

file I/O 113
locking files and directories 176
manipulating files 126

server level 131
severed APPC/VM paths 191
sharing across systems 189
using APPC/VM paths 190
using logical units of work 133
using work units 133
writing SFS files 155

shadow
files 123

share
data spaces 226
data spaces, protecting access 231
disks 30
files

accessing directories 175
across systems 189
creating aliases 174
SFS routines 173

pools of ISPF 378
specific directory request 175

SHARE attribute
data space 226

side information 494
Signal_User_Event (XCSUE) routine 507
simple-commit flag

CRR registration 259
single system communications 461
single user operating mode

DB2 Server for VM 426
single-writer flag

CRR registration 260
skeleton

libraries ISPSLIB 371
SNA (Systems Network Architecture)

communications 481
contention 469
conversation 468
conversation security types 469
definition of 467
logical unit 467
LU 6.2 protocol 467
mode name 468
negotiation 470
overview 459
parallel session 468
session 467
session limit 468
transaction program 468

source file
adding comments 77
changing 73
deleting records 76
inserting records 76
multiple updates using UPDATE 77
multiple updates using XEDIT CLT option 81
replacing records 77
sequencing records 77
updating 73

spawn (BPX1SPN) routine

664 z/VM: 7.2 CMS Application Development Guide

spawn (BPX1SPN) routine (continued)
inheritance structure

using to alter attributes in the child process 622
spawn() function, converting from fork()

examples 615
factors to consider 618
inheritance 618, 622
overview 18
remapping of file descriptors 621

SQLCA (Structured Query Language Communications Area)
handling errors 428
SQLCODE field 428
SQLWARN field 428

SQLCODE field 428
SQLWARN field 428
SQLWARNING condition

DB2 Server for VM 428
SRRBACK routine

backout request 261
rolling back changes 141

SRRCMIT routine
commit request 261
committing changes 141

start
communications 480, 481
conversations 494
passing parameters 56
programs 55

states
APPC

Receive 482
Send 482

STDEBUG command
debugging programs 66

storage
error notification for AR-specified references 233
managing 223
releasing 223
saved segments 420
saved segments used as 419

store
data 29
data in databases 425

STORE command
debugging programs 65

STORMAP command
debugging programs 66

submit
jobs

CMS batch facility 357
ID card 357

SUBPMAP command
debugging programs 66

substitution
message repository

dictionary 413
example of 411
rules 411
using 410

summaries
possible z/VM connections 464
program-to-program communication 464

SVCTRACE command
debugging programs 66

sync point function flag
CRR registration 260

synchronization
INPLACE files 187
NOTINPLACE files 186
user 186, 207

synchronization point
definition 241
errors, retrieving 247
setting options 244

synchronizing multiple updates example 569
synonym

defining 387
translation 385

syntax
general CSL 323

SYSLIN data set
contents of 58
creating an example 60
linkage editor control statements 59

SYSSTATE macro (MVS) 235, 236
SYSTEM attribute

data space 225
system MACLIBs

DMSGPI 307
DMSOM 307
MVSXA 307
OSMACRO 307
OSMACRO1 307
OSVSAM 307
using 307

system resource
accessing 473
description of 473

system security
ensuring 35

T
table

creation authority in SQL 430
DB2 Server for VM 425
input libraries ISPTLIB 370
output libraries ISPTABL 371
services in ISPF 379

tables option
ISPF testing 68

tag
communication directory

LUNAME tag 484
MODENAME tag 484
NICK tag 484
PASSWORD tag 484
SECURITY tag 484
TPN tag 484
USERID tag 484

tape
general I/O services

DFSMS/VM RMS Tape Library Dataserver interface
routines 117

I/O
RDTAPE macros 117
TAPE DUMP command 117
TAPE LOAD command 117

Index 665

tape (continued)
I/O (continued)

TAPE SCAN command 117
TAPE SKIP command 117
TAPE stage command 117
TAPECTL macros 117
TAPESL macros 117
VMFPLC2 command 117
WRTAPE macros 117

TAPE DUMP command 117
TAPE LOAD command 117
TAPE SCAN command 117
TAPE SKIP command 117
TAPECTL macro 117
TAPESL macro 117
TERM option

LKED command 60
terminal

I/O
3270BFRA stage command 115
3270ENC stage command 115
APLDECODE stage command 115
APLENCODE stage command 115
BUILDSCR stage command 115
CONSOLE macro 115
CONSOLE stage command 115
DMS/CMS 115
FULLSCREEN stage command 115
FULLSCRQ stage command 115
FULLSCRS stage command 115
ISPF 115
LINERD macro 115
LINEWRT macro 115
planning considerations 34
XMITMSG command 114

terminal input buffer
description of 347

Terminate_Resource_Manager (XCTRTM) routine 507
terminology

communications programming 467
test

databases
using SQL 70

programs
tools available 65

using ISQL 70
using second level system 71

Test_Request_To_Send_Received (CMTRTS) routine 506
TEXT file

determining where files get loaded 49
external symbol dictionary 316
LDT record 316
loader control statements in 54
loading 49, 52, 55
running 52, 55
TXT record 316

time of file creation attribute 124
time of last change attribute 125
TP (transaction program)

access resources 468
communications directory entry 485
domain 472

TP-model application in z/VM
intermediate server 501

TRACE command
debugging programs 66

traces option
ISPF testing 69

TRANS option
creating transient modules 57
on the LOAD command 57

transaction tag
planning for 25

transactions and logical units of work 241
transient module

creating 57
translate tables

contents of 385
TRSAVE command

debugging programs 66
TRSOURCE command

debugging programs 66
TSAF (Transparent Services Access Facility)

collections
definition 471
example of 481

intermediate server 479
two phase commit

protocol 242
TXT record

TEXT file 316
txtlib (text library)

adding members 318
ALIAS statement 316
assigning entry point names 316
contents of 315
creating 317
creating alias 316
deleting members 318
displaying members 319
elements of 316
ENTRY statement 316
examining the contents 317
extracting members 319
identifying using an exec 341
ISPXLIB ddname 372
members, creating a directory entry for 316
MVS/XA linkage editor control statements 316
printing members 319
replacing members 318
SETSSI card 317

TXTLIB command
adding members to TXTLIBs 318
creating directory entry 316
creating text library 315
creating TXTLIBs using the GEN function 317
deleting TXTLIB members 318
examining MACLIB contents 317
replacing members to MACLIBs 318
using in an exec 341

TYPE command
displaying MACLIB members 313
displaying TXTLIB members 319

U
uncommit

updates, seeing 145

666 z/VM: 7.2 CMS Application Development Guide

unit record
I/O

planning considerations 34
PRINTL macro 116
PRINTMC stage command 116
PUNCH stage command 116
PUNCHC macro 116
RCARD macros 116
READER stage command 116
URO stage command 116

UPCASE option
FILEDEF command 48

update
creating UPDATE file 74
data spaces 228
date and time of last 123
example of 79
execs

using EXECUPDT command 83
file mode 6 warning 121
files used 73
FORTRAN example 84
log file 77
macros

using EXECUPDT command 83
preferred level 81
procedure 73
source file using XEDIT CTL option 81
source file, making multiple 77
UPDATE command 73
using a control file 78
using auxiliary control file 79, 81
using control file 81
using the XEDIT UPDATE and NOSEQ8 option 74
using the XEDIT UPDATE option 74
VMFASM EXEC 82
XEDIT UPDATE option 73

UPDATE command
CTL option 78
DB2 Server for VM 426, 435
description of 73
invoking from an exec 83
making multiple updates 77
output from 75
to update your program 75

update control statements
COMMENT statement 77
DELETE statement 76
INSERT statement 76
layout of 76
list of 76
REPLACE statement 77
SEQUENCE statement 77

UPDATE file
contents of 76
control statements 76

UPDATE option
sequence numbers 74

user ID
access security 469, 485
for CMS batch virtual machine 357

user program
CPI Communications

example 553

user program (continued)
CPI Communications (continued)

requesting a global resource 507
requesting a private resource 509
synchronizing multiple updates 511

definition 459
description 475

V
variable

dialog 376
host 427
indicator 427
main 427
pools 377
services 377, 378
VCOPY 377
VDEFINE 377
VGET 378
VPUT 378
VREPLACE 377

VARIABLE TRACES option
ISPF testing 69

variable-length record
definition 122
ISPF/PDF requirement 330
parameter 153
reading 159
writing 159

VARIABLES option
ISPF testing 68

VCIT (Virtual Configuration Identification Token)
DMSSPCP requirement 226
providing APPC/VM identity 232

VCOPY variable service
ISPF 377, 378

VDEFINE variable service
ISPF 377, 378

VDELETE variable service
ISPF 378

VGET variable service
ISPF 378

view
creating for DB2 Server for VM table 435

virtual machine
environments summary 5
reset 224

virtual machine address space
loading saved segments in 420

virtual machine mode
specifying a particular 57

virtual machine reset, data space considerations 224
virtual storage area

saved segment 419
Virtual Systems Management

API 7
VM (Virtual Machine)

connectivity 476
system gateways 476

VMDUMP command
debugging programs 66

VMFASM EXEC procedure
description 82

Index 667

VMFPLC2 command 117
VMLIB

contents of 320
loading 322

VMSFSASYNC system event 188
VPUT variable service

ISPF 378
VREPLACE variable service

ISPF 377
VRESET variable service

ISPF 378
VSAM files

identifying using DLBL 49
VTAM (Virtual Telecommunications Access Method)

overview 463

W
wait routine

CRR 251
Wait_on_Event (XCWOE) 515
Wait_On_Event (XCWOE) routine 507
WHENEVER command

DB2 Server for VM 428
SQL 428

WHERE clause
DB2 Server for VM 432

WHERE clause in DB2 Server for VM 431
work unit

calling execs 138
calling modules 138
changing the work unit ID 135
committing multiple 136
description of 133, 241
extension routine 502
ID 191
in applications 133, 196
intermediate server 501
issuing commands in 137
managing

DMSGETWU routine 134
DMSPOPWU routine 134
DMSPURWU routine 134
DMSPUSWU routine 134
DMSQWUID routine 134
DMSRETWU routine 134

manipulating and SAA 250
obtaining work unit ID 135
protected conversation 500
rolling back multiple 136
using multiple 136, 196

Work Unit Error Data Deblocker (DMSWUERR) routine
using 39

work unit ID
acquired, using with APPC/VM path 191
changing 135
default, using with APPC/VM path 191
description of 133, 241
obtaining 135

worker virtual machine 232
working set 223
write

BFS file using CMS record file interface 199
block on a tape drive 117

write (continued)
files from disk to tape 117
full-screen in DMS/CMS 380
global resource manager programs 486
information to a virtual printer 116
information to a virtual punch 116
intermediate servers 488
lines from the console 115
private resources 486
reports 425
SFS file

overview 155
sequentially 158
specific records 159
specific records using DMSPOINT 160
variable-length records 159

Write (DMSWRITE) routine
examples for SFS

REXX 545
writing records sequentially 158
writing specific records 159
writing variable-length records 159

using for BFS 199
using for SFS and minidisks 155

write-mode flag
CRR registration 259

WRTAPE macro
tape I/O 117

WUERROR parameter
extended error information 148, 197

X
X'2603' interrupt 234
XA virtual machine 5
XC virtual machine

ESA/XC 5
z/XC 5

XCECL (Extract_Conversation_LUWID) routine 506
XCECSU (Extract_Conversation_Security_User_ID) routine
506
XCECWU (Extract_Conversation_Workunit_ID) routine 506
XCELFQ (Extract_Local_Fully_Qualified_LU_Name) routine
506
XCERFQ (Extract_Remote_Fully_Qualified_LU_Name) routine
506
XCETPN (Extract_TP_Name) routine 506
XCIDRM (Identify_Resource_Manager) routine 507
XCONFIG ACCESSLIST user directory control statement

data spaces 221
XCONFIG ADDRSPACE user directory control statement

data spaces 221
XCSCSP (Set_Conversation_Security_Password) routine 507
XCSCST (Set_Conversation_Security_Type) routine 507
XCSCSU (Set_Conversation_Security_User_ID) routine 507
XCSCUI (Set_Client_Security_User_ID) routine 507
XCSUE (Signal_User_Event) 515
XCSUE (Signal_User_Event) routine 507
XCTRTM (Terminate_Resource_Manager) routine 507
XCWOE (Wait_on_Event) 515, 523
XCWOE (Wait_On_Event) routine 507
XEDIT

macros
creating 339

668 z/VM: 7.2 CMS Application Development Guide

XEDIT (continued)
macros (continued)

description of 339
example program 339

XEDIT command
adding members to MACLIBs 311
changing a source file 73
creating an UPDATE file 73
CTL option, making multiple updates 81
editing MACLIB members 313
replacing members to MACLIBs 311

XMITMSG command
accessing repository messages 410
console I/O 114

Z
z/Architecture CMS 5
z/CMS 5
z/VM

programming language environments 10
resource recovery routines 261

z/XC architecture 5

Index 669

670 z/VM: 7.2 CMS Application Development Guide

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6256-02

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: CMS Application Development Guide
	SC24-6256-02, z/VM 7.2 (September 2022)
	SC24-6256-02, z/VM 7.2 (September 2021)
	SC24-6256-02, z/VM 7.2 (March 2021)
	SC24-6256-01, z/VM 7.2 (September 2020)
	SC24-6256-00, z/VM 7.1 (September 2018)

	Part 1. Introduction
	Chapter 1. Introduction to the CMS Programming Environment
	What is CMS?
	Structure of CMS
	CMS Virtual Machine Environments
	CMS Programming Interface
	CMS Preferred Interface Group
	CMS Compatibility Group
	OS/MVS and DOS/VSE Group
	Systems Management APIs

	Common Programming Interface (CPI) Communications
	Resource Recovery Interface
	REXX Sockets

	CMS Operating Characteristics
	CMS Command Search Order

	Preferred File Types
	Programming Language Environments

	Chapter 2. Introduction to OpenExtensions
	Overview
	Setting Up OpenExtensions
	OpenExtensions Byte File System
	Compiling and Building OpenExtensions Applications
	Using c89
	Using cxx
	Using make

	Running OpenExtensions Applications
	POSIX Processes
	Converting fork() and exec() Usage to spawn()

	POSIX Terminal Interactions
	Additional Considerations

	Part 2. Developing Your Program
	Chapter 3. Planning and Designing Your Program
	Planning Objectives
	CMS Environment Considerations
	Identifying the System Architecture
	Determining the Functional Level of CMS and CP

	Determining System Resources
	Language Considerations
	Data Recovery/Data Integrity
	Use Transaction Tags to Aid Problem Determination
	General Considerations
	Some Important Issues to Address
	Considerations for Multiuser Server Applications

	Using Data Spaces
	Types of Processing
	Portability
	Tailoring the System
	Packaging Your Application
	Making Your Application Available
	Supporting Your Application

	Application Processing Considerations
	Storing and Manipulating Data
	Enhanced Disk Format (EDF) Architecture
	Shared File System (SFS) Architecture
	Manipulating Minidisk Files and SFS Files
	OpenExtensions Byte File System (BFS)
	DB2® Server for VM

	Communicating with Users and Applications
	Communicating with Users (Application to User Communication)
	Communicating with Applications (Application to Application Communication)

	Controlling I/O
	File I/O
	Screen and Terminal I/O
	Unit Record I/O

	Distributed Processing
	Scenario 1
	Scenario 2
	As a Rule of Thumb

	System, Data, and Program Security
	System Security
	Data Security
	Shared File System
	Byte File System
	Database Management

	Program Security

	Debugging and Testing Your Application System

	Chapter 4. Coding Your Program
	CSL Routines
	Getting Extended Error Information
	Extracting System Information
	Opening and Closing Files

	OpenExtensions Callable Services
	REXX Sockets
	CPI Communications Routines
	Macros and Functions
	DB2 Server for VM Statements

	Chapter 5. Compiling Your Program
	Invoking the Compiler
	Identifying Source Files
	Source Files Located on Tape
	Source Files Located in Your Virtual Reader

	Identifying Libraries to Be Searched
	Specifying Compiler Options

	Chapter 6. Loading and Running Your Program
	Defining Input and Output Files
	Using the FILEDEF Command
	Specifying Device Type
	Specifying a CMS File ID for Input and Output
	Specifying FILEDEF Options

	Identifying VSAM Files Using the DLBL Command
	Using the CREATE NAMEDEF Command

	Loading Your Application
	Where Are TEXT Files Loaded?
	How Long Does Your Program Stay in Storage?
	Resolving External References by Identifying Libraries
	LOAD and INCLUDE Options
	Loader Control Statements
	Determining Program Entry Points

	Running Your Application
	Using the START Command
	Passing Parameters on the START Command

	Using the GENMOD Command
	Creating Nonrelocatable and Relocatable Modules
	Example — Creating a Relocatable Module
	Example — Creating a Nonrelocatable Module

	Creating a Module to Run in the Transient Program Area
	Specifying Addressing and Residency Modes for a Module
	Restricting a Module to XC Mode
	Saving History Information for Modules
	Loading MODULE Files
	Loading a MODULE into a Saved Segment

	Using the BIND Command
	Using the LKED and OSRUN Commands
	LKED Options

	Using the OPENVM RUN Command
	Passing Parameters on the OPENVM RUN Command
	Things to Be Aware of When Using OPENVM RUN

	Displaying Information about Programs In Storage
	PROGMAP Command

	Chapter 7. Debugging and Testing Your Program
	Commands Used for Debugging
	CP Commands for Debugging
	CMS Commands for Debugging

	Interactive Debug Tools for Specific Languages
	Debugging Your COBOL Application
	Debugging Your FORTRAN Application
	Debugging Your Pascal Application

	Dialog Testing Using ISPF
	Database Testing Using SQL
	Using ISQL

	Testing Your Complete Application Package in a Virtual Machine

	Chapter 8. Updating Your Source Program
	Making Updates to a Source File
	Step 1 - Using the XEDIT Command to Make Changes to a Source File
	Creating an UPDATE File
	Using the XEDIT Command With the UPDATE Option
	Using the XEDIT Command With the UPDATE Option and the NOSEQ8 Option

	Using an Existing UPDATE File

	Step 2 - Using the UPDATE Command to Add Changes to a Source File

	UPDATE File
	UPDATE Control Statements

	Making Multiple Updates to a Source File Using the UPDATE Command
	Using a Control File
	Alternate Ways of Naming a Control File
	Using an Auxiliary Control File (AUX File)

	Making Multiple Updates to a Source File Using the XEDIT Command
	Using a Control File
	Using an Auxiliary Control File (AUX File)

	Preferred Level Updating
	VMFASM EXEC Procedure
	Making Updates to Execs and Macros Using the EXECUPDT Command
	Writing Your Own Exec to Invoke the UPDATE Command (The STK Option)
	Example of Updating a FORTRAN Source File

	Chapter 9. Building and Using Dynamic Link Libraries (DLLs)
	DLL Concepts and Terms
	DLLs and DLL Applications
	Imported and Exported Functions and Variables
	DLL Code and Non-DLL Code
	Function and Variable Descriptors
	Definition Side-Deck

	Building a DLL or a DLL Application
	Building a Simple C DLL
	Building a Simple C DLL Application
	Building a Complex DLL or DLL Application

	Rules for Compiling DLL Code Versus Non-DLL Code
	Rules for Modifying DLL Source
	Summary Example: Creating and Using DLLs

	Managing the Use of DLLs when Running DLL Applications
	Loading DLLs
	Sharing DLLs
	Freeing DLLs

	DLL Restrictions
	Performance Considerations
	Compatibility Issues between DLL and Non-DLL Code
	Referencing Functions and External Variables
	Pointer Assignment
	External Variable Pointers
	Function Pointers

	DLL Function Pointer Call in Non-DLL Code
	C Examples

	Non-DLL Function Pointer Call in DLL Code
	C Examples

	Function Pointer Comparison in Non-DLL Code
	Function Pointer Comparison in DLL Code

	Explicitly Calling a DLL

	Part 3. Using CMS Services
	Chapter 10. Handling Input and Output
	File I/O
	Directory I/O
	Console and Terminal I/O
	Program Stack I/O
	Unit Record I/O
	Tape I/O
	General Tape I/O Services

	Chapter 11. Understanding the CMS File System
	File System Architectures Supported by CMS
	Enhanced Disk Format (EDF) Architecture
	Shared File System (SFS) Architecture
	OpenExtensions Byte File System (BFS)

	What File Information Does CMS Maintain?
	File Name, File Type, and File Mode
	Record Formats
	Logical Record Length
	Record Number and Number of Records
	File Origin Pointer, Number of Data Blocks and Pointer Levels
	Date and Time of Last Update
	Recoverability
	Overwrite
	Date of Last Reference
	Creation Date and Time
	Date and Time of Last Change

	Using the Date of Last Reference Attribute
	How SFS Maintains the Date of Last Reference
	How to Retrieve the Date of Last Reference
	How to Inhibit the Updating of the Date of Last Reference

	Application Interfaces

	Chapter 12. Manipulating SFS and Minidisk Files and Directories
	CMS Record File System Programming Interface
	DFSMS/VM and SFS File Management
	Movement of SFS Files by DFSMS/VM
	Automatic File Movement and Erasure by DFSMS/VM

	Determining the File Pool Server Level
	Design Considerations
	Using a Namedef
	Creating a Namedef
	Deleting a Namedef

	Additional Considerations for Directory ID
	Using Work Units in Application Programs
	Obtaining Work Unit IDs
	Returning the Work Unit ID
	Changing the Default Work Unit ID
	Using Multiple Work Units in a Program
	Issuing CMS Commands in a Work Unit
	Calling Modules or Execs in a Work Unit
	Other Uses of Work Units
	Atomic Requests

	Committing and Rolling Back Changes in Application Programs
	Committing Your Work When You Have Exceeded a File Space Limit
	Using the COMMIT Parameter in SFS Routines
	Using the Recoverability and Overwrite Attributes
	Recoverability
	Overwrite
	Manipulating Extended File Attributes

	Committing SFS Changes in Application Programs
	Seeing Uncommitted Updates
	Rolling Back SFS Changes in an Application Program

	Handling Unexpected Conditions in SFS
	Collecting Error Information
	Abend Recovery

	File I/O
	Using CSL Routines and Existing FS Macros
	Handling Files and Directories Opened Using File Mode
	When File Mode is Associated with a Minidisk
	When File Mode is Associated with a FILECONTROL Directory
	When File Mode is Associated with a DIRCONTROL Directory

	Determining If a File Exists
	Creating Empty SFS Files
	Opening Files
	Reading and Writing Files
	Reading Files
	Token
	Records
	Datalength
	Buffer
	Bytesread
	Position
	Wuerror
	REFRESH | NOREFRESH
	requestid

	Writing Files
	Token
	Records
	Datalength
	Buffer
	Position
	Wuerror
	FORCE | NOFORCE
	requestid

	Altering Record Pointers
	Token
	Read Offset
	Write Offset
	Method
	New Read Pointer
	New Write Pointer

	Example: SFS Reading and Writing Records Sequentially
	Example: SFS Reading and Writing of Variable-Length Records
	Example: SFS Reading and Writing of Specific Records
	Example: SFS Reading and Writing of Specific Records Using DMSPOINT

	Closing Files
	Truncating Files
	Erasing Files
	Committing Your Changes
	Data Block I/O

	Directory I/O
	Determining If an SFS Directory Exists
	Opening and Reading SFS Directories
	Opening Directories
	FILE
	FILEEXT
	SEARCHALL and SEARCHAUTH
	ALIAS
	AUTH
	LOCK
	DIR

	Reading Directories
	Closing Directories

	Creating a Directory in SFS
	Erasing a Directory in SFS
	Committing Your Changes

	SFS File Sharing
	Granting Authority for Files and Directories
	Creating Aliases to Files
	External Objects
	Accessing Directories
	Direct File Reference
	Sharing Files and Directories

	Removing Authority for Shared Files and Directories

	Locking SFS Files and Directories
	Locking
	Implicit Locking
	Explicit Locking
	Relationships between Locks
	Deleting Locks
	Waiting for Locks
	Deadlocks
	Who Is Locking the SFS File or Directory?
	Checking Explicit (or Check-Out) Locks
	Checking Implicit Locks

	Canceling a Command When FILEWAIT Is On

	Performance Tips
	SFS Performance Tips
	SFS and Minidisk Performance Tips

	Using SFS File Space
	Threshold Warning
	Temporary Space

	Accessing Multiple SFS File Pools
	SFS Restart Recovery
	SFS User Synchronization
	Synchronization for NOTINPLACE Files
	Synchronization for INPLACE Files
	Lock Collisions

	Asynchronous Requests
	Issuing Asynchronous SFS Requests from CMS Multitasking Applications

	Sharing SFS Files Across Systems
	Use of APPC/VM Paths by SFS
	Use of APPC/VM Paths with the Default Work Unit ID
	Use of APPC/VM Paths with Acquired Work Unit IDs
	Severed APPC/VM Paths in SFS

	Chapter 13. Manipulating BFS Files and Directories Using CMS Record File System CSL Routines
	Programming Interfaces
	Required Authority
	DFSMS/VM and BFS File Management
	Migration and Recall
	Automatic File Movement and Erasure

	Application Design Considerations
	Using a Namedef
	Creating a Namedef
	Deleting a Namedef

	Additional Considerations for Directory ID
	Using Work Units in Application Programs
	Using Multiple Work Units in a Program

	Committing and Rolling Back Changes in Application Programs
	Handling Unexpected Conditions
	Collecting Error Information

	BFS File I/O
	Determining If a BFS File Exists
	Opening BFS Files
	Reading and Writing BFS Files
	Closing BFS Files
	Erasing BFS Files
	Data Block I/O

	BFS Directory I/O
	Opening BFS Directories
	Reading BFS Directories
	Closing BFS Directories
	Erasing BFS Directories

	Locking BFS Files
	Implicit Locking
	Explicit Locking
	Relationships between Locks
	Deleting Locks
	Waiting for Locks
	Deadlocks

	Using File Pool Space for BFS Files
	File Pool Restart Recovery
	File Pool User Synchronization
	Asynchronous Requests

	Chapter 14. Extracting and Replacing System Information
	Using the Extract/Replace Routine
	Using a Protected Environment
	Extracting System Information
	Ways of Searching for Data
	Calling DMSERP without Any Search Arguments
	Calling DMSERP Using Search Arguments
	Example

	Calling DMSERP Using Continued Searches
	Calling DMSERP Using Tokens

	Changing System Information

	Calling the Extract/Replace Routine from a REXX Program

	Chapter 15. Using Data Spaces
	Introduction
	Terminology
	Address Spaces
	Data Spaces
	Hardware Support—Access Registers

	Outline of VM Data Space Support
	Note for MVS Programmers

	Data Space Support for CMS Virtual Machine Environments
	Uses for Data Spaces
	Summary of Data Space Operations

	Using Data Spaces in Your Applications
	Creating and Using Data Spaces
	Creating a Data Space
	Accessing Data Space Storage
	Releasing Data Space Storage
	Managing Data Space Storage
	Ownership and Scope of Data Spaces
	Scope of Usage within a Virtual Machine

	Sharing Data Spaces with Other Virtual Machines
	Example
	Allowing Access to Your Virtual Machine's Primary Address Space

	Isolating Shared Address Spaces
	Extracting Address Space Information
	Rules for Creating, Deleting, and Using Data Spaces
	Rules for Creating Data Spaces
	Rules for Deleting Data Spaces
	Rules for Releasing Storage in Address Spaces
	Rules for Establishing Addressability to Address Spaces
	Rules for Accessing Data in Address Spaces

	Using VM Data Space Services from ESA or XA Virtual Machines
	Protecting Data Space Storage
	Sharing within a Virtual Machine
	Example

	Sharing With Other Virtual Machines

	Other Considerations When Using VM Data Spaces
	Using Alternate User IDs with APPC/VM
	Example

	Storage Error Notification for Access Register-Specified References
	Storage Errors
	I/O Errors

	Virtual Machine Event Handler
	Page-Fault Notification for Access-Register-Specified References

	Overview of CMS Service Call Support in AR mode
	Effect of Data Space Support on Preferred Programming Interfaces
	Preferred CMS Macros
	Interrupt Handling in AR Mode

	Callable Services Library Routines
	Using the CALL Macro with the CMSCSL Interface
	Using the Fast Path to Invoke CSL Routines

	Effect of Data Space Support on Compatibility Programming Interface
	Effect of Data Space Support on Simulated Programming Interfaces
	OS/MVS and OS/VSAM Simulated Macro Interfaces
	DOS/VSE Simulated Macro Interfaces

	Effect of Data Space Support on Existing Programs

	AR Mode Execution Considerations

	Chapter 16. Your Applications and Data Integrity
	Introduction to Coordinated Resource Recovery Services
	How CRR Works

	Designing Your Application for Data Integrity
	Setting Up to Ensure Data Integrity
	Setting Synchronization Point Options
	Committing (or Rolling Back) Changes
	A Few Notes on Rollbacks

	Tracking Down Errors
	Notes for Distributed Application Programs

	Chapter 17. Writing a CRR Wait Routine for Multiuser Server Applications
	Asynchronous Processing in CRR
	Multitasking Scenario
	Replacing DMSCWAIT
	Exit Routine Parameters
	Making Your Exit Routine Available

	Chapter 18. Getting a Resource Manager to Participate in CRR
	What Is CRR Participation?
	CRR Participation Requirements
	Logging

	Resource Adapter Interface with the SPM
	Registering a Resource for CRR
	Getting Information about the Resource Manager
	Using CPI Communications (SAA Communications Interface)
	Using the APPC/VM Assembler Programming Interface

	Getting Information about the CRR Recovery Server
	Setting the Registration Flags
	Changing Registration Values
	Unregistering the Resource

	CRR Exits to Registered Resource Adapters
	Synchronous and Asynchronous Exit Processing
	Synchronous Processing
	Asynchronous Processing

	CRR's Multitasking Dispatcher Exit

	Writing Resource Adapter Exit Routines
	Exit Routine Parameters
	Exit Routine Processing
	ADAPRCF (Precoordination Function) Exit
	ADAPRCOM (Precoordination Commit) Action
	ADAPRBCK (Precoordination Backout) Action

	ADACORF (Coordination Function) Exit
	Coordination Logging
	Break Tree Processing
	Extra Backout
	ADAPREP (Prepare) Action
	ADARQCMT (Request Commit) Action
	ADACMTD (Committed) or ADACMTDL (Committed With New LUWID) Action
	ADANEWL (New LUWID) Action
	ADABOUT (Backout) Action
	ADABOUT2 (Second Phase Backout) Action
	ADAOKBO (OK Backout) Action
	ADAPTRS (Prepare to Resynchronize) Action
	ADADA (Deallocate Abend) Action
	ADAIOKBO (Initiator OK Backout) Action

	ADAPSCF (Postcoordination Function) Exit
	ADAPSCOM (Postcoordination Commit) Action
	ADAPSBCK (Postcoordination Backout) Action
	ADAPSSC (Postcoordination State Check) Action
	ADAPSABN (Postcoordination Abnormal Termination) Action

	ADAEWUF (End-of-Work-Unit Function) Exit
	ADAEWPUR (Purge Work Unit) Action
	ADAEWRET (Return Work Unit) Action
	ADAEWEOC (End of Command) Action
	ADAEWABN (CMS Command Abend) Action
	ADAEWSS (End of CMS Subset) Action

	ADABORQF (Backout-Required Function) Exit
	ADABRQBO (Backout) Action
	ADABRQRF (Resource Failure) Action
	ADABRQDA (Deallocate Abend) Action

	Backout Indications
	Detailed Error Passback Support
	Resource Manager Interface with the CRR Recovery Server
	Resource Manager Resynchronization Facilities
	Exchanging Log Names
	Comparing States
	How the Recovery Token and Session Instance ID Are Used

	Resynchronization Initialization
	Resynchronization Initialization Data Flow

	Resynchronization Recovery
	Resynchronization Recovery Data Flow

	Forward Recovery
	Using Protected Conversations

	Chapter 19. Creating and Manipulating the CMS Libraries
	Creating and Manipulating Macro Libraries
	Using System MACLIBs
	Creating a MACLIB
	Examining Contents of a MACLIB
	Using MACLIB Command
	Using MACLIST Command

	Adding MACLIB Members
	Using MACLIB Command
	Using XEDIT Command

	Replacing MACLIB Members
	Using MACLIB Command
	Using XEDIT Command

	Deleting MACLIB Members
	Using MACLIB Command
	Using MACLIST Command

	Compressing a MACLIB
	Editing MACLIB Members
	Using MACLIST Command
	Using XEDIT Command

	Printing and Displaying MACLIB Members
	Using PRINT and TYPE Commands
	Using MACLIST Command

	Extracting MACLIB Members
	Using MOVEFILE and FILEDEF Commands
	Example 1
	Example 2

	Using PUNCH Command

	Setting MACLIST Defaults

	Creating and Manipulating Text Libraries
	Using MVS/XA Linkage Editor Control Statements
	Creating a TXTLIB
	Examining the Contents of a TXTLIB
	Adding TXTLIB Members
	Deleting TXTLIB Members
	Replacing TXTLIB Members
	Printing and Displaying TXTLIB Members
	Extracting TXTLIB Members

	Creating and Manipulating Load Libraries
	Creating LOADLIBs Using the LKED Command
	Manipulating LOADLIBs Using the LOADLIB Command

	Creating Callable Services Libraries
	Using Callable Services Libraries
	Making CSLs Available for Use
	Loading or Dropping a CSL Routine
	Getting Information about Routines in a Library
	Programming Language Binding Files
	Invoking a CSL Routine
	Calling Formats
	Parameters
	Example
	Return Codes

	Invoking CSL Routines Frequently from Assembler Programs

	Using ISPF/PDF Libraries
	Specifying ISPF/PDF Libraries and Their Members
	Guidelines for Library Specifications
	ISPF/PDF Library Record Format and Length
	Location of ISPF/PDF Libraries
	Concatenating ISPF/PDF Libraries
	ISPF/PDF Library Statistics

	Chapter 20. Using Execs
	Restructured Extended Executor Language
	Sample REXX Language Program
	Issuing z/VM Commands

	EXEC 2 Processor and CMS EXEC Processor
	Sample EXEC 2 Language Program
	Sample CMS EXEC Language Program

	Alternate Format Exec
	Naming Conventions for Alternate Format Execs
	Header Record Format of Alternate Format Execs
	Calling the Alternate Exec Processor
	Register Contents and File Status

	CMS Services Available to the Alternate Exec Processor

	Creating an XEDIT Macro
	PROFILE EXEC File
	CMS EXEC File
	Using the FILEDEF Command in Execs
	Using MACLIBs and TXTLIBs in Execs
	Prototyping with REXX
	Prototyping Interactive Applications
	Using Execs with ISQL

	Chapter 21. Passing Commands and Data
	Stacks
	Using the Program Stack to Pass Data Between Programs
	Using the Program Stack to Pass Data to CMS
	Manipulating the Program Stack
	Using Program Stacks

	Chapter 22. Using CMS Pipelines
	Basic Concepts and Functions of CMS Pipelines
	Using CMS Pipelines in Execs
	Calling CMS Pipelines from Assembler Programs
	Programming Tips When Using CMS Pipelines

	Writing Your Own Stage Commands

	Chapter 23. Using the Batch Facility
	Submitting Jobs to the CMS Batch Facility
	Input to the Batch Machine
	Batch Considerations for Shared File System (SFS) Files
	Submitting Virtual Card Input to the CMS Batch Facility
	/JOB and /* Cards
	/SET Card

	Other Input Records

	How the Batch Facility Works
	Preparing Jobs for Batch Execution
	Restrictions on CP and CMS Commands in Batch Jobs
	Batch Facility Output

	Using Exec Files for Input to the Batch Facility
	Sample System Procedures for Batch Execution
	Batch Exec for a Non-CMS User

	Purging and Reordering Batch Jobs

	Chapter 24. Creating an Interactive Program
	Using ISPF for Dialogs
	Developing an ISPF Dialog
	How to Begin Using ISPF
	ISPF Dialog Organization
	Controlling Dialog Flow with the SELECT Service
	ISPF Panel Definition
	ISPF Message Definition
	ISPF Variable Definition
	ISPF Panel Services
	ISPF Variable Pools
	ISPF Variable Services
	Other ISPF Services
	Table Services
	File Tailoring Services
	Miscellaneous Services

	Using DMS/CMS for Dialogs
	DMS/CMS Users
	System Support Functions
	Panel Formatter Functions
	Panel Manager Functions

	Panel Size Considerations

	Chapter 25. Developing Commands Using the Parsing Facility
	Using the Parsing Facility
	Step 1. Creating a DLCS File
	The DLCS Statement
	Command Syntax Definitions

	Step 2. Checking for DLCS Coding Errors
	Step 3. Converting Your DLCS File
	Step 4. Setting Command Name Synonyms and Translations
	Step 5. Invoking the Parsing Facility

	Coding Your Command Definitions
	Rules to Remember
	Defining the Command Name Using the :CMD Statement
	Defining Synonyms Using the :SYN Statement
	Defining Modifiers Using the :KW.n Statement
	Defining Operands Using the :OPR Statement
	Defining Options Using the :OPT Statement
	kwdef Expression
	fcndef Expression
	System Functions
	User Functions

	Writing Comments Using the :* Statement
	Defining Routines and Keywords Using the :RTN and :KWD Statements
	RTN Statements
	KWD Statements

	What the Parser Does Not Flag
	DBCS and the Parsing Facility
	In DLCS and GENCMD
	From CMS

	Examples: Using the Parsing Facility
	Creating the TEST DLCS File
	Creating the TEST DLCS File with Language Translations
	Processing the TEST DLCS File
	Processing MYCMD1 from a REXX Program
	Processing MYCMD1 from an Assembler Program

	Creating and Distributing Your Own CMS Commands
	Using DLCS
	Defining Translations, Synonyms, and Abbreviations
	Defining HELP Files

	Chapter 26. Using Message Repository Files
	Creating and Using Message Repositories
	Step 1. Creating a Message File
	Commenting Your Message Repository
	Creating a Control Line
	Creating Message Records
	Example of a Message Repository

	Step 2. Checking and Compiling Message Repository File
	Step 3. Making Message File Available
	Step 4. Accessing Messages

	Using Substitution in a Message Repository
	Example of Using Substitution in a Message Repository

	Using Dictionary Substitution in a Message Repository
	Example of Using Dictionary Substitution in a Message Repository

	Creating Your Own CMS Messages
	Creating Your Own HELP Files
	Making Your Messages Available to Others
	Loading a User Message Repository into a CMS Logical Saved Segment

	Chapter 27. Using Saved Segments
	Physical and Logical Saved Segments
	Using the SEGMENT Command
	Reserving Storage Space for Saved Segments
	Loading Saved Segments
	How CMS Locates Saved Segments
	How CMS Handles Objects in Logical Saved Segments

	Purging Saved Segments from Your Virtual Machine
	Releasing Segment Storage Spaces
	Assigning Logical Saved Segments to Physical Saved Segments
	Displaying Information about Saved Segments

	Chapter 28. Using DB2 Server for VM
	How SQL Handles Data
	SQL Commands
	Coding SQL Commands
	Declaring Host Variables to SQL
	Main Variables
	Indicator Variables

	Declaring an SQL Communication Area
	Connecting to DB2 Server for VM
	Manipulating Data
	Ending Your Logical Unit of Work
	Releasing the Connection to DB2 Server for VM
	SQL Command Layout

	Creating DB2 Server for VM Tables
	Retrieving Data from a Table
	Defining Search Conditions
	Comparison Operators
	Arithmetic Operators
	Logical Operators
	Defining Additional Predicates

	Using Built-In SQL Functions
	Excluding Duplicates
	Manipulating Data in a DB2 Server for VM Table
	Creating Views in DB2 Server for VM
	Preprocessing Your DB2 Server for VM Application
	Using SQL Interactively

	Chapter 29. Using Data Compression Services
	Compression and Expansion Services
	Compression and Expansion Dictionaries
	Using Compression and Expansion Services
	Compression Processing
	Expansion Processing
	Dictionary Entries
	Compression Dictionary Entries
	Character Entry Generic Form (DSECT CMPSCDICT_CE)
	Character Entry CCT=0 (DSECT CMPSCDICT_CE)
	Character Entry CCT=1 (DSECT CMPSCDICT_CE)
	Character Entry CCT>1 (DSECT CMPSCDICT_CE)
	Alphabet Entries (DSECT CMPSCDICT_CE)
	Format 1 Sibling Descriptor (DSECT CMPSCDICT_SD)

	Expansion Dictionary Entries
	Unpreceded Entry (DSECT CMPSCDICT_UE)
	Preceded Entry (DSECT CMPSCDICT_PE)
	Sibling Descriptor Extension Entry (DSECT CMPSCDICT_SDE)

	Dictionary Restrictions
	Other Considerations
	Compression Dictionary Examples
	Example 1
	Example 2
	Example 3

	Expansion Dictionary Example
	Example

	Building the CSRYCMPS Area
	Compression and Expansion Examples

	Determining if the CSRCMPSC Macro Can Be Issued on a System
	High-Level Language Call

	Compressing CMS Data

	Part 4. Connectivity Programming in CMS
	Chapter 30. Introduction to Connectivity Programming in CMS
	Types of Communications Programs
	How the Programming Interfaces Work Together
	Understanding the Scope of APPC/VM Communications
	Communication within a Single z/VM System
	Communication within a TSAF Collection of z/VM Systems
	Communication Outside Your z/VM System, TSAF, or CS Collection
	Communication between a z/VM and Non-z/VM System
	Communication between Two TSAF Collections

	Summarizing z/VM Program-to-Program Communication

	Chapter 31. Understanding Communications Programming Terminology
	Systems Network Architecture Terminology
	What Is an SNA Network?
	What Is a Logical Unit?
	What Is a Session?
	What Is a Transaction Program?
	What Is a Conversation?
	What Is a Mode Name?
	What Is a Session Limit?
	What Is Contention?
	What Is Session Security?
	What Is Conversation Security?
	What Is Negotiation?

	VM Terminology
	What Is a TSAF Collection?
	What Is a CS Collection?
	What Is a Domain?

	What Is a VM Resource?
	What Are Local and Global Resources?
	What Are System Resources?
	What Are Private Resources?
	Resource Interrelationships

	What Are Communications Partners?
	What Is a Resource Manager?
	What Is a User Program?

	What Is an AVS Gateway?
	What Is an AVS Global Gateway?
	What Is an AVS Private Gateway?

	What Is a System Gateway?

	Chapter 32. Program-to-Program Communications
	Basic Concepts
	Communications Partners
	Paths
	States

	Using Basic Communications Functions
	Step 1: Starting Communications with Another Program
	Step 2: Sending and Receiving Data
	Step 3: Ending Communications with Another Program

	Using Advanced Communications Functions
	Requesting Confirmation
	Signaling an Error
	Requesting to Send Data
	Establishing a Protected Conversation

	Identifying Your Communications Partner
	Using a CMS Communications Directory

	Resource Manager Programs
	Local Resource Manager Programs
	Global Resource Manager Programs
	System Resource Manager Programs
	Private Resource Manager Programs
	Considerations for Private Resources

	Intermediate Servers
	Writing Versatile Programs
	Summary of Connections
	Which Programming Interface Do You Want to Use?

	Chapter 33. Understanding CPI Communications
	Basics of CPI Communications
	Invoking CPI Communications Routines
	Invocation Errors

	Using Basic CPI Communications Functions
	Starting a Conversation
	Sending and Receiving Data on the Conversation
	Ending a Conversation

	Using Advanced CPI Communications Functions
	Requesting Confirmation
	Signaling an Error
	Requesting to Send Data
	Establishing a Protected Conversation

	Using VM Extensions to CPI Communications
	Security
	Resource Manager Programs
	Global, Local and System
	Private

	Considerations for TP-Model Applications in z/VM
	LU 6.2 Communications Model
	z/VM TP-Model Applications
	Implications

	Considerations for Intermediate Servers
	TP-Model Application
	TP-Model Intermediate Servers and Assigned Alternate User IDs

	Non-TP-Model Application

	CMS Work Units
	z/VM Resource Recovery
	Managing CPI Communications Events in a Virtual Machine

	Writing Multitasking Programs
	Summary of Common Routines
	Summary of z/VM Extension Routines
	Scenario 1: Request for a Global Resource
	Virtual Machine Preparation
	Program Functions

	Scenario 2: Request for a Private Resource
	Virtual Machine Preparation
	Program Functions

	Scenario 3: Synchronizing Multiple Updates
	Virtual Machine Preparation
	Virtual Machines in the Same System
	Virtual Machines on Different Systems

	Overview for Synchronizing Multiple Updates
	Program Functions
	Source Program for Synchronizing Multiple Updates

	Scenario 4: Signaling a User Event
	Virtual Machine Preparation
	SUESAMP1 EXEC Listing
	SUESAMP2 EXEC Listing
	SUESAMP3 ASSEMBLE Listing
	Execution Results
	Allocating Program's Results
	Accepting Program's Results

	Scenario 5: Using the VMCPIC Event

	Appendix A. Assembler Examples
	Example 1: Assembler Application Using the CSL Extract/Replace Routine
	Example 2: Assembler Application Using CSL Routines to Open, Read, and Close Files

	Appendix B. C Example
	Appendix C. COBOL Examples
	Example 1: Simple COBOL Application
	Example 2: Complete COBOL Application
	Example 3: COBOL Application Using a CSL Routine Call

	Appendix D. FORTRAN Examples
	Example 1: Simple FORTRAN Application
	Example 2: Complete FORTRAN Application
	Example 3: FORTRAN Application Using a CSL Routine Call

	Appendix E. PL/I Example
	Appendix F. REXX Examples
	Example 1: REXX Application Using the CSL Extract/Replace Routine
	Example 2: REXX Application Using Namedefs

	Appendix G. VS Pascal Example
	Appendix H. CPI Communications Examples
	Example 1: CPI Communications User Program in z/VM
	Example 2: CPI Communications Resource Manager Program in z/VM
	Example 3: Synchronizing Multiple Updates Using CRR and CPI Communications
	User Application, CRREXMP1 EXEC
	Target Application, CRREXMP2 EXEC

	Appendix I. CRR Communications Examples
	Single Processor Case
	TSAF Collection Case
	SNA Network Case

	Appendix J. ISPF Example
	Appendix K. MQ Series Applications
	C Applications
	C Sample Files
	C Sample
	Execute the application

	COBOL and PL/I Applications
	COBOL Sample Files
	PL/I Sample Files
	COBOL and PL/I Samples
	Execute the application

	Assembler Applications
	Assembler Sample
	Execute the application

	REXX Applications
	REXX Sample Files
	REXX Sample
	Execute the application

	Appendix L. Data Compression Services
	A Dictionary Build Using CSRBDICV
	Using CSRCMPEV to Test Compression and Expansion

	Appendix M. Converting fork() + exec() to spawn()
	Conversion Examples
	Example 1
	fork() version
	spawn() version

	Example 2
	fork() version
	spawn() version

	Factors to Consider When Converting
	Inheritance
	Parameters
	Remapping of File Descriptors – fd_count, fd_map[]
	Inheritance Structure – Used to Alter Attributes in the Child Process
	Inheritance Conversion Tips

	Passing the Argument List to the Called Program – argv[]
	Passing Environment Variables – envp[]

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

